MEDINFO 2001

V. Patel et al. (Eds)

Amsterdam: 10S Press

© 2001 IMIA. All rights reserved

Medical Records and Electronic Documents: A Proposal

Frédérique Laforest, André Flory

Medical Informatics Research Group, Laboratoire d'ingénierie des systémes d'information (LISI), Lyon, France

Abstract

This article presents a global view of our proposal for a
medical information system of the future. This information
system focuses on patient medical records management. As
most of the existing systems, it proposes fto store
information from patient records in a database. But records
capture is different: we propose to use weakly-structured
documents. Such documents contain paragraphs with some
specific constraints represented by XML tags. The end-user
writes new information under the form of weakly-structured
documents. An internal system translates theses documents
into new data for the internal database. Such a document-
based user interface provides much more freedom to the
end-user, and certainly reduces the distance between the
physicians’ way of working and the capture system.

Keywords

medical record, information semi-structured

documents, XML, databases

systems,

Introduction

A database is a repository used to store structured data
about an application domain. Relational databases are
currently the most used. They represent all data as a set of
tables, each column represents a sort of data (e.g. patient
name, diagnosis, medication prescribed). Each column is
typed so that the format of data is fixed. A database is not
accessed directly, but through a software called database
management system (DBMS). The DBMS authenticates
users... but most of all, it allows to query data in a very
precise and efficient way tanks to the standard SQL
language. This is the reason why it is quite always used in
computerized systems that store a lot of information. The
greatest drawback of databases comes from its greatest
advantage: data structure. The data model cannot be
modified easily; adaptability is difficult to ensure. By the
same way, as data are highly structured in storage, a lot of
computerized systems ask for the end-user to follow this
structure: they present form-based windows, in which the
end-user has to fill fields in the right format [1]. This
rigidity is the most important reason why such
computerized medical records are not widely spread [2].

633

Some proposals prefer not using a database, so that the
structure of information is not so prominent. Most of them
propose to write documents.

The simplest propose to write free-text documents, which
only contain information and presentation guides. In such
systems, automated information searching is very difficult
([3]). Others propose to use semi-structured documents
([4,5]). Semi-structured documents include both
information and meta-information, i.e. semantics of
information pieces. SGML and XML ([6,7]) are specific
languages that allow to insert meta-information in texts.
This meta-information is represented by tags. Adaptability
of these systems is much improved. Searching for
information is easier than in free-text documents, but it is
not as precise as in databases. A lot of research effort is
currently done to improve query languages on XML
documents([8,9,10,11]). Semi-structured documents offer
more freedom to the end-user, but their lacks in information
retrieval impedes their effective use.

As each type of system has its advantages, we propose to
make a system that mixes both techniques. Our proposal
uses a document-based user interface, coupled to an
underlying database. Before presenting our system, this
article presents different types of user interfaces. The first
section discusses the classical form-based user interfaces.
The second section presents the three main kinds of
documents and presents which one we have chosen. The
third section presents the system we propose: first we
explain the user interface, and secondly we expose the
architecture of the system. We conclude then with the state
of our prototype and the future advances of our project.

User interfaces to database-based systems

First electronic documents date from a long time ago. They
are used since the beginning of end-user interfaces. They
consist of electronic representations of paper-based forms
like administrative sheets, blood analysis requests... These
forms contain variable areas that need to be filled by the
end-user.

Computerization of activities in companies started for
management domains with “numerical” and repetitive tasks

Chapter 7: Electronic Patient Records

[12,13]. Stocks, orders, invoices are all domains that mainly
manage numbers. They also follow precise rules that cannot
be circumvented. In such domains, defining rules and
information to manage is a well known process. The
database model and electronic forms for the user interface
are defined from information and rules.

If the use of forms is well adapted to management domains,
it is not the case for much more complex domains, where
human expertise is required. The medical record is such a
domains. Each medical record is intrinsically unique: if
some steps can look like form-based domains (e.g.
biological analyses results), there is a huge variability
between patients, which directly impacts the medical record
structure. All experiments conducted in this domain agree
on that fact [14]. This is the most important reason why
computerized medical records based on forms are so
heavily criticized by end-users: no predefined form can
adapt to each case. Using other kinds of electronic
documents could reduce the mismatch between end-users
needs and medical records management in databases.

