MEDINFO 2001

V. Patel et al. (Eds)

Amsterdam: 10S Press

© 2001 IMIA. All rights reserved

A Formal Framework for Modelling and Validating
Medical Systems

George Eleftherakis

CITY Liberal Studies, Affiliated College of the University of Sheffield, Greece

Abstract

Medical computerised systems which have a major effect on
human lives (e.g. those used for diagnosis, therapy,
surgery, in the intensive care units, etc) are considered as
safety critical systems. Such systems are sometimes
responsible for major damages and injuries due to
unpredicted malfunction. Misleading user requirements,
errors in the specification and in the implementation are
the usual reasons responsible for non-safe systems. This
paper advocates the use of an integrated formal framework
based on a computational machine (X-Machine), in the
development of safety critical medical systems. This formal
Sframework gives the ability to intuitively as well as formally
model a system, then automatically check if the produced
model has all the desired properties, and finally test if the
implementation is equivalent to the specification by
applying a complete set of test cases. Therefore, the use of
this framework in the development of systems in safety
critical medical domains can assure that the final product
is valid with respect to the user requirements by revealing
errors during the whole development life cycle and
subsequently add to the confidence of their use. The
proposed framework is accompanied by an example, which
demonstrates the use of X-Machines in specification, testing
and verification.

Keywords:

Medical Informatics; Formal Methods; Safety Critical
Systems

Introduction

In safety critical domains, such as medical, space, nuclear
etc., the existing practical development techniques failed
several times to produce a reliable and correct system.
Errors in such systems not only cause an increase in the
cost of a project, but are also responsible for accidents,
even provoking deaths in some rare cases [1]. Among
others, the most prominent reasons are:

o Misunderstood user requirements may lead to a
potential “correct” specification and implementation,
which however does not meet the actual requirements.

e Errors in the specification of the system result to a
model different from the one needed.

e Errors in the implementation lead to a different product
from the one specified.

The last few decades there was a vivid debate on whether
formal methods are needed or not. These debates were
triggered by academics and practitioners, adopting extreme
positions either for or against them [2]. Over the last years
it is recognised internationally that the truth lies somewhere
between and that there is a need for use of formal methods
in software engineering while there are several cases
proving the applicability of formal methods in industrial
applications [3].

The application of formal methods in safety critical medical
systems could add to the confidence in using the system by
revealing errors in both the system’s modelling and its
implementation [4]. Several examples of successful
application of formal methods in medical applications
support this argument [5, 6]. Assuming that the user
requirements reflect the desired system, there is a need for
an integrated formal technique that will allow us to:

e formally specify the system,
e check that the specification has the desired properties,
o check the implementation against the specification.

In this paper, we propose the use of a formal method,
namely X-Machines, which can accommodate all three
above-mentioned activities. X-Machines is an intuitive, yet
rigorous formalism. More specifically, a X-Machine is a
general computational machine that is like a Finite State
Machine but with a significant difference; transitions are
not labelled with simple inputs but with functions that
operate on inputs and a memory, allowing the machine to
be more expressive and flexible than a simple automaton.
X-Machines are able to model both the control and the data
part of a system. The framework for formal development
proposed in this paper uses X-Machines as a formal

Chapter 1: Technological Infrastructure

vmodelling language [7], a testing strategy to check the
implementation against the X-Machine model [8] and a
verification technique to prove the validity of the model [9].
We argue that, by applying the proposed framework, to
safety critical systems it is possible to assure that several
“safety” properties hold in the final product.

A Framework for Formal Development

The framework suggested to be built around X-Machines is
depicted in Figure 1. The grey shaded areas are tasks in
which X-Machines are used as the core formal method.
First of all, from the user requirements the system is
described as an X-Machine model. Then a verification
technique for X-Machines (model checking X-Machine
models) verifies that certain safety properties hold in the
model and feedback is used to adjust the model. The actual
implementation task produces the code in a programming
language. Finally, the testing of the implementation for
correctness with respect to the model takes place and the
refinement of the implementation, through the use of a
complete test set derived from the X-Machine model.

USER REQUIREMENTS

MODELLING

FORMAL MODEL

GENERATION OF
TEST CASES
TESTING

TEST CASES '—i
Y
PRODUCT

ADJUSTMENT IMPLEMENTATION

VERIFICATION
VALIDATION

ocwmg

PROVEN
PROPERTIES

Figure 1 - The proposed formal framework based on X-
Machines that supports the development of medical systems

This formal framework which aids in the development of
safety critical systems will be demonstrated through a
simplistic example of a X-Machine that will be used as a
vehicle of study. A medical ray beaming system (i.e. a
radiotherapy LINAC) is controlled using three buttons: i)
one for charging the machine (a single button press
increases the voltage by a 10 mV step), ii) one for the beam
activation and iii) one for resetting the machine at any time.
The system will only beam if the charge in mV has reached
a pre-set maximum, e.g. 30mV. Any attempts to increase
the charge of the machine should be rejected, since there is
a danger to seriously injure the patient.

