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Abstract; Gibbs sampling is a technique to calculate a complex posterior distribution as steady state measure of
a Markov chain. The fundamental problem of inference from Markov chain simulation is that there will always
be areas of the target distribution that have not been covered by the finite chain. Deciding when to stop the chain
in order to have reached enough coverage of the support of the target distribution is an important matter.
Techniques based on one long single chain and on multiple chains are discussed in the framework of a linear
mixed effects model. The diagnostics used do not provide a consistent view on the convergence. Practical
consequences on the estimates are shown.

1. Introduction: Markov chain Monte Carlo (MCMC) methods are powerful tools and
easy to apply. Thus, there are risks of serious errors: inappropriate modelling (the assumed
model is not realistic from a substantive point of view or does not fit the data), errors in
calculation or programming (the simulated stationary distribution is not the desired target
distribution), and slow or no convergence (the chain remains for many iterations in a region
influenced by the starting values, or the chain moves between two equilibrium states). This
article discusses possible measures against the third kind of error considering a linear mixed
effects model fitted to longitudinal data from a study on the antiatherosclerotic effect of
Allium sativum [1].

Slow convergence is a problem with deterministic algorithms as well. For example, a
sound use of the EM algorithm requires a careful check of convergence. Consequences of a
naive convergence consideration for the EM algorithm in the context of finite normal
mixtures are discussed in {2]. In MCMC, the practical task in monitoring convergence is to
estimate how much the inference based on the Markov chain differs from the desired target
distribution. This is related to the problem of detecting if a Markov chain has forgotten its
starting point.

Techniques for a single long chain based on spectral methods [3], and on eigenvalue
bounds [4] as well as a technique for multiple chains based on variance analytic methods [5]
will be discussed. An excellent review on the theoretical backgrounds of convergence
assessment is given in [6]. Furthermore, it is of interest to study autocorrelations for each
variable in each chain. High autocorrelations within chains indicate slow mixing and usually
slow convergence.

2. The model: The model considered is given as a directed graph. The graph allows a
formal language to represent the full joint distribution of all quantities considered as a simple
factorisation in terms of conditional distributions. Figure 1 shows the model graph for the
problem under consideration. For more information on the model see [7].

The posterior distribution of interest is of high dimension. Generally, the monitoring
of convergence is performed on one-dimensional margins of the full distribution. Methods for
the full-dimensional measure do exist which are computationally expensive . Generally, it is
recommended to monitor all fixed effect nodes (founder nodes with no parents: bl, b2,
alpha0, sigmal, tan). It may also be of interest to monitor internal nodes. To shorten the
discussion, the monitoring of convergence will be restricted to the key parameter 52 which
quantifies treatment-time interaction and parameter sigmal which describes the random



84

Modelling and Simulation

effect. Because, in hierachical models, it is important to look at a plot of the random effect
variance. If the starting value of this parameter is too close to zero, the Gibbs sampler can get
stuck for a long time close to the starting values.

Figure 1: Model graph

3. Convergence analysis based on a single chain: The chain will be started with an
extreme choice of starting values: list(alpha0 = 0, b1=-400, b2=1,000, tau = 1,000, sigmal =
0.1). This strategy is used to get an impression of how influential starting points may be in the
future history of the chain. Figure 2 shows the first 100 iterations of sampler for sigmal and
b2. The chain seem to reach a stable state after 30 iterations. One may conclude on heuristic
grounds that after 1,000 iteration the chain has forgotten its initial values and has reached the
target distribution and additional 1,000 iterations may be sufficient to perform the estimations.
This will now be inspected more systematically by three tools of convergence analysis for a
single chain: The Gewecke, the Heidelberger-Welch, and the Rafiery-Lewis diagnostic [6].
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Figure 2: Behaviour of the Gibbs sampler starting from extreme points
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The Gewecke diagnostic suggests that if a chain has converged by iteration ny, then
one should accept a test of equal location for two subsequences {x;, i =ny, ..., na} and {x;,i=
ng, ..., Nc} with ng < np << ng < n¢. The variability of the difference of the mean values of
both subsequences is estimates form a consistent spectral density estimate. Under the null
hypothesis of convergence the test statistic is standard normal distributed.

The Heidelberger-Welch diagnostic uses the assumption that in the steady state, the
process observed is a weakly (covariance) stationary process. A new process is constructed
from the standardized fluctuations of cumulative sums of the observed values around the
mean value over the periode considered. The null hypothesis of stationarity implies that over
a sufficient large period this process forms a Brownian Bridge. The Cramer-von-Mises
statistic is used to judge convergence.

The Raftery-Lewis diagnostic quantifies how good a quantile of the target distribution
can be estimated. A binary process is introduced (observed values below or above the
quantile) which will well approximate a Markov chain when an appropriate subsequence is
chosen. Once the subsequence is established, its approximate transition matrix can be
estimated. The eigen-values of this matrix are easily calculated and used to estimate the
geometric convergence rate of the chain which gives information on how long the chain has
to run to approximate the target distribution with sufficient precision.

