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Abstract

Domain parsing, or the detection of signals of protein
structural domains from sequence data, is a complex and
difficult problem. If carried out reliably it would be a pow-
erful interpretive -and predictive tool for genomic and pro-
teomic studies. We report on a novel approach to domain
parsing using consensus techniques based on Hidden
Markov Models (HMMs) and BLAST searches built from a
training set of 1471 continuous structural domains from the
Dali Domain Dictionary (DDD). Validation on an inde-
pendent test sample of family-matched structural domain
sequences from the Scop database yields a consensus pre-
diction performance rate of 75.5%, well above the 58%
obtained by simple agreement of methods.
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Protein Structural Domains and their Parsing

Proteins are generally composed of one or more autono-
mously folding units known as domains [14]. Multidomain
proteins in eukaryotes are often encoded by genes contain-
ing multiple exons, whose combinatorial shuffling during
evolution has produced novel proteins with different do-
main arrangements and different associated functions. This
is thought to have helped in responding to environmental
challenges because, through recombinatorial events, it has
allowed genomes to add, subtract, or rearrange discrete
functionalities within a protein [20].

The multiple domains in proteins make them harder to ex-
press in recombinant form, and complicates their functional
determination by x-ray crystallography or nuclear magnetic
resonance (NMR). Expression and structure determination
for single isolated domains is easier. Since isolated domains
are the discrete functional units of proteins, knowing struc-
ture-function information about individual domains in a
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multidomain protein is usually a prerequisite for drug dis-
covery or development for the full-length protein. Computa-
tional approaches that reliably parse protein sequence data
into their constituent structural domains would therefore be
most helpful in supporting the analysis of multi-domain
proteins, their function, relation to disease mechanisms, and
potential drug targets.

Domain parsing, or the detection of the signal of a structural
domain from its sequence data is a complex problem. Defi-
nitions of protein structural domains are not standardized,
and different databases will frequently report different do-
main boundaries for the same protein. Experimentally, pro-
teolysis provides a practical tool to break up a large protein
into domains. However, computational methods are attrac-
tive for their potentially much greater efficiency and lower
cost, if they can be shown to work reliably over a broad
enough range of proteins. Structural domains composed of a
single, sequence-continuous module are the simplest set of
targets for an initial test of consensus parsing methods, as
reported here.

Protein families classified by sequence similarity can be
used to derive sequence homology-based domains, and sev-
eral databases, such as ProDom [4], Pfam [23], SBASE
[17], and SMART [22], include such information. Protein
sequences from primary sequence databases (NCBI-
GenBank, SwissProt, etc.) have been typically compared to
each other by all-against-all pairwise alignments, and simi-
lar sequences clustered into families. For each family, a
multiple sequence alignment (MSA) is generated to repre-
sent conservative patterns, or characteristic signatures. A
consensus pattern collected from a MSA, or a Hidden
Markov Model (HMM) [5] of underlying transition prob-
ability (frequency) profiles can be used to identify new
members of a family. Domain boundaries can also be de-
rived from a MSA and additional information such as do-
main mobility and tertiary structure. Considerable expertise
and careful judgement are usually necessary to validate do-
main assignments. And, assigned domains often tend to be
smaller than the corresponding observed structural domains.
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The Dali Domain Dictionary (DDD) contains a set of struc- For HMMs, identification of a fragment is determined from
tural domains extracted from an all-against-all alignment of the alignment of the sequence to each model by extracting
protein structures in the PDB. The resulting domains have the sequence starting from the first match state of the HMM
precisely defined domain boundaries. Protein structures are to its last match state.

also classified in the Scop [18] and CATH [19] databases N Library of

by abstracting their hierarchical groupings. Both are based Detection Tacget

on detailed expert analysis, with Scop emphasizing defini- Srarger fom BLAST Signals/Models Mrarger from HMM

tion of protein evolutionary relationships, while CATH em- 7] €ttt
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of alternative computational methods for domain parsing. /" 7
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Domain Parsing by Multicriteria Consensus
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Our approach applies techniques of multicriteria consensus
reasoning [16][24][6] in a novel way to combine results DA Evaluation
from Hidden Markov Models [5][12](11} and BLAST [1] Qesquence S b " Procedure

as tools for computational domain assignment and parsing
from sequence data. To train our algorithm, we used a sub-
set of continuous (single) domains from the DDD dataset
that are also completely coincident with the corresponding .
domains in the Protein Data Bank (PDB). These amounted In order to assess or evaluate the effectiveness of the de-
to 1,471, Expanding this dataset for each domain by addi- tected fragments we then need to compare them against the
tion of sequence homologs or neighbors from the nonre- orlglpal reference sequence f.rom the DDD database, and,
dundant database [10], we then built a multiple sequence for independent testing, against the corresponding Scop
alignment and construct an HMM model for each domain. sequence, which may have somewhat different end-points,
We selected the 10 best scoring results from BLAST search as indicated in the lowest line of the diagram. The above
against the NR database to construct the neighborhood }llustrates the combinatorial complexity of alignment match-
around the seed domain, and built our HMMs based on the ing between results filtered from just the two best scoring
multiple alignment of the DDD domain sequence and these models from each method. However, there is no reason to
homologous sequences with CLUSTALW [25] with the expect that the rank order of scores.produced by target
SAM package [11]. The HMMs can then predict domain model HMM and BLAST matches against query sequences