Improvement : using “true” documents

In the literature, one can find three main types of electronic
documents (see fig. 1):

e Form-based documents as explained in the previous
section contain only formatted information.

e Unstructured documents contain flows of information,
without any additional clue on the nature of
information pieces. Documents written with classical
editors (like Words®) are of this kind. They are often
called free-text documents.

e Semi-structured documents contain flows of
information, but can also point at specific information
pieces [15]. To do so, meta-information is added to the
text under the form of tags, as in SGML or XML.

Unstructured and semi-structured documents provide a
more natural way to capture information. Paper-based
documents in the medical record look much like these
documents. At the end-user’s point of view, using them as a
user interface paradigm would be a step forward to
computerize medical records. This technique is proposed by
some systems. Most of these systems only replace the pen
by the keyboard, but do not offer additional functionalities,
as compared to paper-based records. We found none that
would fill a domain-oriented database model. The few
remaining Ssystems try to discover automatically some
information pieces in the record, and use them to index
records [16,17,18]. They provide an improved research
mechanism as compared to paper-based records. But
automatic indexing is not totally reliable as information
detection is not precise. Full-text searches are also
sometimes implemented: given a set of words, the system
selects all documents containing the given set.

Semi-structured documents seem more adapted to the
electronic management of medical records [19]. As they

634

contain tags to locate information pieces, they can be more
precise to search information: search algorithms do not
search the whole document, but only tagged pieces in which
they can find an answer to the query [20].

Form-based document:

Patient id : J24S IDupnm Henri ']

Previous prescriptions:

Ly

New prescription:

=

B o < of[Aspiine ~][5 [tmesaday =]
during [10 [days <] _Finistied

%l _ Cancel I

Unstructured document:

Patient 245 Dupont Henri i
Give 3 pills aspirin 3 times a day during: lojj
days o . -

Semi-structured document in XML:

<patient id='245‘'>
<name> Dupont </name>
<first_name> Henri </first_name>

<prescription> Give <dose> . 3 . </dose> |
<dose_unit> pills </dose_unit> of <meédication’
id='12’> aspirin </medication> <frequency>.3 "
</frequency> times a day -during <duration> 10
days </duration> </prescription> .

</patient>

Figure 1: Three kinds of documents

The use of an underlying database is today the better way to
manage data. So, in this hypothesis: How to associate a
document-based user interface and an underlying database?

The main proposal of this article is to use semi-structured
documents to capture medical records. Parts of the captured
text are stored in the database. Using semi-structured
documents offers more freedom and more adaptation to the
end-user than form-based documents. While forms impose
the list of information to capture, an order in which it has to
be done, in documents information can be captured in
different orders, some data are optional (and do not appear
as “empty areas” in the document), presentation rules can
be different from one user to another. Resulting documents
only have to follow the tags grammar, which defines which
tags can be used, and some relationships between tags.
XML [7] is the currently most studied language for writing
semi-structured documents. The tags grammar is defined in
a Document Type Definition file (DTD).

There are two sorts of semi-structured documents [21]:

e Strongly structured documents tag information very
precisely. Each information item that could be queried

Chapter 7: Electronic Patient Records

is tagged. On fig. 2, tags locate a medication name, or a
dose, or a frequency or a duration. Such documents are
today used to make system-to-system communication
[22,23], but cannot be realistically used to capture
medical records: writing such documents is really time
consuming, and we are sure no doctor or nurse could
find time to write strongly-structured documents.

e Weakly-structured documents do not tag each
interesting information piece, but only locate
paragraphs in documents. They provide semantics to
paragraphs, so that a reader understands the context in
which he should read the paragraph. For example (see
fig. 2), a tag locates a prescription sentence, but no
more detailed tag is added. Weakly-structured
document seem more adapted to medical records
capture. Paragraphs tagging is significantly less time-
consuming than data tagging. Moreover, paragraph
tags help much data detection : tags provide a context
for information interpretation by the computer

We thus propose a system where end-users write medical
records under the form of weakly-structured documents.
[24] makes the same distinction as we do, and also proposes
to use weakly-structured documents for medical records
capture. But in our proposal, we go further: a document
analyzer parses documents to induce new data to store into
the database. Information capture is highly close to the
paper-based medical record, and the computer can help the
end-user secure capture (e.g. prescription control) and
search information in the database.

