MEDINFO 2001

V. Patel et al. (Eds)

Amsterdam: 10S Press

© 2001 IMIA. All rights reserved

XML and the VITAL Standard: The Document-oriented Approach for Open
Telemedicine Applications

Angie Anagnostaki®, Sotiris Pavlopoulos®, Dimitris Koutsouris®

*Biomedical E. ngineering Laboratory, Department of Electrical and Computer Engineering, National Technical University of
Athens, Athens, Greece

Abstract

This paper describes an effort to create a common,
document-oriented architecture for the interchange of
medical data in healthcare telemedicine applications. Key
components are: The VITAL standard specifying a common
(medical device independent) representation of Vital Signs
Information and the Extensible Markup Language (XML)
specifying the document specifications form, an
architecture that, in aggregate, define the semantics and
structural constraints necessary for the exchange of vital
signs and related medical data. The modelling and design
technique for the described application has been the
Unified Modelling Language (UML). The XMI (XML
Metadata Interchange Format) of the Object Management
Group (OMG) provided the meta-model for this
application, for sharing objects using XML, via the transfer
of the application’s UML model to XML documents and
DTDs.

Keywords:
Standards; Object-Oriented; Healthcare; XML; XMI; UML

Introduction

Bio-signal monitoring devices have developed in an
unstructured manner in terms of communication interfaces.
The need for technical standardization in healthcare
environments enabling communication in a structured and
open way, with clinical, administrative and research
benefits, is obvious. Towards this direction, a number of
industrial health informatics and telematics standards have
developed and are being evaluated in the past few years.

Into the light of the above, the "VITAL" ENV 13734
standard (Vital Signs Information Representation) [1] of the
European Standardization Committee CEN provides the
definition of a common (device independent) representation
of Vital Signs Information as well as the definition of a
common model for accessing this information. This
standard addresses the definition and structuring of
information that is communicated or referred to in
communication between application entities. It also

77

specifies an inventory of a schematic presentation and
identification scheme for all types of Object-Oriented
modelling elements used in its Information Model,
according to the Coad & Yourdon "Object Oriented
Analysis" (OOA) technique.

The implementation of a telemedicine application following
the definitions of such standard must take into account the
0-0 character of VITAL and should take advantage of the
relevant state-of-the-art industrial software development
techniques and development environments that exist.

Given the variability in the clinical structures, underlying
information models, degree of semantic encoding, use of
standard healthcare terminologies, platform- and vendor-
specific features, it is currently difficult to store and/or
exchange clinical data and documents with retention of
computer-processable semantics over both time and
distance. The idea of a common data architecture, vendor-
neutral and platform-independent that can accommodate a
diverse set of structures and clinical data points directly to
the World Wide Web Consortium (W3C) standard,
Extensible Markup Language (XML). CEN TC251
Working Groups have expressed strong interest in the
potential of XML in the implementation of health
informatics standards, especially for messaging applications
that require standardization in the representation of data.
XML provides a means to share and communicate clinical
information in an effective manner.

Materials and Methods

Modelling and design of the application

The VITAL-compliant model

The Domain Information Model (DIM) of the VITAL
standard is an object-oriented model that consists of
objects, their attributes and their methods which are
abstractions of real world entities in the domain of (vital
signs information communicating) medical devices. The
DIM comprises of a static model, which organizes the
problem domain into packages, namely subjects, who group
together objects, related to one another. The VITAL DIM

Chapter 2: Standards for Interworking

—=

](lm System)

——
| 2N
Operation | \
pomam § |
|
!

LImliNer(Selcd em
(1rom Control) ('mm Controf) |
Communication Controller |
omCommuricator

A [‘ 2

R B /
Device Com municaton C mﬂ {
j __,__1
(rom Communicatn) \ [SampioAnay | \ \
. — — \ {(om Meca)
N

' {(tomMadeay

\

\ 1.

