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Abstract

Risk prediction models available for cardiovascular
prevention are statistical or based on machine learning
methods. This paper investigates whether the logistic
regression method can be considered as reference for
validation of other methods. In order to test the stability of
the predictions using this method, we performed two types
of analyses on 50 random training and test samples drawn
from the same database. In first analyses three models were
obtained by forced entry of different sets of four variables.
In second analyses, models were built with increasing
number of predictive variables. The predictive performance
was assessed by the area under the ROC curve. Although
across-samples variability is low for a given model, it is
large enough to lead to wrong conclusions when comparing
different prediction methods. We also suggest that a low
events-per-variable ratio alters the stability of a model’s
coefficients but does not affect the variability of prediction
performance.
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Introduction

Several authors showed the difficulty for physicians to
subjectively estimate the cardiovascular risk of their
patients [1]. Moreover, it has been suggested that using an
estimate of global cardiovascular risk could be more
relevant to guide decisions, than using binary representation
(presence or absence) of risk factors data [2]. In other
medical domains, the access for the practitioners to a
numerical expression of risk does modify their behavior [3].
However, the practical use of a quantitative estimate of risk
for an individual who does not belong to the original study
population raises the issues of accuracy, precision and
reproducibility of the risk estimate (i.e. variability of the
model). Accuracy is summarized by both the discriminative
performance of the model and its calibration to the real risk
Precision is usually represented by variance or confidence
interval of the risk estimate, within the population from
which the model was inferred. Reproducibility can be
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assessed by estimating accuracy and precision of the model
to some data that were not used to build it [4]. Data splitting
is often proposed to appreciate to which extent the
prediction performance is overestimated when measured on
training data relative to test data [5]. In addition to the
estimate of this bias, methods such as cross validation and
bootstrapping allow to appreciate the reproducibility of the
prediction performance across different samples of the same
data [6 7). Another approach can be to control for
conditions under which the reproducibility of this
performance would be improved. If these conditions are
met, a simple data splitting may be valid to ensure a stable
measure of predictive performance of a model in training as
well as in test data.

In cardiovascular prevention, most available models used to
predict cardiovascular risk are obtained by using statistical
methods [8 9]. Machine learning methods are more and
more explored and evaluated for risk prediction purposes in
medical domains [6 10 11]. They are usually compared with
algebraic models such as logistic regression or Cox
regression models. However, how a logistic regression
model can be stable enough to be considered as a reference
to evaluate other methods remains unclear [12]. This paper
aims at exploring whether or not multiple logistic regression
models are precise and reproducible prediction tools. As
any attempt to qualify a modeling method is highly
dependent of the nature of data used for exploration, we
choose to use real data from cardiovascular domain and we
shall be aware that any conclusions drawn from this work
pertain to these particular data.

Background

Several potential causes of instability have been identified
and described by biomedical statisticians [12 13]. We shall
not discuss the failure to comply with the important
modeling hypotheses that are common to all general linear
modeling methods, namely the linearity assumption, the
distributional ~ assumption and the hypothesis of
independence of the covariates (referred to as “independent
variables™). Other important causes of instability relate to
the choice of predictive characteristics and to the number of
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outcome events available in the data to fit the model (which
can be referred to as the ratio of the number of outcome
events in training data divided by the number of predictive
variables in the model: Events Per Variable ratio, EPV).
Including too many predictive variables in a regression
model may improve the predictive performance on training
data, but may alter it on validation data, reflecting a
problem of overfitting. Peduzzi et al. report a simulation
study on how the EPV ratio affects the variability of the
coefficients in logistic regression analysis [14]. They
decrease the number of events per variable in simulated data
by selecting samples with less events. Below ten events per
variable, they showed a high variability of model
quantification (i.e. regression coefficients). Would this
variability be the same if measured on the actual
discriminative performance of the model as assessed by
ROC curve for example ?