Modelling

Modelling a system means to create an appropriate
descriptive adequate specification. Formal modelling is the
procedure of describing a system and its desired properties
precisely, by using a language with rigorously defined
syntax and semantics. Logic and sets often form the basic
theory behind such mathematical languages, in order to
avoid ambiguity and allow automated verification
techniques on the model. The majority of formal languages
facilitate the modelling of either the data processing, or the

control of the system [10]. X-Machine is a general
computational machine [8] that, being a blend of diagrams
and simple formalisms, it is capable to model both the static
and the dynamic part of a system. X-Machines employ a
diagrammatic approach of modelling the control by
extending the expressive power of FSM. Transitions
between states are no longer performed through simple
input symbols but through the application of functions.
Data is held in memory, which is attached to the X-
machine. Functions receive input symbols and memory
values, and produce output while modifying the memory
values. Thus X-Machines can model more complex data
structures, in contrast to finite state machines that lack this
ability and can model only trivial data structures .

The system described in the previous section is formally
specified and the X-Machine model is presented starting
with the visual part (a state transition diagram) which
shows the different states of the machine and the transitions
between these states in Figure 2.

reset()

charge() continue_beaming()

charge()
/‘\A/\A

reject_beam()

reset()

reject_charge()

rejeci_beam()

reset()

Figure 2 - The X-Machine model of the ray beaming system

Using a formal language based on state transition diagrams,
a system is viewed as a set of different states that the
system could be found. Several events trigger a change
from one state to another, The ray beaming system
specified as X-Machine could be in three different states;
ready (idle) waiting for an event to get it going, the system
current charge is 0 mV and the maximum allowed value is
30 mV. Another state recognised as charging means that
the current charge is more than zero and the beamer is
charged to reach the maximum value. The last state is
beaming where the system actually beams the patient until
an event resets the machine.

An informal textual description of the system as a X-
Machine follows. The model of the system using the X-
Machine notation is formally presented in table 1. Initially
the system is in state ready. If the user presses the button
for charging the machine, the event charge_button
changes the system state into charging but also changes
the current value to 10 mV (charge function is applicable).
In the cases of the events beam_button, reset_button
the system stays in the ready state and there is not any
change in the charge value.

Chapter 1: Technological Infrastructure

Table 1. Formal Specification of the ray beamer as a X-Machine model

The X-Machine is defined as ¥=(Z, T, Q, M, @, F, qo, mg) where:

Input set X X = {charge_button, beam_button, reset_button}

I = { MachineCharging, ChargeRejected, BeamRejected, MachineBeaming,
Output set I ContinueBeaming, MachineReseting } X N
Set of states Q Q = { ready, charging, beaming }

M = (MaxCharge , CurrentCharge)

Memory M where‘ MaxCharge is a variable holding the maximum accumulating voltage ?ccepted by the
machine, e.g. MaxCharge € {30}, and CurrentCharge is a variable holding the current
voltage.

Initial state qo Qo = ready
mp= (30, 0)

nmemory m;

Next state function F

F: Q X @ — Q shown diagrammatically in figure 2.

Type ® of the machine
is the set of functions ¢:
¢:IZXM-I'xXxM

The functions defined
next using the notation:

charge (charge_button, (MaxCharge, CurrentCharge)) =

((MachineCharging, CurrentCharge+l10), (MaxCharge, CurrentCharge+10))
if CurrentCharge+10 < MaxCharge
charge (charge_button, (MaxCharge, CurrentCharge))=

((MachineCharging,MaxCharge), (MaxCharge, MaxCharge))
if CurrentCharge+l10 2 MaxCharge A MaxCharge # CurrentCharge

reject_charge (charge_button, (MaxCharge, MaxCharge))=
((ChargeRejected, MaxCharge), (MaxCharge,MaxCharge)) .

reject_beam(beam_button, (MaxCharge, CurrentCharge))=
((BeamRejected, MaxCharge) , (MaxCharge, CurrentCharge))
if CurrentCharge < MaxCharge

¢{o,m) = (y,m’') if

condition beam (beam_button,

((MachineReseting, 0),

continue_beaming (button,
((ContinueBeaming, 0},

(MaxCharge, MaxCharge))=((MachineBeaming, 0), (MaxCharge, 0))
reset (reset_button, (MaxCharge, CurrentCharge))=
(MaxCharge, 0)) .

