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Abstract. Multivariate survival models are shown to be appropriate for the analysis of the genetic and the
environmental nature of a human life-span. Models which involve continuously distributed individual
frailty, play an important role in the genetic analysis of an individual's susceptibility to disease and death.
These models, however, are not appropriate for the detection of the effects of separate genes on survival.
For this purpose we developed a 'major gene' frailty model of multivariate survival and applied it to
simulated and real pedigree data. The analysis shows that this model can be used for the detection of the
presence of major genes in the population and for the evaluation of the effects of such genes on survival.

1. Introduction

One of the most important objectives in longevity studies is to identify genetic and
environmental influence on the life-span. Since Fisher's time, the analysis of variances
has been used for the determination of the heritability of some measurable metric traits.
The hypothesis about linearity and the independence of genetic and environmental
components of the trait is the basis for such an analysis.

Frailty modelling allows us to develop genetic analysis of traits, which are unobserved
or non-measured and which are related by non-linear dependence with observed traits.
The properties and experience of the application of univariate and bivariate frailty
models for different frailty distributions are discussed in a number of papers [1-6].

To make conclusions about the genetic nature of life-span, data on related individuals
are required. That is, we must deal with multivariate data using multivariate frailty
models. It turns out that multivariate frailty models with discretely distributed frailty
such as, for example, the 'major gene' frailty model, are often more convenient for the
analysis of family data than the frailty models with continuously distributed frailty. In so-
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called semiparametric form, the multivariate survival function can be expressed as a 
function of univariate survival functions for related individuals given their genotypes.

Genealogical data, including only the birth/death dates of related individuals, contain
information about the factors, characterising the global (social) and the local (familial)
environment that affect the life-span. This includes information about cohort, age of child
at mother's/father's death, reproductive age of the mother/father, mother's/father's life-
span, et cetera. These factors may be easily included in the multivariate survival function
as covariates in Cox 's regression model.

In this paper, we implement the multivariate frailty model with 'major gene' to French-
Canadian sibs born in Quebec between 1623 and 1705. In accordance with likelihood
ratio test, the optimal model with one beneficial allele in Hardy-Weinberg equilibrium
was chosen and estimates of univariate survival functions, allele frequency and
coefficients in Cox 's regression were calculated.

2. Material and method

From 13544 records, relating to French-Canadian children born in Quebec between
1623 and 1705, 2066 children from 793 families (1016 boys and 1050 girls) were chosen
with valid birth/death dates, who survived until 30 and overlived their parents. The
number of children in families fluctuates between 1 and 10 with a mean of 2.6. Using
original data, we built 7 covariates; ux = year of birth -1650, w2 = the age of a child at
father's death, u3- the age of a child at mother's death, u4- the reproductive age of a 
father, u5 - the reproductive age of a mother, u6- the life-span of a father and u7 - the
life-span of a mother. The second and the third covariates were categorized as a follows:
0 i f « 2 t 3 < 5, 1 i f 5 < u23 < 10, 2 i f 5< w 2 3 < 10, 3 i f 10 < u17> < 15, 4 - otherwise. The

fourth and the fifth were put to 0 i f u45 < 35 and 1 - otherwise. We assumed that the

sixth and the seventh covariates are 0 i f u6J < 75 and 1 otherwise.

In the model with linear influence of observed covariates on the risk of mortality, we
assume that an individual's instantaneous risk of death ju at age t, as measured by the
hazard of mortality, depends linearly on frailty Z , / / ( r ;^ )=Zexp(^ f « ) / / 0 (7 ) , where ju0(t) is
underlying hazard, J3 and u are vector-columns of Cox 's regression coefficients and
covariates, Z i s frailty. We assume, that Z = a{j= a^0 with probabilities p^p^ = 1,

ij=\,2 and the first allele in the index pair of the genotype (ij) is inherited from the
father and allele j is inherited from the mother, both independently. Parents are chosen
independently and all persons have the same fertility. In Hardy-Weinberg equilibrium
A j = Pi Pi- ^ frailty is conditioned by only one beneficial allele, then we have
a = a0(\-r)k in the case of k beneficial alleles in the genotype (fc=0,l,2), with
independent multiplicative action.

We can obtain the multivariate survival function in the form

$ ( * „ . . . , * . ) = £ / \ J ^ O * " ( * I ) - S . * - ( * J .