The objective of this work is to study the effect of several
conditions relative to the data, which determine the
variability and reproducibility a logistic regression model
for risk prediction. We explored the variability of predictive
performance of models built from different random samples
of the same data. We also hypothesized that accuracy,
precision and reproducibility can be influenced by 1) the
nature of predictive variables and 2) the number of
predictive variables related to the number of outcome
events.

Materials and Methods

Database and sampling methods

The reproducibility of predictive performance of different
models was examined on one hundred random samples of
the same database.

The database was provided by the Montreal Heart Institute
and consists in 376 coronary stenoses described by 17
morphological attributes, observed in 84 patients known to
have presented a myocardial infarction. For each patient,
the stenosis that induced the myocardial infarction was
identified. The database therefore comprises 84 stenoses
that were involved in an infarction process (culprit stenoses)
and 292 control lesions. Records with missing data were
excluded (21 stenoses, while considering all independent
variables). Baseline characteristics of stenoses are presented
in Table 1.

Different multiple logistic regression models were fitted to
the data to predict the probability of myocardial infarction
for a given stenosis according to its morphological
attributes.

Fifty samples of 250 stenoses were randomly selected from
the original data and used to fit the models (training
samples). The remaining stenoses (105 to 126, depending of
missing data exclusion) were used to test the performance of
the models (test samples). Additionally, fifty other training
and test samples were selected according to the same
procedure but stratified on the outcome event, in order to
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get a fixed number of culprit lesions (i.e. 56 outcome
events).

Table 1: Summary characteristics in culprit and control

lesions
Morphological Culprit Control
characteristics lesions lesions
(n=84) (n=292)
Qualitative variables (frequencies, %)
Vessel (V): Circonflex 23 31
Right coronary 39 34
Left ventricular 38 34
Main coronary 0 1
Position (Po) Distal 19 33
Medial 23 22
Proximal 58 45
Ostium (Os) non ostial 94 92
Ostial 6 8
Calcification (Ca) Massive 4 2
Moderate 7 6
Absent 89 92
Tortuous character (Tc)
Important 6 7
Minimal 69 67
Moderate 25 27
Outlines (Ol) Irregular 33 20
Smooth 60 78
Subocclusive 0 0.3
Ulcerated 7 2
Thrombus (Th) Certain 0 0.7
Ambiguous 11 3
Absent 88 97
Probable 1 0
Territory* (Te)
Large 10 7
Medium 24 21
Non appropriate 46 49
Occluded 1 0
Small 19 23
Quantitative variables (means)
Cyclic flexion (Cf) 10.5 12.1
Reference diameter (R) 2.9 2.7
Degree (D) 45.3 40.1
Length (L) 103 8.7
Symmetry (S) 0.6 0.5
Plaque area (Pa) 6.7 5
Inflow angle (If) -14.7 -153
Outflow angle (Of) 15.2 12.7
Diastolic angle (Da) 150.6 149.9
Analyses

Two series of analyses were performed with each of the 100
training-test paired samples:

1) Three models were fitted to the training sample by forced
entry of three different sets of four predictive variables
(models 1a-1c). Each three sets of variables, described in
Table 2, were chosen according to univariate analyses: in
model la, all four variables are highly predictive and in
model 1b and lc, at least two variables are significantly
predictive.

2) Eight models were fitted by forced entry of 4, 6, 8, 10,
12, and 14, 16 and 17 independent variables (models 2a-
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2h), so that the number of events per variable in the
training-sample gradually decreases from 14 (56 events/4
variables) to 3.2 (56 events/17 variables).

Table 2: Descriptive statistics of distribution of the areas
under ROC curves for model 1a (including four variables:
Position, Outlines, Degree, Symetry) in 50 stratified

samples
AUC in training AUC in test

samples samples
Mean 0,7227 0,6734
SD 0,022 0,048
median 0,7269 0,6700
1st quartile 0,7042 0,6449
3rd quartile 0,7361 0,7071
minimum 0,6766 0,5562
maximum 0,7689 0,7820

For each of these analyses, the first step of model fitting on
the training-samples was followed by a second step of
validation of the models on both training and test-samples.
For a given model, validation consisted in computing the
area under the curve (AUC) for each of the 100 samples and
in summarizing them using the mean and standard deviation
(within-model variability). We then assessed the internal
variability due to the different modeling conditions by
computing the overall standard deviation of the means
obtained for all models (between-model internal
variability). Reproducibility was assessed by comparison of
means of AUCs and their standard deviation obtained in
training samples with those obtained in test samples (ratio
of the mean in training by the mean in test samples). ROC
curves were compared using a non parametric approach
based on the Mann-Whitney-U-statistic [15]. The R
statistical software was used for analyses [16].

