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Abstract 

E s t i m a t i n g d e m e n t i a s e v e r i t y u s i n g t h e C l i n i c a l D e m e n t i a Rat­
i n g (CDR) Scale is a t w o - s t a g e process t h a t c u r r e n t l y is costly 
a n d i m p r a c t i c a l i n c o m m u n i t y s e t t i n g s , a n d a t best has a n i n t e r -
r a t e r r e l i a b i l i t y of 8 0 % . Because s t a g i n g of d e m e n t i a s e v e r i t y is 
e c o n o m i c a l l y a n d c l i n i c a l l y i m p o r t a n t , we used M a c h i n e L e a r n ­
i n g (ML) a l g o r i t h m s w i t h a n E l e c t r o n i c M e d i c a l R e c o r d (EMR) 
t o identify s i m p l e r models f o r e s t i m a t i n g t o t a l CDR scores. 
C o m p a r e d t o a g o l d s t a n d a r d , w h i c h r e q u i r e d 3 4 a t t r i b u t e s t o 
d e r i v e t o t a l C D R scores, ML a l g o r i t h m s identified models w i t h 
as few as seven a t t r i b u t e s . The c l a s s i f i c a t i o n a c c u r a c y v a r i e d 
w i t h t h e a l g o r i t h m used w i t h n a i v e Bayes g i v i n g t h e h i g h e s t . 
(76%) The m i l d l y demented s e v e r i t y class was t h e only one 
w i t h significantly r e d u c e d a c c u r a c y (59%). If one g r o u p s t h e 
s e v e r i t y classes i n t o n o r m a l , v e r y m i l d - t o - m i l d l y demented, a n d 
m o d e r a t e - t o - s e v e r e l y demented, then classification a c c u r a c i e s 
a r e c l i n i c a l l y a c c e p t a b l e (85%). These s i m p l e models c a n be 
used i n c o m m u n i t y settings w h e r e it i s c u r r e n t l y n o t p o s s i b l e t o 
e s t i m a t e d e m e n t i a s e v e r i t y due t o t i m e a n d cost c o n s t r a i n t s . 
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Introduction 

Dementia due to Alzheimer's disease, and other dementias con­
stitute the fourth most common disorder among the elderly, and 
has a total cost in the USA of $100 billion annually. Proper 
treatment can reduce this cost by up to 25%. Early detection of 
dementia and correct staging of the severity of dementia is criti­
cal to selecting the optimal treatment and saving money. We 
have previously used machine learning (ML) algorithms to 
improve early detection of dementia by developing a screening 
test that can be given at home with potentially 94% sensitivity 
[1]. 
The objective of the present study is to use M L algorithms to 
make the most widely used scale for staging dementia clinically 
practical while preserving accuracy. This scale, the Clinical 
Dementia Rating Scale [2], in its present mode of implementa­
tion, takes 30 minutes and requires trained interviewers, making 
it unlikely to be widely adopted in general clinical practice. 

Given an inter-rater reliability of approximately 80% [3,4], it 
may be possible to eliminate the use of trained interviewers, 
thereby making the use of the CDR in clinical settings practical. 
Identifying the key information required to arrive at a total CDR 
score (rating of dementia severity) and constructing a set of 
rules that can easily be used to calculate the total CDR score by 
non-professional personnel is a province for M L research. Pre­
vious research on the calculation of the total CDR score has 
shown that improved rule sets can be achieved [5,6]. However, 
there has been no research to examine the information required 
to achieve a reasonably accurate total CDR score. Given the 
current reliability of 80% using a clinically costly method, we 
consider the term, "reasonably accurate", to be about 80% or 
higher. In this first phase of our M L research on the CDR scale, 
we examine the information needed to compute the total CDR 
score with an accuracy of 80% or higher. Our focus in this 
phase is to generate and evaluate simple models to compute the 
CDR score. These models offer many advantages. For exam­
ple, they are very tolerant to missing values, as the models 
encompass only a small number of attributes. By generating 
competing models, model applicability increases even when 
there are many missing attributes. Simpler models are also easy 
to use in a community setting. 