Strongly-structured document tag each data:

/<patient 1id='245¢> . <name> Dupomt . ..</name>’
«<first name>-Henrl </first_name> FE O
“<p§5escript‘ion>: ‘Give . <doge> . 3 . </dose>:

“<dose_unit> pills:'</dose_unit>-of <medication
“id='12'> ‘aspirin’ </medication>:<frequency> 3
‘</frequency> times. a’day’ during <durations> 10

</duration> . <duration_unit> ' days . </
duration unit > </prescription></patient> "
Weakly-structured document tag each
paragraph:

.<patient * id='245'> '<name> . Dupont Henri~
“</name> . . - L

_<prescription> Give ‘3 pills:of aspiri
times: a-day-during 10- days</prescription>. .

“</patient>

Figure 2: Strongly-structured and weakly-structured
documents (containing the same information)

Architecture of a document-based system

Captured documents are stored as is, but they are also read
by a document analyzer. It extracts data from documents
and sends them to a relational database. Finding
information about a patient, or making statistical studies on
information is made with the database. The database
ensures that answers are complete and entirely exact.

635

Short description of the user interface

Entering the software to capture medical records, the doctor
is asked for identification and password. He thus selects a
patient in the list of patients of his department, and the type
of the document he wants to write. The document type can
be an analysis request, an encounter resume... The
document type allows the system to know which set of tags
can be inserted in the document. The document capture
window is then presented, as shown on fig. 3.

This window contains mainly two parts:

e On the left side, one can find the paragraphs structure
of the document: it is a tree structure. Each paragraph
type is represented as a new node in the tree, the text of
the paragraph is presented as a leaf. As our system only
allows to tag paragraphs, the tree is limited to depth 2
(at depth 1: document identification information, at
depth 2: the paragraph tags selected by the doctor).

e On the right side, the text written by the doctor. The
text is typed totally freely, as in free-text editors.

The first paragraphs including patient id and date are
automatically filled by the system, according to the
selections previously made by the doctor.

Prammssews |)
i [==="mmn|

i

Figure 3: Patient record document capture window

The doctor writes paragraphs in the right area as he would
do in a free-text editor. When he finishes writing a
paragraph, he right-clicks on the paragraph, and a list of
possible tags is proposed. He selects the corresponding one,
and the lefi-side of the window is updated : a new
paragraph is added to the tree.

If necessary, the doctor can use the “Edit” menu to select
information from a classification or a thesaurus. For
example, he wants to write a diagnosis from the ICD-10. He
selects the ICD-10 sub-menu, the classification is shown.
The term he selects is added at the location of the cursor.

When the doctor clicks on the “OK” button, the document
is stored as is in the patient record directory. It is also sent
to the document analyzer to extract information. Extracted
information is presented to the end-user for validation. The
document analyzer sends validated data to the database.

Architecture of the system

Fig. 4 presents the main components of our system.

Chapter 7: Electronic Patient Records

DataBase
CJ Userinterface Management Data
System base

i Mapping Base
(patterns and
thesauri)

Administrator
interface

Figure 4: Architecture of our system

e The user interface

As shown above, the user interface permits the capture of
documents under the form of weakly-structured documents.
It also manages the validation of extracted information. The
end-user verifies extraction is correct and complete. The
user interface also permits querying the database. It may
have two objectives: select documents or work directly on
data (temperature diagram, statistical analyses...).

e The document fund

It contains all the documents written about all patients.
They are the direct representation of the paper-based
medical record. They are the legal source of information.

o The database

The medical record database contains fields usually present
in electronic medical record systems that use form-based
documents. We just add documents references columns.

o The database management system

The DBMS is a commercial sofiware. It manages all
communications with the database. It gets requests to the
database, verifies the user is allowed to do so, makes
modifications on the database according to queries and
returns results if any.

e The document analyzer

The document analyzer gets filled documents written by
doctors or nurses and analyzes them to extract information.
1t extracts information that have a corresponding field in the
database. Document analysis uses a mapping base.

