MEDINFO 2001

V. Patel et al. (Eds)

Amsterdam: I0S Press

© 2001 IMIA. All rights reserved

Supporting Medical Decisions with Vector Decision Trees

Matej Sprogar®, Peter Kokol®, Milan Zorman®, Vili Podgorelec®, Ryuichi Yamamoto”,
Gou Masuda®, Norihiro Sakamoto®

“Laboratory for system design, Faculty of electrical engineering and computer science, University of Maribor, Slovenia
bOsaka Medical College, Takatsuki, Japan
‘Kyushu university, Fukuoka, Japan

Abstract

The article presents the extension of a common decision
tree concept to a multidimensional - vector - decision tree
constructed with the help of evolutionary technigues. In
contrary to the common decision tree the vector decision
tree can make more than just one suggestion per input
sample. It has the functionality of many separate decision
trees acting on a same set of training data and answering
different questions. Vector decision tree is therefore simple
in its form, is easy to use and analyse and can express some
relationships between decisions not visible before. To
explore and test the possibilities of this concept we
developed a software tool - DecRain - for building vector
decision trees using the ideas of evolutionary computing.
Generated vector decision trees showed good results in
comparison to classical decision trees. The concept of
vector decision trees can be safely and effectively used in
any decision making process.

Keywords:

Decision Trees; Decision-making; Genetic

Algorithms; Machine Learning

Data Mining;

Introduction

In the medical environment decision support systems can
enhance medical staff’s ability to make key decisions and
should aid in and strengthen a choice process. In critical
decision-making where mistakes are not allowed the
experience and personal feeling of a human expert are
irreplaceable. Only intelligent programs, which would learn
and think in a human-like manner, could compete with a
human expert. Normally we use the data-mining techniques
to browse accumulated data and find the desired
information, but the idea of intelligent programs gives us
some clues of how to upgrade current solutions. They
should be combined with new, less limited concepts of
computing that are able to exploit all properties of a
problem space. This would overcome certain deficiencies of
the existing solutions that aren't able to understand the

552

meaning of the results neither show progress in overall
process. The classical approach to medical decision making
is based on hard coded principles, which are invariable and
absolute and are as such a source of many limitations in
current decision support systems. To get beyond these
boundaries it is necessary not only to change the method in
decision support system (DSS), but the principles of
programming, too. Evolutionary systems are an alternative
programming concept providing needed twist in orthodox
programming techniques with the help of natural principles
of reproduction, selection and mutation. Combination of
evolution and certain decision model has potential to
become a powerful and effective decision support
framework.

Medical decision support systems should primarily help
medical experts and should close the gap between mere
facts and real understanding. A chosen DSS model should
be efficient, simple to use and should give some explanation -
of the results; this will help in verification of the proposed
solution and can potentially express some new knowledge
to the expert. Decision trees have already proved
themselves in medical decision systems as a conceptually
simple model with a possibility of automatic learning [1].
Decision trees represent knowledge in a simple, hierarchical
tree-like fashion what makes them a method of choice for
many medical or nursing decision problems. Although
successful, the classical statistical approach to decision tree
construction has shortages [2] that we can elegantly avoid
with the use of evolutionary computing [3]. The classical
concept of decision trees defines only one type of decision
per decision tree. In certain medical problems this is to
limiting- and therefore other models must be considered.
We tried to extend the functionality of decision trees by
allowing multiple solutions in a single decision tree leaf.
This way a single tree would produce results in a form of
the decision vector. In that manner a single vector decision
tree would express additional functionality but would still
possess all the simplicity and advantages of a standard
decision tree.

In this paper we present a new concept of vector decision
trees together with a way to generate vector decision trees

Chapter 6: Decision Support

using evolutionary techniques. To test the concept of vector
decision trees a decision support for a real world medical
problem is presented.