Results

Within-model variability due to sample fluctuations

For the model la, a variance of 0.022 across the 50
outcome-stratified  training-samples reflected a low
variability of the areas under the curve (AUCs) (see Table
3). However, these AUCs range from 0.68 to 0.77, the inter-
quartile range being 0.70-0.74. When considering the
models fitted on non-stratified training samples, ranges are
larger (min-max: 0.66-0.78 and inter-quartile range: 0.70-
0.77).

Between-model variability according to nature of
variables

Distribution of the areas under the curve (AUCs) and their
mean over the 50 stratified training-samples did not differ
widely across the first three models la-1c (see Table 2).
Figure 1 represents the ROC curves obtained with the three
models for one stratified training sample: differences
between the AUCs of the three models are respectively
0.042 (95% confidence interval: -0.0345; 0.042), 0.014

1316

(95%CIL: -0.014; 0.042) and -0.028 (95%CI: 0.1104;
0.0545) for models la-1b, la-1c and 1b-1¢ . The same
differences were not significant either considering the
AUCs on the corresponding test samples. The overall
standard deviation of the three means (0.024) reflects a low
effect of the nature of variables on internal variability.

Table 3: Summary of areas under the ROC curve in 50
training and test stratified samples, according to the nature
and to the number of variables

Type of model AUC training| AUC test
mean; SD |mean| SD

Model 1a* : 0.72 | 0.022 | 0.67:| 0.048
Po,01,D,S : L

Model 1b : 0.68 | 0.024 | 0.64 | 0.054
Ca,0L,D,Pa o

Model 1c : 0.72°| 0.021 | 0.68:{ 0.046
Tc,0LL,S , T

Mean of the 3 10,71 (0,024) | 0.66 (0.021) .
means (SD) ) B AR
Model 2a : 4 (14)* 10.73 | 0,024 |.0.70:] 0,054
Model 2b : 6 (9.3) | 0.66 | 0,023 |°0.63 0,057
Model 2¢ : 8 (7) 0.73 | 0,024 [.0.70:| 0,054
Model 2d : 10 (5.6) | 0.76 | 0,023 | 0.67-| 0,060
Model 2e: 12 (4.6) | 0.76 | 0,023 |:0.65-{ 0,058
Model 2f : 14 (4) 0.78 | 0,024 | 0.66 | 0,064
Model 2g : 16 (3.5) | 0.78 | 0,020 |:0.66:{ 0,050
Model 2h : 17 (3.2) | 0.79.] 0,024 | 0.66-| 0,062
Mean of the 8 | 0.75 (0.041) | 0.67.(0.022)
means(SD) o} o o 0 oo

*See Table 1 for abbreviations; ”number of variables with, in
parentheses, the events/variable ratio

Between-model variability according to number of
variables

For the second series of analyses, the results are only
presented for stratified samples where the events per
variable ratio is fixed across samples (see Table 3). For
increasing number of variables the mean AUC tends to
increase, as the model is more explicative. However, The
variance of the mean AUCs (variance of all the 8 means) in
training is slightly higher than the variance due only to
sample fluctuations (0.041 versus 0.022), without trend
observed with the number of variables. Considering the
within model variability of coefficients across the 50
samples (i.e. sample variance), we found that for every
predictive variable, the sample variance was systematically
lower for the model including 4 variables compared with the
model including 17 variables.
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Figure 1: ROC curves for model 1a-Ic, in a
stratified training sample

Reproducibility of models

The ratio of the mean AUC in train over test samples is
1.081 (standard deviation of 0.11) for model 1a, suggesting
a rather reproducible but variable accuracy.

