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Abstract

Medical decision-support systems in which uncertainty plays an essential role
are increasingly based on the formalism of probabilistic networks. Although this
formalism is very powerful, the construction of actual networks is not straightfor-
ward, and requires the availability of clearly structured medical domain models
as a starting point. In this paper it is argued that medical pathophysiological
knowledge constitutes a good start for the development of such models, even
though pathophysiological knowledge is semantically different from probabilistic
knowledge. Two models concerning anaemia, which are part of a broad system
covering the domain of anaemia, are discussed to illustrate the general approach.
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1 Introduction

The proper clinical management of diseases in patients requires the handling of large
quantities of uncertain medical knowledge. It is, therefore, not surprising that the
representation and manipulation of uncertainty has been one of the key issues in the
development of systems for medical decision support. Although a large number of
different approaches to the representation of uncertain medical knowledge has been
proposed in the past, it is increasingly believed by researchers that probability theory
offers one of the best foundations for building medical decision-support systems [3,
4]. A major advantage of the probabilistic approach is the seamless integration with
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conventional medical statistics, such as the possibility to use clinical data for assessing
uncertainty.

However, it is well-known that the construction of probabilistic models may impose
unrealistic demands with respect to the amount of patient data required, a problem
that is even more significant when dealing with rare disorders [3]. Such disorders are
usually sparsely represented in clinical databases. The general problem of probability
assessment may, in principle, be alleviated by adopting simplifying probabilistic inde-
pendence assumptions, thus relaxing the requirements with respect to the number of
patients needed. However, gathering relevant probabilistic independence information
from various sources is a problem in itself.

In this paper, we investigate whether pathophysiological knowledge, as found in the
medical literature, offers a sufficient basis to guide the development of probabilistic
models. Moreover, we show how separately developed disease models can be integrated
to obtain larger models. Pathophysiological models of two causes of anaemia, vitamin
B2 and folic acid deficiency, have been designed for this purpose. The formalism of
probabilistic networks (Bayesian networks) [2, 4] has been used for the representation
of the resulting probabilistic models.

The structure of this paper is as follows. In the following section, the problem of di-
agnosing anaemia in patients is briefly reviewed. In Section 3, the theory of probabilistic
networks is introduced, and models of anaemia are described from various perspectives.
In Section 4, the results of a preliminary evaluation of the resulting model are presented,
and finally in Section 5, we discuss future research.

2 Clinical diagnosis of disease resulting in anaemia

In the context of this research, anaemie was defined as a blood hemoglobin level below
the lower bound of the reference values, considered clinically relevant and prompting
further diagnostic procedures. This condition may give rise to a variety of general
symptoms and signs, like fatigue, paleness, palpitations, exercise-related shortness of
breath, and dizziness. Anaemia in general may be due to: (1) impaired production of
red blood cells, (2) loss of red blood cells, or (3) increased degradation of red blood cells.
The processes of production and degradation of red blood cells have been unravelled
the last century up to the molecular level. The same is true for many forms of anaemia
for which the pathophysiology is described quite detailed in the medical literature.

Examples of causes of anaemia are vitamin B, and folic acid deficiency. Vitamin
Bi2 and folic acid are both essential elements in DNA synthesis. Impaired DNA syn-
thesis results in disturbed, ineffective formation of large red blood cells with certain
features (megaloblastic cells), and in anaemia. Two diseases that may cause vitamin
B, deficiency are pernicious anaemia and atrophic gastritis.

Information from the patient history and physical examination, as well as results of
laboratory tests, and sometimes imaging techniques, are required for making a diagnosis
in the domain of anaemia. It is not always clear which tests are most informative for
effective diagnosis making; a decision-support system could be very helpful in this
respect.

3 A probabilistic model of anaemia

The central question was how pathophysiological knowledge from the literature could be
used as a basis for the representation of the uncertainty underlying diagnosis of anaemia.
This meant that we had to look for a mapping of pathophysiological knowledge to the
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formalism of probabilistic networks. The formalism of probabilistic networks is first
briefly introduced. Next, we discuss how designed pathophysiological models can be
mapped to probabilistic networks.