(MaxCharge, 0))=
(MaxCharge, 0))
if button € {beam_button,charge_button}

Being in state charging and accepting a charge_button
event the system stays in the same state but if the current
charge is less than the maximum value it is increased by 10
mV. This is possible through the function charge which is
triggered by the event charge_button if the
corresponding if-condition guard relevant to the X-
Machine’s memory is satisfied. Otherwise, the current
charge is not modified. Identifying the event
reset_button the system is reset to the initial state
ready and current charge becomes 0 mV. With the event
beam_button the system either changes state and moves
to beaming if the current charge is equal to the maximum
value or it stays in state charging (if the current charge is
less than 30 mV) without changing anything. In state
beaming receiving the event beam_button or
charge_button leaves the system in the same state.
Finally with a reset_button the system moves to state
ready making the current charge 0 mV. All these events
trigger the corresponding functions as depicted in Figure 2.

The next step in the proposed framework is to verify that
the produced model of the system satisfies several safety
properties, before starting the implementation based on this
model.

Verification

In order to prove that the system modelled as a X-Machine
model, has the desired properties, a model checking
technique for X-Machines is used [9]. Thus having the
system as a X-Machine model, it is possible to query that
model if it has the desired properties by exhaustively
searching the state space in order to verify that the
properties are satisfied. In order to express such queries,
there is a need for a mathematical language with built-in
notion of time that can describe the ordering of events in
time without introducing time explicitly. Temporal logic
[11] seems to be the most appropriate. A variation of
temporal logic with more expressive and flexible operators
is the Computational Tree Logic (CTL) [12]. With the use
of combinations of CTL operators, i.e.: the universal (A)
and the existential (E) path operators and the eventually (F)
and globally (G) state operators, it is possible to express if a
desired property is valid in the whole model or in part of it,
starting from the initial state. In the example used
previously in this paper the logic proposition: AG
(CurrentCharge < 30), expresses that it is impossible the
voltage to become greater than the maximum value, which
in this case is 30, meaning that the machine will never be
charged with more than the permitted value, avoiding the
chance to injure the patient. The translation of this temporal

Chapter 1: Technological Infrastructure

formula is that the requirement expressed with that formula
holds in the model if in every state of the state space the
following is true; the voltage is less or equal to 30 (the
property p <> CurrentCharge < 30, is true in every state).
More examples of temporal CTL formulae which express
safety properties that could be checked using the model
checking technique proposed in [9] are shown in table 2.

Table 2. Examples of CTL formulae

Example of Temporal Explanation
Property p Operators
in CTL
For every path and for
C“"e"g%harge < AGp every state in the path,
the property p is valid
For every path, there
Cu"engcoharge < AFp exists at least one state
where p is valid
There are some paths
CurrentCharge = 0 EGp (at least one), where in
every state of these
paths p is valid
There are some paths
CurrentCharge = EF p (at least one), where in
30 some states of these
paths p is valid

Research is contacted for the development of an extension
of temporal logic that will facilitate the model checking of
X-Machines, and will help the user to create intuitively the
queries to the model.

The verification of the model assures that in the produced
model all the safety requirements expressed as temporal
formulae hold, thus in the next phase which is the
implementation of the system, confidence is added that the
correct system is the one that is being implemented.

Testing

After the implementation of the system, it is necessary to
test the final product and prove that the produced
implementation is equivalent to the model. Ipate and
Holcombe [13] presented a testing method for X-Machines
which finds all faults in an implementation [14], as long as
the model satisfies some design for test conditions
(completeness and output distinguishability) [13].

Using X-Machines and this testing method, a complete set
of test cases is produced from the model. Each test case, is
a sequence of inputs and a sequence of outputs is expected
from that, according to the formal model. Feeding all these
test cases to the implementation and comparing the output
sequences produced, with the ones expected, it is possible
to test if the implementation is equivalent to the original
model. For example a test case produced with the
application of this testing method to the X-Machine model
of the above specified ray beamer was: <charge_button,

16

reset_button, charge_button>. In this case if the
implementation fails to produce the same output sequence
to that of the specified model, then the system would
probably have a fault in resetting the ray at any given time,
as the model imposes. Thus using the whole test set it is
possible to test the implementation and prove that it is
correct with respect to the specified model.

X-Machines is not only a formal method to model a system
but also offer a strategy to test the implementation against
the model and find faults in the final product [15]. With the
addition of the model checking verification technique, a
framework that uses formal methods is established, that
facilitates the “correct” development of a safety critical
system.

Discussion & Conclusions

This paper presented a formalism (the X-Machine model)
and showed how it may support several steps related to the
development of medical systems. The formalism possesses
characteristics that render it attractive: firstly, it is intuitive
(since it employs a graphical notation) and secondly, it is
unambiguous (given that it is based on a rigorous notation).
A number of tools based on the X-Machine model have
already been developed to facilitate modelling using X-
Machines [16] and to automate the production of test cases
given a specified X-Machine model. Currently work is
conducted to develop tools that will facilitate the model
verification step [17]. Furthermore, there is a plan to
employ a real-life case study in order to demonstrate the
practicality of the proposed method and the suitability of
the developed tools.

