MEDINFO 2001

V. Patel et al. (Eds)

Amsterdam; IOS Press

© 2001 IMIA. All rights reserved

An Exchange Format for Use-cases of Hospital Information Systems

Gou Masuda®, Norihiro Sakamoto®, Rumi Sakai®, Ryuichi Yamamoto®

“ Division of Medical Informatics, Osaka Medical College, Osaka, Japan
® Department of Medical Informatics, Kyushu University Hospital, Fukuoka, Japan

Abstract

Object-oriented software development is a powerful
methodology for development of large hospital
information systems. We think use-case driven approach is
particularly useful for the development. In the use-cases
driven approach, use-cases are documented at the first
stage in the software development process and they are
used through the whole steps in a variety of ways.
Therefore, it is important to exchange and share the use-
cases and make effective use of them through the overall
lifecycle of a development process. In this paper, we
propose a method of sharing and exchanging use-case
models between applications, developers, and projects. We
design an XML based exchange format for use-cases. We
then discuss an application of the exchange format to
support several software development activities. We
preliminarily implemented a support system for object-
oriented analysis based on the exchange format. The result
shows that using the structural and semantic information in
the exchange format enables the support system to assist
the object-oriented analysis successfully.

Keywords:

Use-case, Software development process, Object-oriented
system, XML

Introduction

Hospital information systems have become increasingly
large, diverse and complex in recent years. Development of
the systems therefore requires a great deal of effort, time
and costs. Object-oriented technology offers one solution to
this problem. It provides a number of powerful techniques
such as abstraction, inheritance, polymorphism and
encapsulation. The use of those techniques makes it
possible to construct the systems with less cost and effort.
By improving the modularity and readability of the systems
using those techniques, it helps developers to understand the
structure of the systems and to maintain, modify and reuse
them. Several hospital information systems have being
developed using object-oriented technology[1][2]. A
number of methodologies have proposed for object-oriented

109

software development. In particular, use-case analysis[3]
gradually spreads in developing hospital information
systems for capturing user requirements. For instance, the
message development framework[4] for the HL7 Version 3
adopts use-case analysis to develop a series of messages
exchanged between hospital information systems.

In general, use-cases are documented at the first step in the
development process and they are used through the whole
steps in a variety of ways. Therefore, it is important to
exchange and share the use-cases and make effective use of
them through the overall lifecycle of a development process.
Moreover, exchanging them between different development
projects is one of the important requirements for
development of hospital information systems. By the social,
economical, and regional demands, healthcare institutions
take the wide variety of forms. However, requirements to
individual element of work process such as a surgical
operation and a radiological examination is common to
those institutions. Consequently, we can share the each part
of healthcare information systems between different
development projects. Therefore, sharing and reusing use-
cases between the projects may reduce the cost throughout
the whole medical society. However, it is difficult to meet
those requirements because use-cases are documented in a
variety of formats according to their applications. To
remedy this, we propose an exchange format for use-case
based on eXtensible Markup Language (XML). We call this
format XUC (eXtended Use-Case format). We also describe
an application of XUC to support software development
process.

Materials and Methods

A Use-Case Driven Software Development Process

Use-case driven software development process introduced
by Jacobson in OOSE (Object-Oriented Software
Engineering)[3] is a powerful methodology for requirement
analysis in the development of software systems. In OOSE,
a use-case is defined as an interaction between the system
and an “actor” that causes the system to fulfill a
responsibility and, as a result, to produce a product of value
for the actor. Actor is defined as people or other computer

Chapter 2: Standards for Interworking

systems that interact with the systems under discussion. A
collection of use-cases and actors is defined as a use-case
model. Figure 1 shows an example of use-case model
represented by Unified Modeling Language (UML).

In general, a series of system development process includes
requirement analysis, design, implementation, and testing
phases. Each phase produces and maintains its
corresponding model. Development of a system is therefore
considered as a changing process of a series of models that
is produced in each development phase. In the use-case
driven software development process, use-case models are
produced in the beginning of the process, and they are used
by other models that are produced in the following phases.
For example, an analysis model is produced from the
functional specifications described in use-case models. In
testing phase, the use-case models are used to confirm
whether the system satisfies the original requirements. Use-
case models have thus important roles in the overall
lifecycle of development process. It is therefore important
to exchange the use-cases between developers and
applications through the development process effectively.

