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1. Introduction

The analysis of the spatial variation of disease and its subsequent representation on a map has
become an important topic in epidemiological research. One important question in disease
mapping is to test the hypothesis that the cases of disease occur at random within the study
region presented on the map. In assessing the non-randomness of a map two particular
mechanisms are frequently distinguished.
The first mechanism deals with heterogeneity of disease risk, i . e. different levels of disease
risk are present in the study region due to geographical variation of unknown or unobserved
risk factors. Identification of spatial heterogeneity of disease risk thus may give valuable hints
for possible exposure and targets in subsequent analytical studies.
Another phenomenon frequently used to address the non-randomness of a map is spatial
autocorrelation, i . e. neighboring regions are said to have similar values of disease risk. 
Autocorrelation may either reflect a contagious mode of disease transmission or unobserved
risk factors common to neighboring regions. Frequently these phenomena are difficult to
entangle, heterogeneity may impose as autocorrelation and vice versa.
Usually construction of disease maps starts with choosing geographic sub-units and
calculating an appropriate epidemiological measure (Standardized Mortality Ratio, rates, etc.)
for each sub-unit.
A measure often used is the Standardized Mortality Ratio (SMR) or Standardized Incidence
Ratio (SIR) for incidence data. For each area the SIRj is defined as

O ^ ,
SMRj = — L , with E; = 2jPlj Aj > a*10* J ism e number of age groups

E j j=i

where Oj are the observed cases in the i-th regional area, E i the expected cases in the i-th
region based on an external reference and P y the person years in the i-th area and j-th age
stratum. ju} denotes the age-specific mortality rate of the j-th age stratum in reference, which
is assumed to be known.

1.1 Disease Mapping and "avoidable deaths"

Here we look at the example of the carcinoma of the mamma in women in Germany in 1995.
Frequently this disease is addressed as belonging to the category of "avoidable death"
(Holland, 1993)1. This health indicator comprises untimely death cases which might be
preventable by medical intervention, preventive measures such as primary prevention or
screening or a combination of these actions. The mortality of breast cancer in women
depends on access to adequate treatment and the availability and acceptance of screening
measures. (Chamberlain, 1996)2. A n analysis of the regional distribution of the mortality of
breast cancer may give valuable hints towards deficits in medical care or regional differences
of the acceptance of screening measures. For such an analysis the inclusion of known risk 
factors for breast cancer such as parity, age at menarche etc. would be most desirable.
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In our example we use mortality data from the census offices of the 16 states of Germany.
The data are based on the spatial resolution of "Landkreise".

2. Modelling heterogeneity of disease risk 
2.1 Introduction
A common approach used in map construction is the choropleth method (Howe, 1990)3. This
implies categorizing each area and then shading or coloring the individual regions
accordingly. Traditional methods of map construction face serious methodological problems:
Classification according to the percentiles of the distribution of the epidemiological measure
is likely to reflect only chance fluctuations in the corresponding small counts.
Probability maps based on a Poisson assumption face the problem of misclassification as well.
It can be shown (Schlattmann4 and Bohning, 1993) that probability maps do not provide a 
consistent estimate of heterogeneity of disease risk.
A more flexible approach is given in random effects models, i . e. models where the
distribution of relative risks 0i between areas is assumed to have a probability density
function g(9). The Oi are assumed to be Poisson distributed conditional on 9i with expectation
GjEi .Several parametric distributions like the Gamma-distribution or the log-normal
distribution have been suggested for g(0). For details see Clayton5 and Kaldor (1987) or
Moll ie 6 and Richardson (1991).

2.2 The Poisson mixture model
In the mixture model setting, we assume that the population under scrutiny consists of
subpopulations with different levels of disease risk 0j, j=l,...k.. Statistically we face the
problem to identify the level of risk for each subpopulation and the corresponding proportion
of the overall population. This leads to a random effects model where we assume a discrete 
parameter distribution P for g(G) with P = [9i....9k;pi....pk]. P is the discrete probability
distribution which gives mass pj to parameter 9j.
This model therefore assumes that Oi comes from a nonparametric mixture density of the
form:

k
f(oi, P, Ej) = XPj f(oi> % E 0 » withError!j=l,.. . ,k and pj > 0, i =1 n (number of areas),

j = l
OF- n-

where f(.) denotes the Poisson-density with f(oi, 9, Ej) = e" 1(9Ei) Voj! Please note that the
model consists of the following parameters: the unknown number of components k, the k 
unknown (relative) risks 9i,...,9k and k-1 unknown mixing weights pi,. . , pk. The term E;
denotes the population at risk or the expected cases where SMRs are used.
There are no closed form solutions available for finding the maximum likelihood estimates.
Suitable algorithms are given by Bohning, Schlattmann and Lindsay (1992)7. One principle
algorithmic strategy is given in the mixture algorithm, which consists of two steps:
1. In the first step a flexible support size is assumed, i . e. the number of potential
subpopulations is assumed to be unknown.
2. The second step involves calculating a solution with a fixed support size, i . e. the number of
components is assumed to be known. This second step makes use of the results of the flexible
support size solution as starting values for the EM-algorithm.

To estimate the nonparametric maximum likelihood estimator with DismapWin
(Schlattmann8, 1996) we start with the first step of the mixture algorithm. This involves
defining a grid containing the parameter values 9i,...,9g over which the corresponding
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population proportions that maximize the likelihood function have to be found. For details on
the algorithmic approach see Bohning6 , 9 et al. or Schlattmann10 et al. (1996).
In order to use this mixture distribution for map construction, its classification aspects are
applied. This can be done by defining an unobserved indicator variable Zy for membership in
the j-th component. For example zi = (0,1, 0 ,0, 0) indicates that the i-th region belongs to
the second component. Using the estimated mixing distribution as a priori distribution and
applying Bayes's theorem leads to

A A 

a pjf(oi,Gj,Ei)
p i ^ l l o f a P ) - k

 1 

X p i f ( 0 i , e i , E i )

1=1
for the probability of belonging to the j-th component. The i-th area is assigned to that

subpopulation j for which it has the highest posterior probability of belonging.
Our map of breast cancer mortality shows three levels of disease risk with some marked
patterns.