boundaries in other protein sequences by aligning the needs to coincide so precisely given the many different fac-
protein sequence to the HMMs. tors that each method incorporates into their scoring func-

tion. While a very strong signal may indeed be detected

Figure 1 — Domain Detection & Prediction Evalua-
tinn

Our initial filtering criterion prior to consensus reasoning among the two best ranked target models, in general one
was that the two best (lowest negative log-likelihood ratios needs to extend the range of possible top ranking targets
or scores) HMMs should detect some significant signal of based on a comparative analysis of score values and align-
the structural domain. For this, we align the sequence with ment/overlap results on a well validated training set. When
the families of the first best and second best models, obtain- we did this we arrived at a conservative cutoff for prelimi-
ing candidatc domain structures for the given protein se- nary screening by score values that includes the top ten
quence with respect to the models used. Figure 1 illustrates candidate scores.

the complexity of the comparisons needed in our study. A

library of detection target sequences (for BLAST matches) Table 1 — Pareto Set Extraction for a Sample Query
and mpdels (for HMM matches) is used to generate a set of RutgersID Predicted Predicted HMM
matching scores for each against a query sequence. The BLAST:HM | 4N, 46, Le: BLAST

detected sequence fragments derived from the first best and M BAH/BAHNS | qarpet ID (score) | T27et 1D (score)
second best matched models against a protein sequence are 0870:0870 116, 0%, 3521352 314.14 (3e-71) 31414 (20541)
shown below the reference sequences, indicating that in 1441:1441 9,199,49/0 4.94.1.1.1 (4e-10) 4.94.1.1.1(51.23)
general,. they do not need to coincide in their N or C termi- 1442:1442 9,101, 7600 494.1.1.5 (26-04) 4.94.1.15(-35.57)

nal positions. However, if they detect the same underlying 08640505 21,92, 2437083 3141204 314150837

signal, they will typically overlap, as shown in the figure.
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The criteria for our Pareto Set extraction procedure must
include matching scores for the two methods, and compara-
tive alignment results. These latter involve the difference in
N-terminal and C-terminal predictions, as well as the degree
of alignment overlap for the predicted fragments for both
methods. This is illustrated for a specific independent test
query sequence extracted from the Scop database in Table
1, where AN and AC refer to the respective total number of
residues that differ at the two terminals, and the overlap
zone is given as the ratio of BLAST-HMM prediction over-
lap length to the reference domain length. Target IDs for
BLAST and HMM predictions are also listed, together with
their scores. This illustration shows how the top two candi-
dates by AN and AC criteria of alignment include the best
(lowest) scoring predictions by both BLAST and HMM, as
listed on the first line of the table. This best prediction re-
sult also yields the maximum overlap with the reference
domain (352 residues) when matched against the query,
which has a length of 414 residues. Such a coincidence of
best results from the multiple criteria of scoring and align-
ment is what we desire, but cannot be realistically expected
for arbitrarily chosen query sequences. For this reason we
needed to generalize the procedure to one of consensus rea-
soning over multiple sets of criteria for evaluating results
from the multiple knowledge sources - DDD and Scop in
this study.

The major steps of the general algorithm for single continu-
ous structural domain detection by multicriteria consensus
from the Pareto sets are summarized in the flow chart in
Figure 2. The query sequence is scored against the 1471
target HMM models and BLLASTed against the correspond-
ing target domain reference sequences, and the top ten scor-
ing pairs are extracted. These predictions are then assigned
to their appropriate target Scop code, and aligned with the
reference domain sequences from Scop corresponding to
the seed domains from DDD. Parameters of the alignment
are computed as described above, together with the corre-
sponding scores, and the Pareto Set is extracted, from which
the final prediction, or set of predictions are selected.

DQD Scop
i Top & |
Score |
HMM \\
M
Extraction of Assignment of Finat
Query Sequence Matched Pairs Matched Pairs |  Prediction
BLAST \ll /]\
Top K Boundary
Score &Region [ Pareto
Alignment Set
Signal Detection <—@->  Fold Recognition

Figure 2 — Single Continuous Domain Detection Algo-
rithm

We next describe results on the training and independent
testing sets, comparing the performance of this algorithm
with the simple conjunction of results from the best scoring
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models and searches.

Selection and Analysis of Training Set and In-
dependent Testing Sets

The reliability of our models is evaluated by several tech-
niques, and its domain assignment capabilities tested against
the reference data from the PDB. The predictive capabilities
of our HMM models have been tested against selected data
from the Scop database, where the DDD domains comprise
only a small fraction of the protein sequences, making it
possible to divide into training samples (domains overlap-
ping with DDD domains used in constructing the HMMs
and BLAST queries), and independent testing samples for
the parsing experiments.