X~

Authorized_user

O\%

Manage_patient_encounter

Billing_office

— Manage_patient_information
MPI_administrator

Figure 1— An example of use-case model.

An Exchange Format for Use-case

In this section, we describe an exchange format for use-
cases. First, we define an object model for use-case. To
define this, we review the Basic Use Case Template[5][6],
which provides a systematic and consistent format for
describing use-cases, from the viewpoint of exchanging the
software design. Next, we design an XML based exchange
format for the object model. In this exchange format, the
relationships between objects and structure of classes in the
object model are represented as XML elements. Then we
add other related information on exchanging electronic
documents such as author of the document and revision date
to the format. We call this exchange format XUC and we
refer to the document written by the format as XUC
document. XUC defines the following XML elements to
describe a use-case model. Complete XML document type
definition (DTD) is presented in Appendix A.

e Use-case mname: The name straightforwardly
indicates the goal of a use-case. A verb phrase is
better.

110

Scope: The systems or subsystems that are
considered as black box in a use-case.

Level: The degree of details of a use-case, that is,
Summary, Primary Task, and Subfucntion.

Goal in context: A detailed statement of the goal of a
use-case.

Primary actor: The external actor that triggers the
use-case.

Secondary actor: All the actors that provide services
to the system in order to achieve the goal of the use-
case.

Preconditions: The conditions with which systems
and actors are required to be satisfied before the use-
case is triggered.

Success end condition: The state of the system after
successful completion of a use-case.

Failed end condition: The state of the system after
the goal is not achieved.

Trigger: The event that triggers a use-case.

Main scenario: A series of steps of a scenario from
trigger to goal. Each step is called “Interaction.” It
consists the following two sub elements.

~ Step: The order that the interaction is carried
out.

— Action: The description of an interaction
between an actor and system. The subject of
the interaction should be stated clearly.

Alternative scenario: The subsidiary description of a
use-case such as exception handling.

— Condition: The description on the conditions
for branch.

— Step: The order that the interaction is carried
out.

— Action: The description of an interaction
between an actor and system.

— Related use-case: A reference to sub use-
cases if the action can be separated as a use-
case independently.

Variation: The choices in the scenario as a temporal
branch. It consists the following elements.

— Note: The description of situation when the
choices occur.

— Variation item: The content of each choice.
Author: The author of a use-case.
Revision date: The revision date of a use-case.

Super ordinates: The name of use-cases that includes
this use-case.

Chapter 2: Standards for Interworking

e Sub ordinates: The name of use-cases that this use-
case includes.

e Note: The description that cannot be included any
other elements. For example, issues or notices.

Describing use-cases as XUC documents enables
developers to exchange the use-cases between applications,
developers thorough the development process. Structural
and semantic information in the XML document makes it
possible to utilize the use-cases in a variety of applications.

Related Works

The XML Metadata Interchange Format (XMI)[7] is an
exchange format for the models in UML such as Class
diagram and Object diagram. It allows developers to
exchange software assets in UML throughout their
applications. XMI provides a way to exchange Use case
diagram in UML. However, detailed descriptions of use-
cases are not represented by using XMI. The reason is that
Use-case diagram in UML is not designed for documenting
a use-case rather for the relationship between use-cases and
actors.

The Basic Use Case Template[5][6] proposed by Cockburn
is designed for providing a systematic and consistent format
for describing use-cases. However, it uses a simple text
format. We think it is therefore difficult to analyze and
utilize the document in a variety of applications.

On the other hands, XUC is designed to provide developers
a model for representing detailed descriptions of use-cases
and their exchange format. We think XUC and XMI are
applicable complementally depending on the detailed level
of use-cases. Therefore, we also provide a way to
interchange between XUC and XMI in this study. The
interchangeability is discussed in a later section.