3.1 Probabilistic networks

A probabilistic network, also call Bayesian (belief) network, is a directed acyclic graph
G = (Vg, Ag), consisting of a set of vertices Vg = {V4,...,V,}, representing discrete
stochastic variables, and a set of arcs Ag C Vg x Vi, representing stochastic influences
among variables [3]. If a binary variable V assumes the value true, this is denoted by
v; if it assumes the value false, this is denoted by —v. Assigning a value to a variable
is called instantiating the variable.

On the set of vertices Vi is defined a joint probability distribution P that can be
factorised according to the topology of the graph as follows:

P(Vi,...,V,) = HP(%IW(Vi))

where 7(V;) denotes the set of parent vertices of vertex V;. As this equation indicates,
it is only necessary to represent local probabilistic information P(V;|7(V;)) to obtain
the joint probability distribution P, because the variable V; is assumed conditionally
independent of all predecessors with the exception of the parents, given the parents.

A probabilistic network not only offers a compact representation of uncertain knowl-
edge; it can also be viewed as an architecture for probabilistic inference. To determine
the effects of evidence on the probabilistic information, several algorithms have been
proposed that take a probabilistic network and a set of evidence E as input, and produce
as a result an updated joint probability distribution [2, 4]. It appears that the marginal
probability of a variable V; in the Boolean algebra that results when evidence E is
given, denoted by P’(V;), is exactly the same as the posterior probability distribution
given the evidence, i.e. P(V;|E): P'(V;) = P(Vi|E). When the variable V; represents
a diagnostic category, the probability P'(V;) represents the updated, marginal proba-
bility distribution after processing evidence. It can be compared to the prior marginal
probability P(V;), and this will indicate to what extent a diagnosis is (dis)confirmed by
this evidence E.

3.2 Design of pathophysiological models

Although the medical literature on anaemia includes elaborate descriptions of the mech-
anisms underlying diseases causing anaemia, no complete pathophysiological models are
available. Such models were designed from scratch, using directed acyclic graphs as the
main modelling tool; in the graphs, arcs had the meaning of cause-effect relationships,
and vertices were used to represent disease states, test results and disease categories.
A small part of a large pathophysiological model of vitamin B;, deficiency is shown
in Figure 1. Ellipses indicate test results, single boxes indicate states, and the double
box represents a diagnostic category. The resulting graphs may be seen as qualitative,
causal models of anaemia.

3.8 Mapping pathophysiological to probabilistic models

Although causal knowledge is not the same as probabilistic knowledge, notions of causal-
ity may guide the development of probabilistic models [1]. Let ¢; = e,...,cm = €
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Figure 1: Small part of a qualitative model of vitamin Bjy deficiency with disease category
pernicious anaemia.

represent multiple causes ¢y, ..., ¢, for a given effect e, such as ‘pernicious anaemia
= intrinsic factor deficiency’. The first step in the transformation concerns viewing a
cause c; and effect e as the stochastic variable V;, and V., respectively, with associated
value domain. For most variables, the adopted value domain was binary.

Since a causal relation = induces a stochastic dependency, causal direction can be
employed as a heuristic in the modelling process. The main difficulty in the modelling
process lies in the representation of possible interactions among the various causes;
for the situation described above we would have to assess the probability distribu-
tion P(Ve|V,,,..., V., ), which means assessing to what extent the causes ¢,...,¢n
augment or weaken each other. As an example, consider the interaction between the
causes intrinsic factor deficiency and reduced acid pepsin activity and the effect malab-
sorption vit. Bys. These variables, which are conditionally independent given pernicious
anaemia, augment each other. In this way, the design of local interactions was guided
by knowledge of pathophysiological interactions.

Besides such local interactions, which model the combined (probabilistic) effect of
several causes, there are also interactions among causes which arise when combining sep-
arate disease models. Medical experts tend to devide knowledge concerning a medical
domain into subdomains with relatively little overlap. When each subdomain is rep-
resented as a probabilistic network, the resulting combined model will have a modular
structure, with some shared variables. The connection between the modules is accom-
plished by different types of shared variables. The possible situations are schemati-
cally depicted in Figure 2, where two modules describing separate disease mechanisms
are shown. Each module contains one or more diagnostic categories, like pernicious
aneemia. Note that we do not assume disorders to be mutually exclusive, because they
have not been represented as values of a single stochastic variable.