We selected Scop target domains for realistic predictive
capabilities from Scop-1.48 Astral with 40% or lower se-
quence identity. Of the 2683 such domains, 2490 are con-
tinuous. Requiring at least one DDD training domain and
one non-DDD domain for independent testing within each
Scop family reduces this to 235 families with 471 training
and 611 testing domains. Further requirements of good
alignment and matching between the training domains from
DDD and the corresponding Scop domains reduces to 155
families with 252 training and 347 independent testing do-
mains. For the training data, consistency of Scop and DDD
domains was graded as follows: Perfect Match: No differing
residues between predicted and actual test domain (150
cases); Almost Perfect Match: Maximum 5% difference at
terminals & 5% overall (26 cases); N terminal within 5%,
overall 10% maximum (22 cases); C terminal within 5%;
overall 10% maximum (18 cases); Scop includes DDD (34
cases); DDD includes Scop (2 cases).

The framework for analysis, then, is as follows: a) Select
Scop families which include families with the DDD seed
structures, remove identical sequences from them. b) Divide
the families into training and testing subsets. The former
include proteins that contain the seed domain, and the latter
do not. ¢) Compare against all 1471 HMMs, and carry out
corresponding BLAST searches against the original seed
sequence for all proteins in these families. Determine the
true positive detections of the original seed domain in the
independent sample of Scop proteins for each family within
a superfamily. d) Compare the results from parsing with
HMMs and BLAST. e) Apply the multicriteria consensus
parsing algorithm and measure its improvement in parsing
performance for the independent dataset in comparison with
conjunctive consensus rules.

Results for simple matches on the 252 training cases show
that detecting a DDD domain signal from a PDB sequence
retrospectively can be as easily carried out with a BLAST
search as with an HMM matching procedure, For all DDD
continuous domains this is achieved at the 80% level for
first best matches and 95% level for first and second best
matches.

Results for matching the alignment (boundaries) of predic-
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tions for the 347 independent test domains show that HMM
target matching alone parses 92.2% of the 347 test domains
whereas BLAST alone parses 84.7%, with agreement on
83%. However, boundary detection is very different for the
HMM vs. BLAST results. Of the 347 independent test Scop
domains, there is perfect alignment with the reference do-
main for 107 out of the 252 by HMM vs. only 3 by BLAST,
or a 35:1 ratio in favor of accurate detection by HMMs. If
we include the almost perfect category, this yields 200 by
HMM vs. 57 by BLAST or a 3.5 to 1 ratio in favor of better
HMM boundary detection.

Requiring accurate alignment with a correct assignment to
the appropriate Scop domain family produces more conser-
vative results. HMM predictions alone match 68%, BLAST
alone match 65%, with agreement on a subset of 58%. This
suggests that more powerful consensus reasoning methods
may be needed.

Consensus Algorithm Results

When we applied our multicriterion consensus reasoning
algorithm, we expanded the initial set of predicted target
domains to the top 10 best scores from both methods, and
then extracted matching pairs according to their Scop codes.
When both seed domains from BLAST and HMM predic-
tions share the same Scop codes at the domain level, this is
the most specific candidate pair for the Pareto set. We can
repeat this procedure at the higher levels of the Scop classi-
fication hierarchy, checking whether the Scop codes for
family, super family, or fold level agree. For the chosen
pairs at each level, N and C terminal differences between
the two different method predictions are compared in terms
of their differences by number of residues. Those with
minimal differences between the BLAST and HMM predic-
tions are ranked above those with larger differences, and the
Pareto set is built from them. The pair with the greatest
overlap length between two predictions is then chosen as
the final prediction if the Pareto set has more than one ele-
ment.

By this consensus reasoning method, combined BLAST and
HMM predictions yields 75.5% (262/347) accuracy at the
level of Scop family — a distinct improvement over the 58%
obtained for the single best hit results where BLAST and
HMM best scoring results coincided.

Conclusions

From the above we see that HMMs are much more reliable,
or exact, in boundary detection for domain parsing than
BLAST searches, but that combining HMM and BLAST
results for those parses while slightly relaxing exact bound-
ary detection yields the most reliable overall results by our
consensus reasoning algorithm. The test on the 347 inde-
pendently selected Scop structural domains shows the po-
tential for applying our consensus parsing methods to the
detection of structural domain signals at the genomic level.
We are currently carrying out an analysis of the yeast ge-
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nome with our existing system to test applicability of the
consensus reasoning methods for fold recognition at the
genomic level. We are also updating the software we have
used for this study, and will re-compute our HMMs using
the new DBCLUSTAL [26] based on the current NRDB,
use PSI-BLAST with iterations for comparative scoring,
and apply the IMPALA [21] method based on profiles
rather than direct sequence data for our next version of the
system.
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