Results and Discussion

An Application to Support the Software Development
Process

A Support System for Object-Oriented Analysis

In order to evaluate the usefulness of XUC, we apply it to
support analysis and design activities in the software
development process introduced by Jacobson’s use-case
driven development approach. The purpose of object-
oriented analysis is to understand the system and in
particular, the functional requirements of the system in
discussion. It consists of the following five primitive
activities, and those activities are conducted iteratively from
abstract phase to concrete one [3].

e Finding the objects

Objects can be found as paturally occurring entities
in the application domain. They usually appear in
nominal words in the application domain. The
purpose of this activity is identifying indispensable

111

objects that keep on being important through the
overall lifecycle of system.

e Organizing the objects

This activity includes finding the similarity between
objects. Class hierarchy is defined based on the
similarity in general. It also includes finding how
objects work together and what object contains
others.

e Describing how the objects interact

The purpose of this activity is to specify how an
object is incorporated in the system. Describing use-
cases that include the object is useful to accomplish
the purpose.

e Defining the operations of the objects

Making clear the interface of an object leads to
defining methods of the object. Complex operations
of an object imply that the object can be separated.

o Defining the objects internally

This activity includes defining attributes of objects.
The inside of object is described in detail by using
those attributes.

All the activities are based on the use-case models that are
documented in the beginning of the development process.
Therefore exchanging the use-cases between developers and
applications allows developers to make use of the use-case
models in the overall development lifecycle effectively. For
this purpose, we build a support system for object-oriented
analysis as an application of XUC. Figure 2 shows the
overview of our support system. It consists of three tools,
namely, Use-case Editor, Object-Oriented Analysis (OOA)
Support Tool, and Class Diagram Editor.

display ;

i
i

Web browser

Other applications which can
handle XMI format

Support System

Figure 2 — Overview of our support system.

Use-case Editor

Use-case Editor is used for documenting use-case models as
XUC format. It has an XML processor in order to interpret
XML documents. Figure 3 shows an example use of the
Use-case Editor. It enables developers to define actors and

Chapter 2: Standards for Interworking

scenarios in a use-case model and construct it as a XUC
document. The constructed XUC documents can be
displayed easily using eXtensible Stylesheet Language
(XSL). Users can browse the XUC documents by using
common WWW browsers such as Microsoft Internet
Explorer 5™. No specific applications or tools are required
for the browsing the XUC documents.

L . 12T
Eie Modol Actor Usecaso
Usecase List Fandamental Information | Condiion/Trigger | Main Scenario | Relazed Information | Note |

Fandamental Information

No,Tr Peecasa Namel
og in to the System
SET e
[InActorCertificatory =] [Summary =

i

|A Entering person logs in o the system with his/her user d and password.)
system asks Certificator whether the entering person is authorized
r ot
2
Beimary. ABIoE] Sewondary ACIGE]
I | B
| |

|Ex Actor(Entering Person) linActor(Certificator)

Figure 3 — Use-case Editor for XUC documents.

OO0A Support Tool

This tool supports the first three activities in object-oriented
analysis.

o Finding the objects

The first step in object-oriented analysis is finding
objects. We pay particularly attention to nominal
words in use-cases and the place where the words
appear. Thus, our support tool extracts those words
from the use-cases and presents them to users as
candidates of object. Users can define objects in
their system using the candidates.

As regards the place of word appearance, we found
that the words that appear in “Internal Actor” section
in a use-case model are possible to be objects with
high probability. Therefore, the tool automatically
extracts those words as candidates of objects. On the
other hand, the words that appear in “External
Actor” section have no probability of being object.
The tool therefore removes those words from the
candidates. Use of the structural and semantic
information in XUC makes it possible to extract the
candidate automatically.

o Organizing the objects and their interactions

In the case of defining classes, it is necessary for
developers to recognize the relationships among
classes such as inheritance, generalization and
aggregation. The information on the relationships
between objects in a use-case model is helpful in this
activity. However, those relationships are often
described implicitly in the use-case models. We thus
consider the use of structural and semantic
information in XUC documents to extract those
relationships. We apply the following two methods
to extract relationships between objects from XUC

112

documents.