Numertc
(t70m wedican)

—

| XY
! \ ™ MertScanner \\ \

e

Milipatientarchive
. |ttrom avrchivany

P&E«E?ﬂagr’.ﬁi&'
(grom Patiant Damograpncs)

[————"

=l ttram Archwan)

1
.| Session arcnive | P —
| ttrom Archivel) i Physician |
: Tirom Arcnw

Scanner
(trom Extended Services)

l Session notes

\ S s S |rom avtivat)
W NS
N) - =
R .. S
\\\\ L\\ ~—
Y \ N —
\ l [Scanner Scanner
\ {irrom Extended Sarvices) (1rom Extended Sow kcas)
W\ ; —
\{\ X ! |
[
PeriCigScanner

(trom Extended Sewicos)

Dece Inteface
(from Communication)

\\L 7
5
v/

‘«m Medical)

T

firom

[spedialized MbElement
trom Communaton

ttrom
| Enumeration I;

r——\— S
| Context Scanner

{(from Extended

[E—

Figure 1 Object class diagram for the implementation of the overall model

defines eight subjects: Medical, System, Patient, Service
and Control, Archival, Alert, Extended Services and
Communication.

The model of our system utilized objects of all Subjects
defined in the VITAL standard. The Medical Device
System (MDS) object comprised of three Virtual Medical
Devices (VMDs), namely the ECG VMD, the BP VMD and
the SpO, VMD, which are abstractions for the related
device subsystems (hardware or even pure software) of a
monitoring device and represent the medical information
that the application wishes to acquire and monitor. For the
selection of the appropriate model to represent the above
pure medical information VMDs, we have consulted the
(complementary to VITAL) IEEE 1073 [2] series of
standards, which define a protocol for the exchange of
measurement data from clinical instruments (patient
monitors, infusion pumps, etc.).

From the VITAL Subjects that we used for modelling our
system, the Medical Subject and related objects are
responsible for marshalling all static attributes of the
medical data -waveform or non-waveform-, the System
Subject for system specific information, the Alert and
Extended Services Subjects for alert management and
reporting of the medical data dynamic attributes, the Patient
and Archival Subjects for data management at the
HealthCare Centre, the Control Subject for remote control
services and the Communication Subject for
communication related information.

The Unified Modelling Language (UML) technique
Although the VITAL standard is described by the

Coad & Yourdon "Object Oriented Analysis" (OOA)
model, our telemedicine application was designed and

78

modelled with the Unified Modelling Language (UML)
notation [3]. A UML model provided the class hierarchy for
modelling ECG, Pulse Rate, Blood Pressure and SpO, data,
as well as technical and physiological alert management.

The next Figure 1 illustrates the Object Class Diagram,
which shows the VITAL Domain Information Model for
the implementation of the overall model.

The XML implementation

XML (Extensible Markup Language) [4] is a proper subset
of SGML [5,6] (Standard Generalized Markup Language,
ISO 8879:1986). XML reduces a document to a word in a
known context-free grammar through a process of markup.
The formal markup specification for a collection of
documents is the Document Type Definition (DTD). XML
Documents are then written to conform to a particular DTD,
enabling them to be automatically parsed and validated
against that DTD. Our application has been structured in
XML DTDs, harmonized with the evolving VITAL Domain
Information Model (DIM). This information model served
as the central schema defining the semantics for all
messages [7] and documents relevant to our application.

Our experience with applying XML in healthcare has
shown that no clear and distinct rules or strategies are
available for mapping medical data or messages to XML.
Data could be presented as well as elements or attributes.

The XMI meta-model of the application

While XML is a great way to share data, but you need
something more to share objects. XMI (XML Metadata
Interchange Format) [8] is the new standard from Object

Chapter 2: Standards for Interworking

Management Group (OMG) [9] for sharing objects using
XML. Therefore, XMI has been used to provide the meta-
model of our application. XMI specifies open information
interchange for object-oriented models and data using
XML.