¢ The mapping base

The mapping base contains rules to define how to identify
data in paragraphs, and how to send data to the database.
Identification of information in paragraphs is based on
pattern matching, i.e. on the detection of classical ways to
write parts of sentences. These patterns allow to identify
data.In a prescription paragraph, dosage is often written like
this : “take 3 pills of ...”. This classical form allows to
identify the dosage value and the dosage unit. Some parts of
the patterns to discover are directly searched in
classifications or thesauri, e.g. medication names.

Rules are defined at three levels :

636

- The rule level is at the upper level. It divides each
paragraph into a set of segments, without any
constraint on segments appearance order.

- The segment level divides each segment into a set of
alternative expressions that could be written for it.

- The expression level is the most precise level. It
provides the ordered list of words that should appear in
an expression. It also provides the place each term
should take in the database.

Fig. 5 provides a formal description of rules grammar. Fig.
6 shows an example on prescription. The PrescriptionRule
rule explains that a prescription should contain an optional
dose segment, an optional duration segment and a
compulsory drug segment. The durationSeg rule explains
that there are 2 ways to write a duration : durationExprl or
durationExpr2. The durationExprl rule explains that the
system should find (1) a term coming from the
duringWordsList (“during”, “for”...), followed by (2) a
number that should be stored into the duration column of
the Posology table in the database, followed by (3) a term
coming from the UnitsList and that should be stored into
the durUnit column of the Posology Table.

rule : ruleName ‘=’ segment option* [',’ segment option*]*
segment : segmentName =" expression ['|' expression]*

expression : exprName ‘=’
(thesaurus';'table.attribut)|thesaurus
[, (thesaurus''table.attribut)|thesaurus]*

option: “?’ /ffor optional segments

Figure 5: Rules grammar

PrescriptionRule = doseSeg ?, durationSeg?, drugSeg
durationSeg = durationExpr1|durationExpr2

durationExpr1= duringWordsList,
NbList:Posology.duration, UnitsList:Posology.durUnit

Figure 6: An example of each rule level

Writing rules with 3 levels has two main advantages. Rules
are understandable: each level is easy to read, and libraries
of expressions and segments can be made for reuse.

Sending data to the database requires writing SQL queries.
Some translations are necessary to transform discovered
data into an adequate format to the database fields. SQL
queries are written depending on discovered data.

e The administrator interface

The administrator interface is used by computer scientists to
update the mapping base. This task includes removing,
adding or updating thesauri and classifications. It also
allows to adapt existing rules or to write new rules.

Conclusion

We have developed a prototype of the analyzer for
medication prescriptions which proved to be efficient. It is
written in Java and uses the DOM model to manipulate

Chapter 7: Electronic Patient Records

documents [25]. We are extending this work to all
paragraphs that could appear in a patient medical record.
The end-user interface is developed in Java, in a distributed
environment using Enterprise Java Beans [26].

We are also working on improvement of the rules internal
format: the studies proved that our rules have to be
improved. We now study a complete transformation process
including 4 main steps, each conceming a different kind of
rule: selection rules to select efficiently tagged paragraphs;
extraction rules to extract relevant information from
paragraphs; processing rules to format extracted
information; structuring rules to build SQL queries.

References
[1] Stair T.O Reduction of redundant laboratory orders by

access to computerized patient records. J. Emerg. Med
1998;16:895-7

Berg M. Medical work and the computer-base patient
record : a sociological perspective. J. Methods Inf.
Med. 1998;37:294-301

Salton G. Another look at automatic text-retrieval
systems. Communications of the ACM, july 1986,
29(7): 648-656,

Charlet J. & al. Hospitexte: towards a document-based
hypertextual electronic medical record. Journal of the
AMIA, 5(suppl):713-717, 1998.