- Using structural information: Extract objects
that exist in the same XML element in which
a target object appears.

- Using semantic information: Extract objects
that exist in the same scenario in which a
target object appears.

The support tool presents the candidates of the
relationship between objects using both methods.
Users can define appropriate relationship from the
candidates. An example use of OOA Support Tool
appears in Figure 4.

[
Command
Usacases in which the obiect [patient =] acoesrs.
Usecase rame The number of appearence_]| Scoe:
OAdding @ digtal signature 5 Tocatonof the
(O GoalinContext
Q SuccessEndCondition
MainScenark
O MainScenario
(OMeinScenario

[Add & current time obtained from EFH server to a XML patient recurr. A message digest is generated after that.

Add a digital signature to the XML document.
Relate 1o fhe seircied sbiect
Relate 10 the cbject i scope P

3 8 torget of innerit

* s a eourcs of ateregation tWea)
e 8 torget of sesregation

Selected objct Othar obhcts

Scops of the Usecasa

Figure 4 — OOA Support Tool.

Class Diagram Editor

Class Diagram Editor provides a way to define inside of
objects, namely, attributes of objects and relationship
between them. In addition, it provides a way to construct a
framework of the classes automatically using the results
from OOA Support Tool.

The classes defined by our support system can be used in
the following phases of development process such as
implementation and testing. One possible way to exchange
such information through the whole phases is using XMI.
Therefore, our support system provides a converting
method from XUC to XMI. This makes it possible to share
the information model from the analysis phase to the later
phases seamlessly. In this study, we consider only Class
diagram in UML as a target of the conversion since it is
used most frequently than other diagrams.

An Evaluation

We applied our support tool to a development of a piece of
software for securely storing and transferring electronic
patient records. Seventeen use-cases documented via our
support tool were used to assist finding objects and defining
their interfaces. In the activity of finding objects, a
developer actually used 31 objects from 187 candidates
presented by the support tool. We also confirmed that using
OOA support tool enables the developer to easily
understand the entire framework of the software.

Chapter 2: Standards for Interworking

Conclusion

We have proposed XUC, an exchange format for use-cases.
We have also described our support system as an
application of the XUC. The result shows that using the
structural and semantic information in the exchange format
enables the support system to assist the object-oriented
analysis successfully.

By using XUC, we can exchange use-cases not only within
a development process but also between different projects.
Moreover, we suppose to construct a use-case repository for
developing various hospital information systems.

Currently, we are developing a large hospital information
system at Osaka Medical College. In the development, a
large number of use-cases are documented for requirement
analysis of the system. We plan to apply XUC to the
development and discuss its availability as part of our future
work.

Acknowledgments

We would like to thank Kousuke Tanaka for his
implementation of our support system.

References

[1] Egyhazy CJ, Eyestone SM, Martino J, and Hodgson CL.
Object-oriented analysis and design: A methodology for
modeling the computer-based patient record. Topics in
Health Information Management; Frederick 1998.

[2)Wang C, and Ohe K. A CORBA-Based Object
Framework with Patient Identification Translation and
Dynamic Linking. Methods for exchanging patient data.
Methods Inf Med 1999; 38:56-65.

[3] Jacobson 1, Christerson M, Jonsson P, and Overgaard G.
Object-Oriented Sofiware Engineering: A Use Case
Driven Approach. ~ Addison-Wesley Publishing
Company, 1992.

[4] Health Level Seven, Inc. HL7 Version 3 Message
Development Framework Version 3.3. 1999. Available
at http://www.hl7.org/

[5] Cockburn A. Basic Use Case Template. HaT technical
report TR96.03a. Humans and Technology, 1996.

[6] Cockburn A. Structuring Use Cases with Goals. Journal
of Object-Oriented Programming. Sep/Oct, 1997. pp.
35-40, and Nov/Dec, 1997. pp. 56-62.

[7]1 Object Management Group. XML Metadata Interchange
Format (XMI), version 1.1. 2000. Available at
http://www.omg.org/technology/documents/formal/xml_
metadata_interchange.htm

Appendix

We give the complete XML DTD for XUC in Table Al.