Methods

The decision tree method encompasses a number of specific
algorithms, including Classification and Regression Trees
(CART), Chi-squared Automatic Interaction Detection
(CHAID), C4.5 and C5 (J.R. Quinlan). Vector decision
trees are however problematic because they include a vector
solution and each component in a vector presents a new
dimension in a problem space. This type of solution is
impossible with most of the today's top algorithms. Thus it
is natural to look for another method of decision tree
construction. To combine the best properties of two
different worlds we decided to build vector decision trees
using the ideas of natural evolution. The evolutionary
computing has already been successfully used for decision
tree induction [4] and in multiple criteria decision-making
[5, 6]. Since the concept of vector decision trees is general
in its nature it can be applied to all sorts of medical data or
and data in general. Therefore we built a special tool -
DecRain - for constructing vector decision trees (VDT).

Vector decision tree

Decision trees are simple hierarchical structures that can be
generated using automatic learning. Their form expresses
learned knowledge and can be used for supporting medical
decision processes [7, 8]. Ordinary decision trees (DTs)
hold one solution in each of their leaf nodes. Input pattern
can thus be classified as belonging to one of the possible
classes, but all of the classes are actually answers to one
question only. If we would like to classify the same input
case in more than one way, we would have to use different
decision trees for each type of classification. This
complicates the decision making process and disturbs the
simplicity of a single decision tree. With the introduction of
a vector of classifications into the decision tree leaf this
problem is solved in the simplest way possible. Now each
leaf classifies a specific data case in more than one manner
and therefore a single VDT answers more questions
simultaneously. The single vector decision tree has the
functionality of many separate common decision trees. It is
simpler in its form and is easier to use and analyse.

?
forecast

rﬁin

[no, no)
yes
[no,yes])}

Figure 1 - Vector decision tree

sunny

[yes,yes]

cloudy

no

[yes,yes]

553

To present the idea we extended a classical example
showing a simple decision tree for a trivial problem of
deciding whether to go for a walk or not. VDT differs from
the classical decision tree only in leaf nodes, where more
classifications are made in a form of a vector. If the simple
tree answered only yes / no for a planned trip, now a VDT
suggests whether it's a good time to wash the car, too.

As shown in figure 1 the VDT leaf nodes return a vector of
decisions, where the first component in a vector answers the
first question and second the second question respectively.
This is a very simple tree with only four leaf nodes. Real
decision trees normally classify the samples of a particular
class using several different leaf nodes. In this example the
[yes, yes] classification is proposed in two of the leaf nodes.
We should note here that the VDT with a vector of size 1
represents a classical decision tree. In general some
dependencies exist between different questions asked and
the vector decision tree is supposed to capture and use these
dependencies.

The important thing in a vector solution is the correlation of
questions (decisions). The decree of correlation is visible
when comparing a VDT with the corresponding common
decision trees. Vector decision tree can only suggest
combinations (vectors) actually present in the data set. It is
also obvious that a vector decision tree giving correlated
decisions will be smaller than the VDT with fully
independent decisions. With the VDT concept in mind we
now need a methodology for building, the vector decision
trees from the scratch. Existing statistical concepts for
decision tree construction are somewhat limited - they
prefer smaller classifications, are sensible to missing
attribute values and sometimes just don't produce results of
adequate quality. One might argue to choose the different
decision model instead of trying out different programming
techniques. Because we wanted to keep the simplicity and
expressiveness of decision trees we turned to evolutionary
systems and genetic algorithms.

Evolutionary computation and genetic algorithms

Evolutionary computation is based on the principles of
natural evolution. It differs from the classical programming
in one major point - deterministic algorithms create one
good solution object using complex theories, e.g.
information theory or statistics, in evolutionary computation
we have a population of individuals (solutions) that evolve
and adapt to their environment. The strength of the
evolution comes out of the simple principles of selection,
reproduction with crossover and mutation. These fixed
operators navigate through the given search space. To
produce a good solution we need an appropriate
environment that will give advantage to the individuals with
preferred properties.