The XMI specification integrates XML, the W3C
specification, with the Unified Modeling Language (UML)
and the Meta Object Facility (MOF) specifications adopted
by OMG, by providing a standard way to convert objects
into XML. The standard covers the transfer of UML models
and MOF meta models. It identifies standard XML DTD's
to allow the exchange of UML and MOF information.

XMI generation rules

Here's the mapping scenario of our application. The
application's UML model is expressed in XMI. XMI makes
XML even easier by leveraging UML's graphical ability to
generate XML and defines two sets of generation rules for
creating XML documents and XML DTDs. XMI document
generation specifies how to serialize objects into an XML
stream. The XML DTD generation specifies how to create a
DTD that matches your objects from their class definitions.

XMTI DTD architecture

XML consists of two parts: documents and DTDs
(Document Type Declaration). Documents contain the
information as a set of tags, while DTDs specify the rules
for how tags may be used in a document. In XML, tags,
also called Elements, form a tree-structured hierarchy.
When tag is nested inside another, it is referred to as the
“content” of the containing tag. XMI defines two sets of
rules that provide open interchange and leverage the
capabilities of XML. The two sets of rules in XMI are DTD
generation and document generation. The DTD generation
is used to specify an interchange format, and the document
generation creates documents that use a given XMI DTD.

Suppose one Subject of our VITAL-compliant application
model: the Medical Subject. The next Figure 2 shows the
Medical Subject as a model in UML, namely the UML
Object Class Diagram, which shows the subset of the
VITAL DIM for the implementation of the Medical Subject
for our system model. This diagram has been adapted from
a UML (Rational ROSE'98) model. Some mandatory
Attributes and Operations are shown.

One class in this model is the Metric class, which is super-
class for the Sample Array, Enumeration and Numeric
classes. Also, the Metric class contains several class-
attributes: MetricSpecification, UnitCode, etc.

An XMI DTD can be generated from the UML model of
the Medical Subject. There is one XML element for each
class and class-attribute in the model. For example, for the
Metric class, the elements are Metric.MetricSpecification,
Metric.UnitCode, etc. Each class-attribute has its own XML
element declaration, which may contain text values directly
(“#PCDATA”) or may contain references (XMI.reference)
to another location for defining the value externally, in the
cases where the values aren’t ideal for XML, e.g. blocks of
binary data or bitmaps. An example of an XMI DTD for

79

one class (the Metric class) of our application's model can
be seen in Figure 3.

e
N [Tk

\ e AN]
Bimmcon pomries | || [P sorioArey
A o) |uSamplePoticd : type = irinel

el "‘L;'L/ —7
| /

/ {
/ & N-Obsened-Valug: ype = el

gmwxMMValw type = initval |
L 0

[Nameiic: HR, D
[PR. Sp0z, NBP T
S Emm-Obsened Vaue ype=intal |

1o o
SR £ 4
Hydra MOS
[fom Syem)_

'3 VMDs:
BOZ NIBP

Figure 2 Object Class diagram for the Medical Subject

<!ELEMENT Metric (Metric.MetricSpecification, Metric.UnitCode,
XMlextension*)? >

<IATTLIST Metric %XMIL element.att; %XMLlink.att;>

<!ELEMENT Metric.MetricSpecification (#PCDATA | XMLreference)* >
<IELEMENT Metric.UnitCode (#PCDATA | XMLreference)* >

Figure 3 XMI DTD for the Metric class of the Medical
Subject

The application exchange using this DTD is exchanging an
XMI document containing a specific Subject definition. The
document uses the elements from the generated XMI DTD
generated from the UML model. Thus, an XMI-generated
DTD for UML allows interchange of object-oriented UML
models and class definitions. This UML can thus be
interchanged between design tools and IDEs using the
UML DTD. An XMlI-generated DTD for Java provides
interchange of Java classes, a DTD for IDL enables
interchange of IDL interfaces, etc. Standardizing a set of
DTDs alone is not in itself enough for interchange in the
general case, since DTDs do not have the ability to express
the semantic meaning appropriate for the model. Instead of
looking to the DTD alone to standardize interchange, UML
or similar models must be the source for standards.