The z-score calculated from the Gewecke diagnostic (based on iterations 1,001 to
2,000) for parameter b2 is 3.48 (sigmal: 2.83). The null hypothesis of stationarity is rejected
for both parameters. The Heidelberger-Welch diagnostic accepts the null hypothesis of
stationarity for b2 as well as sigmal. The Raftery-Lewis diagnostic can not be applied because
the 1000 iterations under study a not sufficient to perform the calculation.

Therefore, the chain is expanded to 15,000 iterations. Iteration 10,001 to 15,000 will
be used for a second check. The z-score calculated from the Gewecke diagnostic for is 0.608
(sigmal: -0.897). The Heidelberger-Welch diagnostic also accepts the null hypothesis of
stationarity for b2 and sigmal. The Raftery-Lewis diagnostic states that for b2 additional
3,120 iterations (for sigmal 5,504 additional iterations) to the 5,000 already used should be
performed in order to estimate the 2.5™ percentile of the posterior distribution to a specified
accuracy. Based on this result the sampler is run for additional 20.000 iterations and estimates
of the parameters are based on the iterations 15,001 to 35,000. This time the Raftery-Lewis
diagnostic calculates that 9,388 iterations are needed for sigmal and 11,332 for 2. With
15,000 iterations performed these requirements are met.

The autocorrelation analysis for b2 gives 0.69 (Lagl), 0.17 (Lag 5), 0.023 (Lag 10)
and 0.00021 (Lag 50). For sigmal one finds 0.57 (Lagl), 0.093 (Lag 5), 0.003 (Lag 10) and
0.015 (Lag 50). It may be necessary to increase the thinning interval to say , every 10" or 50
iteration, before calculating summary statistics and density estimates, in order to achieve a
less highly correlated sample.

4. Convergence analysis based on multiple chains: The method of Gelman and
Rubin [5] consists of analysing m independent sequences to form a distributional estimate of
what is known about some random variable, given the observations simulated so far. It
provides a basis for an estimate of how close the process is to convergence and, in particular,
how much more simulations might improve the estimates. The method uses m 2 2
independently simulated sequences of length 2n, each beginning at different starting points
which are over-dispersed with respect to the stationary distribution. The first n iterations are
discarded. First, for any scalar functional of interest, the variance between the m sequence
means are calculated. Second, the mean of the m within-sequence variances is determined.
Now, rather than testing the null hypothesis that the algorithm has converged, a factor R is
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given by which the estimated scale of the posterior distribution will shrink. An alternative
method is proposed by Brooks and Gelman [8], which generalises the original method to
consider more than one parameter.

The result using 4 chains which are over-dispersed with respect to the true posterior
distribution shows that the factor R for parameter sigmal (as well as b2) reaches the value 1
after a little bit more than 400 iterations.

5. Consequences for the estimation of parameters: Table 1 summarises estimates of
the SD of the mean estimates of b2 and sigmal using different parts of the chain as well as
thinning the chain.

Table 1: Influence of sampling strategies on the distribution of parameters

b2 sigmal
Iteration Lag 1 Lag 10 Lag 50 Lag 1 Lag 10 Lag 50
1,001-2,000 1.88 1.82 2.19 2.57 2.66 3.09
10,001-15,000 1.73 1.70 1.66 2.76 2.81 3.01
15,001-30,000 1.73 1.78 1.75 2.69 2.61 2.60

This short view on the distribution of the parameters b2 and sigmal shows that
inference based on iterations 1,001-2,000 may produce a too narrow distribution. This may
also happen for sigmal when estimation is based on iterations 10,001-15,000. The last line of
Table 1 shows that jterations 15,001-30,000 can be used to gain a reliable result on the
distributions of both parameters.

6. Discussion: The diagnostics used do not give a consistent view on the convergence
of the sampler under study. The Gelman-Rubin diagnostic (which is offered in the WinBUGS
software) assesses convergence after a short run in period (500 iterations). This and the
Heidelberger-Welch method offer the most liberal view on the problem. A result which was
not supported by the methods of Rafiery - Lewis and Geweke.

As all statistical procedures, any convergence diagnostic technique cannot be
guaranteed to successfully diagnose convergence. Each of the diagnostic methods has its own
drawbacks and there is no one globally best method which works for all problems. The
diagnostic methods discussed look at convergence of the chain itself, and do not try to provide
a model for convergence. Notable exception of this is the method of Raftery- Lewis.

Because of the computational expenses, marginal and not full-dimensional diagnostics
are offered in basic software like CODA [9]. The more rigorous and reliable methods, tend to
be the most computationally expensive, and so the least well used. Whilst the existence of
popular code is extremely useful, these programs are open to naive misuse and mis-
interpretation. It is essential to have some understanding of the basic concepts behind any
diagnostic that one chooses to use, and to understand its limitations in terms of the types of
problems for which it may be applied.
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