414 M o d e l l i n g of H e t e r o g e n e i t y

S 0 ( . ) = exp(-exp(^*t<)H(.)), # « = JMOWT, 
0

where we sum all possible combinations o f «-sibs genotypes ( k l 9 . . . 9 k n ) with

corresponding weights p k { K . Denote genotype (1,1) as 1, genotypes (1,2) and (2,1) as 2,

and genotype (2,2) as 3. Let a u = a X U 9 a u = a n , = a 2 l ^ a ^ = a ^ ,

P u = Pu,s>Pi,s = Pn,s +P2i,s>P3,s = P i 2 , s > s e x s = m f (males, females). It may be shown,

that in the case of autosomal locus, the multivariate survival functions may be rewritten

as a follows

1=1 /=i

+ 0 3 " A ^ 2 , / n [ Sj» ( X l ) +05So;» (xt)+05S0;» ( x , ) ] +
1=1

+o^"(ft,mp3,/+U/)fl[C(Ji)+V5'(*,)]+ (i)
�=i

/=l 1=1

This formula is an extension of the result derived for bivariate case in [7].
Marginal univariate survival functions were approximated with the formula

__i_

5 ( x ) = \ + S

2 { a ( x - x 0 ) + - c ( e " - e " ' ) ^ *, (2)

where a 9 b, c, s are unknown parameters.
Given unknown parameters we can substitute the univariate survival function (2) in the

left side of the equation (1) for n = l , zero covariates and find / / ( . ) . Then we can

calculate the multivariate survival function in the general case ri>\ and use it in the
likelihood estimation procedure.

In the case of non-linear influence of observed covariates on the risk o f mortality, we
introduce them in the univariate survival function as follows. We calculate the
intermediate mortality risk as a function on unknown parameters a , b9 c, s 

AO) = 7 7 

\ + s2\a(x-xQ) + -{ecx-ecx°)

Then using unknown parameters g and q we construct fictitious genotype frequencies

Si,s = g 2 > g 2 , s =2#0- g ) > g 3 j = (1 ~ S ) 2 > genotype risks qls = q\q2s = q,q3s = 1 and

find univariate survival function S 5 ( x ) = ^gksQxp(-qk s Q x p ( f ? u ) h s ( x ) ) , where
k

X

h s ( x ) = jfi(t)dt. We substitute this univariate survival function in the left side of the
jrO

equation (1) for «=1 and zero covariates and find H ( . ) . The multivariate survival
function we calculate from formula (1) with zero covariates.
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3. Results and discussions

The computer program for our model was written in M A T L A B and tested on simulated
data. Then it was used to estimate unknown parameters on the data of French-Canadians.
A l l estimates were obtained through a maximization of the likelihood function. The
likelihood ratio test was used to choose the set o f parameters. Since the models with
linear and non-linear influence of observed covariates on the risk of mortality are not
nested, we used A K A I K E criteria to make a choice between them. In accordance with
this criteria, we chose a non-linear model. A l l other choices were made using the
likelihood ratio test. In exception of the univariate fit parameters, there were no
significant differences between males and females. It was found that we can use the
model with one beneficial allele ' a ' in Hardy-Weinberg equilibrium with allele frequency
p = 0.406 and multiplicative action 1 - r = 0.485. We have found no cohort effect and
no effect of age of a child at parental death for males or females. Only two significant
coefficients o f Cox 's regression were found: J3A = fi5 = 0.188, fi6 = J37 = -0.451. That is,
we can find the beneficial allele in about 41% of the cases and the presence of each
beneficial allele in the genotype decreases the mortality risk by about 2.1 times (we have
set risk for the genotype with no beneficial alleles at a 0 =1). The greater a parent's life-
span is, the less a child's mortality risk w i l l be. On the contrary, the higher a 
reproductive age of a parent is, the greater the mortality risk is of an offspring. A l l these
dependencies are shown in Table 1. One can see from this table, that the life expectancy
at 30 for females is greater in all cases with the exception of the first two columns for the
worse genotype. Each beneficial allele in genotype increases the life expectancy by about
6-7 years. Father's (mother's) reproductive age after 35 decreases the life expectancy by
approximately 1.5 years. The parent's life-span of more than 75 increases the offspring's
longevity by about 3-4 years, compared to the case with a parent's life-span of less than
75.

Table 1. Life expectancy at age 30

Genotype Sex uA = u5 = 0 w4 ( ° r w 5 H uA = w5 = 0 
u6 = u7 = 0 u6 = w7 = 0 w6 ( o r " 7 H

A A male 30.77 29.33 34.25
female 30.72 29.09 34.59

a A or male 37.44 35.99 40.93
A a female 38.00 36.44 41.70
a a male 44.30 42.85 47.75

female 45.16 43.67 48.65

We can explain these results as a follows. Familial environment may have profound
effects not only on infant/childhood mortality, but also on adult mortality. The most
important factors of this environment are the parental longevity and the parental
reproduction age. The genetic material, which a parent transmits to its offspring might be
essentially damaged in the reproductive age after 35, which leads to a shorter child's
longevity. But the effect of the parental longevity is stronger. It does not mean that only
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genetic factors play the crucial role in child's longevity. Familial habits and the life-style
can affect the life-span to some degree as well . Further studies are needed to confirm and
explain these findings.
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