The vertex with label C conditions the modules on particular evidence; in medicine,
usually evidence concerning age or sex. The amount of probabilistic information to
be specified is limited, because only prior probabilistic information P(C') has to be
specified. Propagation of this evidence through the modules can be done efficiently, if
the module content is not too complex (i.e. the module graph is sparse). Note that
the modules A and B can be developed separately, provided that the variable C is
always instantiated, and that the variables T, G and all variables within the common
mechanism are not instantiated. Under these conditions, the modules are independent.
After separate constructions, the modules can be put together.

A major problem in putting modules together lies in the exponential number of



658 W.J. ter Burg et al. / A Diagnostic Advice System

module A module B

A

common
mechanism

Figure 2: Modularisation of anaemia domain.

probabilities that must be specified for vertices like T and G. Vertex T represent a test
result; since many tests are shared by different diseases causing anaemia, there may be
many incoming arcs to 7. By using a logical OR operator for combining probabilistic
influence, a quite compact representation can be obtained. The resulting probabilistic
behaviour is called a noisy-OR gate [4]. A noisy-OR gate saves in the number of
probabilities to be specified, which is linear in the number of incoming arcs instead of
exponential, and also in the time complexity of probabilistic inference.

The variable G is as T a shared variable, but since this variable concerns a common
mechanism, and only few mechanisms among various modules are identical, the number
of incoming arcs will not be very large. Rather, there will be a number of different
common mechanisms shared by various modules, and there will be no need for use of
the noisy-OR gate here.

The module structure shown in Figure 2 actually reflects the structure of the proba-
bilistic model of two causes of anaemia, vitamin B, and folic acid deficiency. Variables
T are for example platelets and leucocytes counts; the variable G in this case stands for
megaloblastic erythropoiesis, i.e. the production of megaloblastic cells, which occurs in
both deficiencies.

4 FEvaluation

Above, we have described the process of designing a probabilistic model, based on
pathophysiological, qualitative knowledge from the medical literature. The constructed
qualitative models provide strong support for the correctness of the structure of the
resulting network model. However, by carrying out simulation experiments with pa-
tient cases, we have also investigated whether the actual probabilistic influences were
as expected. Moreover, the posterior probabilities have been compared to frequency
information (such as frequency of positive and negative test results, i.e. sensitivity and
specificity, for certain diseases) from the literature. Based on the results of these ex-
periments, the probabilistic model was slightly adjusted.

Furthermore, we have done a number of experiments with patient data, where in
particular the effects of the systematic gathering of evidence, as is common practice in
medicine, has been studied. The results for two patients are shown in Table 1. As'can
be seen, during three subsequent visits of a patient to the clinic, additional test results
become available. For patient A the evidence slowly moves in the direction of pernicious
anaemia when more specific information becomes available. In patient B, gastroscopy
is the final test demonstrating atrophic gastritis. The results for both patients illustrate
the capability of the system to guide the medical decision-making process.
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Table 1: Results of the probabilistic model for two patients.
Patient A | Patient B |
Visit 1 Visit 1
Hb 7.8 decreased Hb 7.2  decreased
MCV 118 increased MCV 104 increased
platelets 160 mnormal reticulocytes 0.4 % increased
leukocytes 4.1 normal gastrointestinal present,
symptoms
neuropsychological present
symptoms
P(pernicious anaemia) 0.01 0.04
P(atrophic gastritis) 0.01 0.03
Visit 2 Visit 2
haptoglobin < 0.1 decreased pentagastrin test positive
LDH 667 increased serum gastrin increased
serum folate 21.1 normal serum folate 17  normal
serum vit. B1o 59 decreased serum vit. Bqs 72  decreased
P(pernicious anaemia) 0.04 0.07
P(atrophic gastritis) 0.03 0.07
Visit 8 Visit 3
TSH 1.4 normal gastroscopy atrophic
parietal cells antibodies | +++ yes gastritis
intrinsic factor antibod. + yes
P(pernicious anaemia) 0.82 0.00
P(atrophic gastritis) 0.01 1.00

5 Discussion

In this paper, we have shown that pathophysiological knowledge from the literature

can be used to support the process of making a medical diagnosis.

We have also

discussed how separate models of subdomains can be integrated to obtain larger models.
Obviously, this approach will only work when elaborate pathophysiological descriptions
are available in the literature. Clearly, this does not hold for medicine in general, but
there are many medical domains where this approach will work.
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