113

Table A1- DTD for XUC

<!ELEMENT XUC (UsecaseModel*)>
<!ELEMENT UsecaseModel
(UsecaseModelName, Actors, Usecases)>
<!ATTLIST UsecaseModel id ID #IMPLIED>
<!ELEMENT UsecaseModelName (#PCDATA)>
<!ELEMENT Actors (ExternalActor*, InternalActor*)>
<!ELEMENT Usecases (Usecase*)>
<!ELEMENT ExternalActor
(ActorName, ActorCharacterization)?>
<!ATTLIST ExternalActor
id ID #IMPLIED idref IDREF #IMPLIED>
<!ELEMENT InternalActor
(ActorName, ActorCharacterization)?>
<!ATTLIST InternalActor
id ID #IMPLIED idref IDREF #IMPLIED>
<!ELEMENT ActorName (#PCDATA)>
<!ELEMENT ActorCharacterization (#PCDATA)>
<!ELEMENT Usecase
{(UsecaseName, GoalInContext, Scope, Level,
PrimaryActors, SecondaryActors, PreConditions,
SuccessEndCondition, FailedEndCondition,
Trigger, MainScenario, Authors, RevisionDates,
UsecaseNotes, SuperOrdinates, SubOrdinates)?>
<!ATTLIST Usecase
id ID #IMPLIED idref IDREF #IMPLIED>
<!ELEMENT UsecaseName (#PCDATA)>
<!ELEMENT GoalInContext (#PCDATA)>
<!ELEMENT Scope (InternalActor?)>
<!ELEMENT Level EMPTY>
<!ATTLIST Level value
(Summary | PrimaryTask | Subfunction) “Summary”>
<!ELEMENT PrimaryActors
((ExternalActor | InternalActor)*)>
<!ELEMENT SecondaryActors
((ExternalActor | InternalActor)*)>
<!ELEMENT PreConditions (#PCDATA)>
<!ELEMENT SuccessEndCondition (#PCDATA)>
<!ELEMENT FailedEndCondition (#PCDATA)>
<!ELEMENT Trigger (#PCDATA)>
<!ELEMENT MainScenario (MainInteraction*)>
<!ELEMENT MainInteraction
(Action, Extensions, SubVariations)>
<!ATTLIST MainInteraction step NMTOKEN #REQUIRED>
<!ELEMENT Action (#PCDATA)>
<!ELEMENT Extensions (Extension*)>
<!ELEMENT Extension
{Condition,AlternativeScenario, ReferedUsecase?)>
<!ELEMENT Condition (#PCDATA)>
<!ELEMENT AlternativeScenario
(AlternativeInteraction*)>
<!ELEMENT Alternativelnteraction (Action)>
<!ATTLIST AlternativeInteraction
step NMTOKEN #REQUIRED>
<!ELEMENT ReferedUsecases (Usecase)>
<!ELEMENT SubVariations (SubVariation?)>
<!ELEMENT SubVariation
(VariationNote, VariationItem+)>
<!ELEMENT VariationNote (#PCDATA)>
<!ELEMENT VariationItem (#PCDATA)>
<!ELEMENT Authors (Author*)>
<!ELEMENT RevisionDates (RevisionDate*)>
<!ELEMENT UsecaseNotes (UsecaseNote*)>
<!ELEMENT Author (#PCDATA)>
<!ELEMENT RevisionDate EMPTY>
<!ATTLIST RevisionDate year NMTOKEN #REQUIRED
month NMTOKEN #REQUIRED day NMTOKEN #REQUIRED>
<!ELEMENT UsecaseNote (#PCDATA)>
<IELEMENT SuperOrdinates (Usecase*)>
<!ELEMENT SubOrdinates (Usecase*)>

Address for correspondence

Gou Masuda, Division of Medical Informatics, Osaka Medical
College, 2-7 Daigakucho, Takatsuki, Osaka 569-8686, Japan
masuda@poh.osaka-med.ac.jp