X-Machines contribute to a framework for formal
development that is suitable for the production of safety
critical systems. The adoption of X-Machines gives ail the
advantages of a formal modelling method coupled with a
verification methodology and a testing strategy, thus
making it possible to prove that certain safety-critical
properties hold in the final medical system.

Acknowledgements
I would like to thank Dr P Kefalas and Dr E Kehris for their
suggestions and proof reading and Prof Mike Holcombe for

his valuable comments on my work over the last two years.

References

[1] Leveson NG. Safeware: System Safety
Computers. Addison Wesley Longman, 1995.

and

[2] Young W D. Formal Methods versus Software
Engineering: Is There a Conflict?. In: Proceedings of
the Fourth Testing, Analysis, and Verification
Symposium; 1991 Oct; Victoria, British Columbia ;

pp. 188-9.

(3]

(4]

]

(6]

(71

(8]

[9]

[10]

[11]

[12]

Chapter 1: Technological Infrastructure

Craigen D, Gerhart S, and Ralston T. Formal Methods
Reality Check: Industrial Usage. IEEE Trans on
Software Engineering 1995; 21(2): 90-8.

Bowen JP, and Stavridou V. Formal methods and
software safety. In Frey H ed. Safety of Computer
Control Systems 1992 (SAFECOMP'92), Pergamon
Press, 1992; pp. 93--8.

Jacky J, Unger J, Patrick M, Reid D, and Risler R.
Experience with Z developing a control program for a
radiation therapy machine. In: Proceedings of the 11th
International Conference of Z Users ZUM '97. Z
Formal Specification Notation; 1997 3-4 Apr; Berlin,
Germany: Springer-Verlag; pp. 317-28.

Kasurinen V, and Sere K. Integrating action systems
and Z in a medical system specification. In Gaudel
MC, Woodcock J, eds. FME'96: Industrial Benefit and
Advances in Formal Methods, LNCS 1051, Springer-
Verlag , 1996; pp. 105--19.

Holcombe M. X-Machines as a basis for dynamic
system specification. Software Engineering Journal
1988;3(2): 69-76.

Holcombe M and Ipate F. Correct Systems: Building a
Business Process Solution, Springer Verlag, London,
1998.

Eleftherakis G, and Kefalas P. Model Checking Safety-
Critical Systems Specified as X-Machines. An. Univ.
Bucur. Mat. Inform. 2000; 49(1): 59-70.

Clarke E, Wing JM. Formal Methods: State of the Art
and Future Directions. ACM Computing Surveys
1996;28 (4): 626-43.

Pnueli A. The temporal logic of programs. In:
Proceedings of the 18th Annual Symposium on
Foundations of Computer Science; 1977 31 Oct-2
Nov; Providence, Rhode Island : IEEE; pp. 46-57.

Clarke EM, Emerson EA, and Sistla AP. Automatic
Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications. ACM Trans.

17

Programming Languages and Systems 1986; 8(2):
244-63.

[13] Ipate F and Holcombe M. Specification and testing
using generalised machines: a presentation and a case
study. Software Testing, Verification and Reliability
1998; 8: 61-81.

[14] Ipate F and Holcombe M. An integration testing
method that is proved to find all faults. International
Journal of Computer Mathematics 1997; 63(3):159-78.

[15] Kehris E, Eleftherakis G, and Kefalas P. Using X-
Machines to Model and Test Discrete Event
Simulation Programs. In: Mastorakis N, ed. Systems
and Control: Theory and Applications, World
Scientific and Engineering Society Press, July 2000;
pp. 163-168.

[16] Kefalas P and Kapeti E. A Design Language and Tool
for X-Machines Specification. In: Fotiadis DI and
Nikolopoulos SD, eds. Advances in Informatics,
World Scientific Publishing Company, April 2000; pp.
134-45.

[17] Eleftherakis G and Kefalas P. Towards Model
Checking of Finite State Machines Extended with
Memory through Refinement. To appear in: Proc. 5th
WSES/IEEE WORLD MULTICONFERENCE ON
Circuits, Systems, Communications & Computers
(CSCC 2001), Crete, July 2001.

Address for correspondence

George Eleftherakis

Computer Science Department, City Liberal Studies,
Affiliated College of the University of Sheffield

13 Tsimiski Str., 54624 Thessaloniki, Greece

eleftherakis@ecity.academic.gr

http://www.city.academic.gr/material/academic_staff/computer_sc
ience/eleftherakis/