Mortalitat Mamma-Karzinom 1995

Ris ikos tru ktu r 
• p=0.19 1=1.1450

• p=0.75 1=0.9757

H p=0.06 1=0.5104

This map shows clearly an east-west and a urban-rural difference. Mainly some rural areas of
the eastern states show a decreased risk of 50% whereas urban areas mainly of the western
states show an increased risk of dying of about 14 percent.

2.3 The mixture Poisson model with covariates

Once heterogeneity is detected, the question arises on how to address remaining spatial
dependency and how to include known covariates x i , .,XM into the model.
In the homogenous case covariates are included through Poisson regression (Breslow1 1 and
Day, 1975).
This leads to a log-linear model, where the Poisson parameter is given by Gj = exp(LPj), with
the linear predictor LPj = oc+piXu +....+ p M Xi M +logEj. With raising Gj = cc+pixn +....+ PMXJM
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and log Ej to the power of e (Euler's constant 2. 718) we have a generalization for the Poisson
model Oj ~Po(6Ei) .

In order to perform an ecological study for the breast cancer data we include the covariates
"East-West" and "Urban-Rural"

Poissonregression
Parameter s. e. R R = exp (Param.) 95% K I
Intercept 0.063 0.026
Urban 0.099 (Urban = 1, Rural = 0) 0.015 1.10 1.07, 1.14
East_west -0.184 (East = 1, West = 0) 0.015 0.83 0.81,0.86

The homogenous poisson regression model confirms the visual impression we find a 
significant east-east and urban rural difference. O f course these variables are only surrogate
measures indicating differences in lifestyle patterns such as diet, parity etc.

A natural extension of the homogenous Poisson regression model is given by the mixed
Poisson regression model (Dietz (1992), Schlattmann9 et al.(1996)). A n extension of the
univariate Poisson mixture density Oi ~ piPo(oj,0i,Ej) +...+ pkPo(oj,0k,Ej)
is given by a random effects model where the random parameter P is discrete finite with

P = [pi....ft;pi....pk] with ft = (OJ, pij ,...,PMJ), j =1, ..,k,
where M denotes the number of covariates in the Poisson regression model. The conditional

k
distribution of Oi is given by Oj ~ J]pjf(Oj,exp(LPij)), with linear predictor

LPy = Oj+pijXij+....+ pMjXMi + log Ej , where f(.) again denotes the Poisson density. The
number (M+l) of parameters in the Poisson regression is the same for each subpopulation.
The univariate mixture model approach may be considered as a special case with mixing only
over the intercepts Oj and Pij =...=PMJ=0 , j =1, .., k, where k denotes the number of
components and M denotes the number of covariates.

Again estimation may be done by maximum-likelihood. If the indicator variables Zjj were
known, then the maximum-likelihood estimators for the parameters would simply be the
M L E ' s from each component groups. Again, there are no closed form solutions available for
maximum likelihood estimates. A n adaptation of the EM-algorithm by Dempster1 3 et al.
(1977) has been developed by Dietz (1992). A detailed description can be found in
Schlattmann et al. (1996) as well. The computations involved may be done with the program
DismapWin

The next figure shows a screen dump of DismapWin with a covariate adjusted mixture model
for the breast cancer data. Clearly after adjusting for the covariates there is still residual
heterogeneity present.
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Edit Map Method Mixtures lest Window* Help

Observed cases:ICD174
Expected cases/ Person years:ICD174EX

weight̂  0.06223 parameter 0.51041
weight= 0.75174 parameter= 0.97574
weight= 0.18603 parameter= 1.14500

log-likelihood at iterate=-1495.30554

regression coefficients
intercept -0.65315 s. e.: 0.026933
intercept 0.06345 s. e.: 0.024705
intercept 0.19129 s. e.: 0.024437

STADT 0.08522 s. e.: 0.013231
OST_WEST-0.18223 s.e.: 0.012942

weighs 0.02252 parameter- 0.46577
weight- 0.81787 parameter- 0.95365
weight- 0.15960 parameter- 1.08370

log-likelihood at iterate=-1435.23657

Risiko s truktur
Bp=0.16 1=1.0837

• p=0.82 1=0.9537

• p=0.02 1=0.4658

jggstartj Telnet-kommazedatfu-b... | ̂  Microsoft Word-BnEMEN-llfeDitmap for Window* 13:30

3. Discussion
From a practical point of view, especially from the viewpoint of the Public Health practioner
the mixture model approach described here has several attractive features. First it provides
relatively easy computation and implementation. Second, with packages such as DismapWin,
there is free software14 available, which directly produces maps based on these methods.
Third empirical Bayes methods do not require a difficult convergence diagnostic such as the
full Bayesian approach. This relative simplicity is mainly due to the fact, that this approach
models unstructured heterogeneity of disease risk and ignores structured heterogeneity.
Certainly the full Bayes1 5 approach offers the most flexible approach to the data, since any
aspect of structured and unstructured heterogeneity and trend can easily be modelled. Also
complete inference for any part of the model may be obtained from the posterior distribution.
A case study comparing empirical and full Bayesian methods for disease mapping may be
found in Schlattmann et al. (1999)1 6. However a rigorous comparison of these various
methods of disease mapping is called for.
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