Bouaud J., Séroussi B., & Zweigenbaum P. An
experiment towards a document-centered hypertextual
computerised patient record. Brender J. & al. eds,
Proceedings of MIE'96, Copenhagen: 10S Press 1996:
453-457

(2]

(31

(4]

[3]

[6] ISO, Information processing - Text and office
systems. Standard Generalized Markup Language

(SGML), ISO 8879, 1986.

World Wide Web Consortium. Extensible Markup
Language(XML).
hitp://www.w3.org/XML/#9802xml10

Buneman P., Davidson S. and Hillebrand G. A query
language and optimization techniques for unstructured
data. ACM SIGMOD *96: 505-16

Deutsch A. et al. A Query Language for XML. Int.
WWW Conference, 1999

Christophides V. et al. From structured documents to
Novel query facilities. ACM SIGMOD Conference,
may, 1994

(71
(8]

(9]

(10]

[11] Cluet S., Deutsch A. et al. XML query languages :
experiences and exemplars. http://www-

db.research.bell-labs.com/users/simeon/xquery.html

[12] De Moor G.J.E. The promise of medical informatics in
Europe. Van Bemmel J.H, McCray A.T. Eds.
Yearbook of medical informatics, 1999. New-York:

Shattauer. 58-61

637

[13] Borst F. & al. Happy birthday DIOGENE: a hospital
information system born 20 years ago. Cesnik B. et al.
Eds. MedInfo’98. Amsterdam: 10S Press, 1998:922-6

Nordyke R.A., Kulikowski C.A. An informatics-based
chronic disease practice: case study of a 35-year
computer-based longitudinal record system. J. AMIA.
1998;5:88-103

J. McHugh, S. Abiteboul and al. Lore : a database
management system for semistructured data. SIGMOD
Records, 26(3):54-66, septembre 1997

[14]

[15]

[16] Zweigenbaum P. & al.. MENELAS: an access system
for medical records using natural language. Computer
Methods and Programs in Biomedicine, 1994;45:117-

120

Romacker M. et al. Semantic analysus of medical free
texts. Hasman A. et al eds. MIE’98. 10S Press,
2000:438-42

Ruch P. et al. Tagging medical text : a rule-based
experiment. Hasman A. et al eds.MIE’98. 10S Press,
2000:448-55

Frénot S, Laforest F. Medical record management
systems : criticism and new perspectives. Methods of
Information in Medicine 1999; 38:89-95

Le Maitre J., Murisasco E. Rolbert M. From annotated
Corpora to databases : the SgmiQL language. J.
Narbonne Ed. Linguistic Databases, CSLI Lecture
Notes. 1998; 77: 37-58.

Bourret R. XML and Databases, September 2000
http://www.rpbourret.com/xml/XMLAndDatabases.ht
m,

(17]

(18]

[19]

[20]

[21]

[22] Kahn C.E. Self-documenting structured reports using
open information standards. Cesnik B. et al. Eds.

MedInfo’98. Amsterdam: IOS Press, 1998:403-7

Kooijman C.J., Kaag M.E.C. Sending specialist
reports to GPs using EDI. Cesnik B. et al. Eds.
MedInfo’98. Amsterdam: I0S Press, 1998:408-11

Tange H.J., et al. The granulariy of medical narratives
and its effect o,n the speed and completeness of
information retrieval. J. Am. Med. Inform. Assoc.
1998;5:571-82

(23]

[24]

[25] W3C Document Object Model (DOM)
http://www.w3.org/DOM/
[26] Sun Enterprise Java Beans technology

http://java.sun.com/products/ejb/
Address for correspondence
Frédérique Laforest, André Flory

LIS], INSA Lyon, bat Blaise Pascal, 69621 Villeurbanne Cedex,
France

33(0)472438983
{frederique.laforest, andre.flory}@insa-lyon.fr