Genetic algorithms (GA) are randomised parallel search
algorithms that model natural selection. They are a robust
search method requiring little information to search
effectively in large, poorly understood spaces. Genetic
algorithms operate on a set of individuals within the search

Chapter 6: Decision Support

space. Each individual is represented with a genetic code -
genotype - that effectively defines the individual's
phenotype - its behavior and properties. Genotype structure
is determined at the design time of the GA. The simulation
system in GA then starts a loop in which the individuals will
evolve. This loop uses three genetic operators: selection,
crossover (recombination) and mutation. To evolve towards
the optimal solution we need to know the quality of an
individual and that is the goal of the fitness function. The
GA designer should select a fitness function that gives a
better score to individuals with the desired phenotype
behaviour. Selection operator selects a set of individuals
that will survive into the next generation using their fitness
scores. They will have a chance to breed and produce the
offspring using the crossover operator. Crossover should
produce healthy new individuals with possibly good
properties from both parents. The mutation operator is used
to occasionally alter the genotype of an individual in a
random manner. After replacing the old with the new
individuals the GA loop is repeated until some termination
criterion is met. The final solution of a GA run is the
individual with the best fitness score. It should be noted that
GAs do not always conform to the form described above.

Evolution of vector decision trees

First we must specify the vector decision tree's genotype
(the VDT is an individual in the population of trees). The
most common representation in GA is a bit string encoding
because bit strings are easy to handle. We can however
implement the genetic operators for tree-like structures
easily and can have therefore a tree-like structure for the
genotype, too. This means the VDT's genotype can be the
same as its phenotype. This allows faster fitness calculation
since we can calculate the fitness directly using the
genotype. The tree-like genotype is a dynamic structure and
has no constant size nor shape.

When the genotype coding of an individual is determined
we need to create a fitness function that will calculate a
fitness score for the individual - see Equation (1). The main
factor in the fitness is the accuracy. Because there are many
dimensions in the vector solution we can calculate average
accuracy over all dimensions (kits) and also accuracy for
the fully correctly classified vectors (jackpots). The size of
the learning set is denoted by u (number of cases), v is the
dimension of the solution vector (number of questions
asked), v;” is count of correct classifications of the i-th
question’s j-th class and vy is the correct value for v;” that
can be easily obtained from the learning data. The fitness
score is based on the observed properties of a competing
tree [9]. Since we are developing a data mining method the
VDT must be judged according to its behaviour on a given
data set.

hits

Sitness = f(w,-—,

jackpots v, _ introns
w, - 220P0 kp , wy - E(L), w, - Min(L), w- penalty(———))
v u W, vy size

(M

Once we have a fitness function we can randomly create any
number of individuals that will form the initial GA

554

population. The trees (their genotype) must be logically
correct and the random choice of internal node attributes
should provide the diversity in genetic code. Because the
trees have random topologies they usually have a wide
range of fitness scores.

With the initial population ready we can enter the main GA
loop where the genetic operators will alter the genotype of
individuals. First we need to select the individuals that will
produce offspring. This is a task for the selection operator
that uses the calculated fitness scores. After some of the
individuals are chosen as parents for the new generation we
can delete all other individuals. Using the crossover
operator the parents then reproduce and create a new
population of individuals. Each new individual must be
evaluated by the fitness function before the loop can close.
The mutation operator is used sparingly because the
mutations are usually destructive but they are also the
source of fresh genetic code.

Selection, crossover and mutation

The three genetic operators are the core of GA [9]. Each
operator has a specific task it must finish in order for the
GA to evolve the individuals. Because there are many ways
to complete these tasks many different solutions exist.

The selection operator, for example, can sort the individuals
based on their fitness and then select the first few ones. Or it
can select each individual with a different probability or
may even create a kind of a tournament. The crossover and
mutation operators are bound to the genetic code and must
properly change the genetic material. This means that they
must produce a healthy individual in respect to the structure
but the quality of the new code is not known. Because we
are dealing with tree-like genetic code we must create the
appropriate crossover and mutation operator while for
selection we can choose any of the well known selection
schemes [9, 10].

The crossover operator creates two descendants from a pair
of parent individuals. On tree-like structures it simply
exchanges two sub-trees. While the exchange itself is fairly
simple we first need to select the two sub-trees. This is more
precisely explained in [9]

The mutation operator introduces random changes in the
genetic code of the object. Mutations are mostly destructive
but are necessary to bring new freshness in the older genetic
material. Mutations change the fragile balance established
through the evolution with a change in the contents,
structure or the size of an individual. For the tree-like
genotype it is easy to implement point mutation (new test in
node), permutation (reorder the sub-trees) and expand &
collapse sub-tree mutation [11].