Every XMI DTD contains the elements generated from an
information model, plus a fixed set of element declarations
that may be used by all XMI documents. These fixed
elements provide a default set of data types and the
document structure, starting with the top-level XMI
element. Each XMI document contains one or more
elements called XMI that serves as a top level container for
the information to be transferred. XMI is a standard XML
element and may stand alone in its own document or may
be embedded in XML or HTML documents. The XMI
element contains the following structural elements:

Chapter 2: Standards for Interworking

e Header, which contains version declarations and
optional documentation regarding the transfer.

e Content, which contains the core information that is to
be transferred.

e Differences, which specify the differences between two
XMI documents to be transferred. This is useful in
cases such as small changes to a large set of
information

e Extensions, which allows the transfer of private tool
information beyond that already present in a DTD.

XMI document architecture

Following is the Metric class example of our application
model as an XMI document using elements from the
generated XMI DTD. The document begins with XML
processing instructions declaring the character set and the
location of the DTD to use. Since this is a reference, the
DTD does not need to be transmitted along with the
document. The top level element is XMI which declares
that the version of XMI standard being used is 1.0 and sets
the structure for the rest of the transfer. The header contains
optional documentation and the content is a Metric element
with the appropriate values for each of its tags.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE XMI SYSTEM "Metric.dtd">

<XMI xmi.version="1.0" >

<XMLheader>

<XMI.documentation>

An example of the VITAL Metric class.
</XMLdocumentation>

</XMLheader>

<XMl.content>

<Metric>

<Metric.MetricSpecification>VMD ECG</ Metric.MetricSpecification >
<Metric.UnitCode>NOM_DIM Degrees Celsius</ Metric.UnitCode >
</ Metric >

</XMl.content>

</XMI>

Figure 4 XMI Document using the Metric XMI DTD

XMI architecture for the application's database

XMI works with a wide range of information beyond UML.
Examples include database information, Java etc. For our
application, database information is especially important.
The OMG standard Common Warchouse Metadata
Interchange (CWMI), which enables the expression of
database information and schemas in a common form that
can be interchanged using XMI, has been used in our
application for the interchange of a relational database. The
representation for the database followed the schema of that
a Relational Database contains Tables that in turn contain
Columns. Tags in the DTD define the database, its tables
and columns and their names. Relational databases and
tables also contain tables and columns respectively, which
are also represented as tags. The structure of a database is
commonly called a “schema.”

80

Design Software
‘\ Assets
evelopment] /
Tools |
XMI — X
Repository
Database /
Schema Reports

Figure 5

Results and Discussion

Object-orientation in software development is not a new
concept. However, the practical adoption of object
technologies, particularly distributed object technologies,
has been a slow process. In healthcare, fueled by the
advances in Internet, web and Java-based technologies,
there has been a growing awareness of the need and
usefulness of distributed object technologies [10].

There are two key considerations for using XML. One is
that the human comprehensibility and verbosity of XML
documents leads to very large documents, often on the
order of megabytes. XML is a natural candidate for
compression, often reducing the size of documents by over
90% with standard algorithms such as those used in zip.
Sending compressed XML across networks, often slower
than local disks, is likely to result in net savings of time.
The advantage by the above statement for telemedicine
applications that exchange bulky data, acquired, for
example, by image processing applications is more than
obvious.

The other key consideration for XML is identifying how to
structure the DTD so that everyone can share information.
XMI provides a way to keep these definitions synchronized
using DTD generation. This consistency lets tools know
how to traverse any XMI document or DTD in a regular
manner to find the information needed.

Moreover, the XML design in the telemedicine and
healthcare domain is already wide and supports various
applications: dictionary techniques and terminology for
diseases documentation, Electronic Patient Record,
messaging techniques for exchanging healthcare
information into a clinical context, standardization of
clinical practice guidelines and procedures, and generally
all applications that handle the migration from legacy to
structured data.