The mean AUC tends to increase in training samples as the
number of events per variable decreased, whereas it does
not in test samples: the ratio of mean AUC in training
samples over AUC in test samples regularly increases from
1.057 to 1.204 while the number of variables increased from
4 (model 2a) to 17 (model 2h), reflecting a decreasing
reproducibility while the number of events per variable
increases. However, the variability of the discriminative
performance is not modified, as reflected by the stable
variance of the mean AUCs across the eight models.

Discussion and conclusion

In a series of articles on clinical prediction rules, the
Evidence Based Medicine in Critical Care Group,
emphasized the importance of evaluating the validity and
reliability of these rules for their use in clinical practice
[17]. Among questions which should be addressed are “how
well does the model categorize patients into different levels
of risk” and “how confident are you in the estimate of risk”.
This implies, for the first one, to measure discrimination
and calibration performances of the rule, and for the second
one, to measure its precision, and reproducibility. Our main
objective was to test for potential causes of instability of the
logistic models that could be a priori corrected, in order to
draw valid conclusions from a validation based on data
splitting. Any interpretation of our results should of course
be understood restricted to the database which is used for
the analyses. In this database of 376 coronary stenoses
observed in 84 patients, we considered the stenosis as the
statistical unit which is acceptable insofar as only
morphological characteristics pertaining to the stenosis are
considered as predictive variables. However, we cannot
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completely eliminate some patient effect in the relationship
between these characteristics and clinical characteristics of
the patient [18].

This work shows an overall low variability of discriminative
performance of logistic models whatever the conditions of
modeling are. Within-model standard deviations of AUCs in
training samples are never above 0.024 in every set of
analyses. However, they are consistently higher (at least
twofold) when assessed in test samples, suggesting that
variability of predictions can be a problem while a model is
used for individual risk prediction in clinical practice.
Moreover, the inter-quartile range of AUCs, reflecting
random error, corresponds to differences which are often
used to conclude to the superiority of a method over another
[5]. The principle of a simple data splitting to quantify the
predictive performance of a model may therefore be
insufficient without some kind of iterative sampling
procedures.

In our analyses, decreasing the number of events per
variable does not affect the variability of discriminative
performance, whereas the analysis of coefficients’ variance
is in favor of an influence on coefficients’ variability. These
findings are consistent with the results of Peduzzi and
Concato who showed that the number of events per variable
should ideally be above 10, or at least above 5, in order to
prevent from instability of coefficients in logistic and Cox
regression models [14]. The simulation method used by
Peduzzi et al. consisted in decreasing the number of events
and keeping the same model with the same variables. In our
analyses, we kept the same number of events but increased
gradually the number of predictive variables, which is

-somehow closer to the actual modeling practice, seeking for

the best model, i.e. the most predictive one without
overfitting. This difference in methods prompts us to be
careful in drawing clear cut conclusions. Increasing the
number of variables influenced the variability of models’
regression coefficients, but did not alter the stability of
predictive performance. This way of exploring the influence
of number of events per variable on stability, brings the
problem back to the issue of variable selection, which
should be explored further.

We also propose to assess the reproducibility of models
using data splitting method and the AUC on test samples.
Justice et al. define reproducibility as the degree to which
the model fits to real patterns in the data and not to random
noise, assessed in patients who were not included in
learning data but are drawn from the same population [4].
We observed in our data the decrease of reproducibility as
the model became more explicative (including more
predictive variables). This trend is weak but it is consistent
with the already well described overfitting phenomenon: the
more variables you include in your model, the more likely
you may fit noise to the model, resulting in unstable and
poorly reproducible predictions [13].
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From this point, perspectives would be, firstly, to check for
variability using the same sampling method as Peduzzi et al.
for simulations, secondly, to refine interpretation of our
results by performing the same analyses on other clinical
data, Moreover, further analyses are needed to explore the
calibration component of accuracy.
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