Case study

The decRain tool has been used in various real world
medical applications like mitral valve prolapse diagnosis,
breastfeeding analyses, cancer prediction and others [9].

Chapter 6: Decision Support

One of the recent and more interesting applications is the
treatment determination for diabetes patients. The attributes
consisted of various parameters like sex, age, height,
weight, BMI, retinopathy, etc, altogether 21 continuous
attributes and 30 discrete attributes. The decision vector
consisted of two treatments, namely the type of treatment
(DietOnly, POdrugs, Insulin) and the photocoagulation
therapy (Yes, No). The training set contained 754 training
objects, while the test set contained 377 test objects. The
majority of objects in training and test set had missing
values.

We divided the results of decision-making on the test set in
two tables. In table 1 are the results for the #pe of
treatment, where the accuracy reached 60.4%. The results
for photocoagulation therapy (table 2) were much better,
and reached 90.7%. The overall accuracy for both
treatments was 75.6%.

Table 1. Testing results for Treatment

Prediction
Treatment
DietOnly | Podrugs | Insulin | ? | Accuracy
DietOnly 66 43 6 6 54.5%
Podrugs 44 117 15 3 65.3%
|Insulin 5 22 45 5 58.4%
total accuracy: 60.4%

Table 2. Testing results for Photocoagulation Therapy

Photocoagulation Prediction
Therapy Yes No ? accuracy
Yes 39 12 2 73.5%
No 9 303 12 93.5%
total accuracy: 90.7%
Conclusion

When selecting appropriate medical decision support
system the most important thing to consider is the selection
of an appropriate decision model. Decision trees are simple
and robust and have proved themselves in many medical
applications. Presented extension of the decision tree
concept with a vector solution showed some interesting
features. The vector decision tree has the functionality of
many separate decision trees and can make more than just
prediction per input sample. Combined with the power of
genetic evolution the vector decision trees can produce
good results in any problem space. If we look at a classical
(754) ? DiseaseDuration
t..[<= 9.2531{296} ? DiseaseDuration

:..[<= 7.3701(220) ? Vipualbisturbance

555

:..[Yes}{13: 3+7+3 5+8) POdrugs No (3/5)
..[No0}{207: 126+67+14 1+206) DietOnly No (51/86)
. [7.3701{76} ? Retinopathy
:..[NDR] {56} ? BMI-2
:..[<= 22,200]{20: 11+7+2 0+20) DietOnly No (8/14}
.. 22.2001{36) ? FamilyHistory
;.. [Yes]{16: 4+11+1 0+16) POdrugs No {5/10}
.. ({No}{20: 12+8+0 0+20)} DietOnly No ({6/12}
:..(PDR]{4: 1+2+1 4+0) POdrugs Yes {3/5}
.. [prePDR] {4: 2+2+0 4+0) DietOnly Yes {1/1}
.. [SDR]{10: 2+6+2 1+9) POdruas No {6/9}
..[9.253){458} ? sMBG
:..[Yes]1{109} ? Retinopathy
:..(NDR] {37: 2+5+30 1+36} Insulin No {11/18)
:..[PDR] {24: 0+6+18 22+2) Insulin Yes {8/13}
:..[prePDR] {9: 0+2+7 6+3) Insulin Yes (3/6}
.. {SDR){39: 0+7+32 7+32) Imsulin No {17/23}
..[No1{344) ? Retinopathy
:..[NDR] {194} ? BMI-2
t..{<= 16.788){6: 4+1+1 0+6) DietOnly No {0/2}
.. 16.7881{188: 56+120+12 0+188} POdrugs No [67/104}
:..[PDR] {46} ? BMI-2
:..[l<= 21.239]1(16: 0+5+11 11+5) Insulin Yes {2/6}
L. 21.239){30: 4+24+2 23+7) PQdrugs Yes {6/14}
:..[prePDR] (22} ? VisualDisturbance
t..{Yes](7: 0+5+2 6+1)} POdrugs Yes {2/3}
.. (Nol{15: 0+12+3 5+10}) POdrugs No {3/4}