As far as the XMI standard is concerned, Figure 5 shows
the open world of XMI, where one can see the types of
application development tools that interchange information
using XMI as the standard. These applications include:
Design tools, including 0-o UML tools, Development tools,
Databases, Data Warehouses and Business Intelligence
tools, Software assets, Repositories and report generation,
documentation tools and web browsers.

Chapter 2: Standards for Interworking

Conclusion

Pervasive support of XML, UML and XMI standards
throughout the industry and widely available supporting
technology, including repositories and databases,
significantly reduces the time and cost to provide product
interoperability in distributed heterogeneous software
environments. The above-described application is but a
small example of the efforts that exist in the Healthcare
domain and points to a major trend in the utilization of
object technologies in Healthcare. From the perspective of
users of these technologies such as hospitals and clinics,
adoption of component technology is driven by the promise
of simplification, primarily in the management of the

applications and the reduction in duplication of
functionality.
Acknowledgements

This paper presents a piece of work complementary to the
"VITAL-HOME" project [11,12], funded by the European
Commission-Directorate General Enterprise, under the
Information Society Initiative for Standardization (ISIS)
Programme. The authors would like to thank all the project
participants for their significant contribution.

References

[1] CEN/TC251/PT5-021, "Health Informatics - Vital
Signs Information Representation - VITAL", CEN

ENV 13734, Final Draft, July 1999.

[2] D.F. Franklin, "Communication Layers of the MIB
(Medical Information Bus)," IEEE Ninth Annual
conference of the Engineering in Medicine and

Biology Society, pp. 1213-1214, 1987.

J. Rumbaugh, I. Jacobson, G. Booch, The Unified
Modeling Language Reference Manual, Addison-
Wesley series, 1998.

Alschuler L, Brennan S, Rossi Mor A,
Sokolowski R, Dudeck J. SGML/XML in
healthcare information exchange standards. Proc
SGML Europe ‘98. Graphic Communications
Association, 1998: 425-33,

B3]

[4]

81

[5] Dolin E, et. al.: SGML as a Message Interchange
Format in Healthcare, AMIA fall Symposium

1997.

Dolin R, Alschuler A, Bray T, Mattison J. SGML
as a message interchange format in
healthcare. JAMIA Fall Symposium Supplement
1997: 635-9.

Message Oriented Middleware
WWW.moma-inc.org

Jagannathan V, Friedman S, Wreder K, Alsafadi
Y, et al. XMl and transcription process automation.
Proc HIMSS ’99. 1999 February.

Object Management Group (OMG):
WWW.0mg.org.

Association:

(8]

9]

Alschuler L. First do no harm. A standard for
electronic communication in healthcare. Dudeck J
et al (ed). New Technologies in Hospital
Information Systems. Vol. 45 Studies in Health
Technology and Informatics. Amsterdam: IOS
Press; 1997.

A. Anagnostaki, E. Kyriacou, M. Reynolds, S.
Pavlopoulos, A. Lymberis, D. Koutsouris,
"Integration of CEN/TC251/PT5-021 "VITAL"
preENV Standard and of "DICOM Supplement
30.0" into a Telemedicine System for Vital Signs
Monitoring from Home", Proceedings of the
Chicago 2000 World Congress on Medical Physics
and Biomedical Engineering, Chicago, USA, 2000

(10]

[11]

[12] S. Pavlopoulos, A. Anagnostaki, D. Koutsouris, A.
Lymberis, P. Levene, M. Reynolds, N. Georgiadis,
C. Lambrinoudakis, D. Gritzalis, "Vital Signs
Monitoring from Home with Open Systems",
Proceedings of the MIE2000 - GMDS2000
Medical Infobahn for Europe, Hanover, Germany,
2000

Address of correspondence

Angie Anagnostaki

Biomedical Engineering Laboratory, Department of Electrical and
Computer Engineering, National Technical University of Athens,
9 Iroon Polytechniou, 15773, Athens, Greece

Tel: +30 1 7722430, Fax: +30 1 7722431

E-mail: angiea@biomed.ntua.gr