.. [SDR]{77: 11+54+12 6+71} POdrugs No {15/28}

Figure 2. Sample vector decision tree for diabetes
treatment determination

decision tree as on a way to transform an input pattern into
one classification, then decision trees are also very simple
computer programs consisting of only if - then directives,
what puts us closer to the field of genetic programming.
When compared to generic genetic programs many further
extensions to genetic representations of decision trees are
possible, yet they might change the simplicity and
transparency found in decision trees. Proposed extension
with vector solution preserves all of the decision tree's
properties and has overall positive effect on its capabilities.
In the paper we presented the vector decision tree concept,
proposed and described a way to generate such trees and
implemented a vector decision tree building tool named
DecRain. Using this tool we were able to carry out a
comparison study on many medical problems. In most cases
the vector decision trees were superior in presenting more
knowledge, discovering new knowledge, decision power
and also accuracy. Indeed, since the vector decision tree is
by its nature still a decision tree we believe this new
concept can be safely and effectively used in any medical
decision-making problem with more than just one
classification in question. In the DecRain tool we
successfully combined the concept of vector decision trees
with genetic algorithms. Produced vector decision trees was
usually simpler than the combination of its single decision
relatives because it was able to grasp certain knowledge out
of relationships between questions asked. These
relationships were hidden to common decision trees until

Chapter 6: Decision Support

now. Since the DecRain tool implements only the basic
functions needed for evolutionary development of vector
decision trees we believe the good results in the field of
multiple criteria are due to the proposed vector concept. In
contrary to deterministic algorithms the evolutionary
approach doesn't always produce the same results even
when given the same settings and parameters, but it has
great potential and is more robust. And as always in
evolutionary computing we can never be sure if the found
solution is the best possible - it's again up to the medical
expert to decide when to stop searching.

References

[1] Kokol P et al. Decision trees and automatic learning
and their use in cardiology, Journal of Medical Systems
19(4) (1994).

Hleb-Babi¢ §, Sprogar M, Zorman M, Kokol P and
Turk DM. Evaluating breastfeeding advantages using
decision trees, in: Proceedings, Twelfth IEEE
Symposium on Computer Based Medical Systems
CBMS, Stamford, Connecticut, 1999,pp.144-149.

(2]

[3] Podgorelec V, Kokol P. Self-adaptation of evolutionary
constructed decision trees by information spreading, in:
Proceedings of the International Conference on
Artificial Neural Nets and Genetic Algorithms,

Springer Verlag, 1999, pp.294-301.

Podgorelec V, Kokol P. Self-adapting evolutionary
decision support model, in: Proceedings of the 1999
IEEE International Symposium on Industrial
Electronics ISIE'99, IEEE Press, 1999, pp. 1484-1489.

[4]

556

[5] Kursawe F. Evolution strategies for vector
optimization, in: Preliminary Proceedings of the 10th
International Conference on Multiple Criteria
Decision Making, G.H. Tzeng and P.L. Yu, eds.,
National Chiao Tung University, Taipei, 1992, pp.187-
193.

Kursawe F. A Variant of Evolution Strategies for
Vector Optimization, University of Dortmund, http://ls-
11-www.informatik.uni-dortmund.de/~kursawe/.

[6]

{7

Quinlan JR. Induction of decision trees, Machine
Learning 1 (1986), 81-106.

Quinlan JR. Decision trees and instance based
classifiers, Artificial Intelligence and Robotics (1 997),
521-535.

Sprogar M, Kokol P, Hleb-Babi¢ §, Podgorelec V,
Zorman M. Vector decision trees. Intelligent Data
Analysis 4 (2000), pp.305.321.

[10]Blickle T, Thiele L. A comparison of selection schemes
used in evolutionary algorithms, in: In#l Journal on
Evolutionary Computation 4(4) (1996).

[11] Banzhaf W, Nordin P, Keller RE, Francone ED.
Genetic Programming - An Introduction, Morgan
Kaufmann Publishers Inc., 1998.

[8

—

[9

—

Address for correspondence

Matej Sprogar, Laboratory for system design, Faculty of electrical
engineering and computer science, University of Maribor,
Smetanova 17, SI-2000 Maribor, Slovenia

E-mail: matej.sprogar@uni-mb.si