In the second phase of this research, we will examine the infor­
mation needed to compute the six subscale scores of the CDR, 
then apply an algorithm we have developed to unambiguously 
compute the total CDR score from these subscale scores. The 
results of these two approaches will be compared; the one 
which gives the best combination of clinical practicality and 
accuracy will be implemented in a high volume dementia clinic 
that uses medical informatics and M L algorithms to streamline 
patient care. 

Materials and Methods 

The E M R of the UCI Dementia Database 
The EMR of the UCI Alzheimer's Disease Research Center 
(ADRC) uses a Sybase relational database with a graphical 
front-end for direct data entry that can be accessed remotely 
from any platform (MAC, PC, or UNIX). Standardized coding 
includes the International Classification of Diseases (ICD9), 
and the National Drug Codes (NDC). The structure of the med-

472 



W.R. 

ical assessment screens is generic and follows DeGowin and 
Degowin's Bedside D i a g n o s t i c E x a m i n a t i o n [7]. The database 
currently holds more than 2,000 patient-visits (patients are lon­
gitudinally followed up) and collects more than 1,200 fields per 
patient-visit. The data used for the present analysis were gener­
ated using standard SQL scripts. 

The Clinical Dementia Rating Scale of dementia severity 
Diagnosing the syndrome of dementia requires the presence of 
multiple cognitive impairments plus functional impairments 
resulting from the cognitive impairments in the absence of 
delirium or other non-organic etiologies such as major depres­
sion. The CDR score determines whether a person is demented 
as well as the severity of the dementia. The total CDR dementia 
severity score is derived by evaluating the patient for memory, 
the primary subscale, and five secondary subscales (orientation, 
judgment and problem solving, community affairs, home and 
hobbies, and personal care). Each subscale is rated using an 
ordinal scale (none=0, questionable deficit or very mild demen-
tia=0.5, mild=l, moderate=2, and severe=3). The rater then 
applies a set of rules to the six subscale scores to obtain the total 
CDR score, which uses the same severity scale as the subscales. 

Development of the gold standard for the total CDR score 
Because these rules were confusing to use, even for dementia 
specialists, we spent two years perfecting an algorithm that 
computed the total CDR score from the six CDR subscale 
scores. To do this, a staff neurologist and neuropsychologist 
independently rated the total and subscale CDR scores for each 
patient seen at the UCI ADRC. To perfect the computer algo­
rithm for computing total CDR score, we first needed to trans­
late the criteria for assigning CDR subscale scores into a 
computer program. We did this by selecting attributes from the 
EMR that measured the subscale categories, then by deriving 
rules that assigned a score to each of the CDR subscales based 
on these attribute values. We then compared the computer-
derived CDR subscale scores of each patient to those rated by 
the dementia experts. Differences between expert and compu­
ter-derived CDR subscale scores were resolved by group con­
sensus. When it was clear that the CDR subscale score assigned 
by the program did not apply the subscale scoring criteria as 
logically as the experts, we modified the program to rectify this 
problem. However, after rating about 100 patients, the examin­
ers found that, when their CDR subscale scores differed from 
the computer-derived scores, the algorithm had applied the sub-
scale criteria more logically and appropriately than they had. 
After examining 302 patients in this fashion, no further modifi­
cations of the computer-derived CDR subscale scores were 
deemed necessary by the professional staff. 

In conjunction with this program, the published rules for deriv­
ing total CDR score were implemented after eliminating logical 
errors in those rules [6]. We used a similar process of consensus 
and revision to rectify any differences between total CDR 
scores assigned by experts and the algorithm. The programmed 
algorithms for total and subscale CDR scores were then used to 
compute the corresponding scores for each patient in the data­
base. If any of the CDR subscale scores could not be computed 
due to missing attributes, then the total CDR score was not 
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computed. This process produced a gold standard for the total 
and subscale CDR scores with 100% reliability. To avoid sam­
ple bias due to repeated measures, we restricted the sample 
applied to M L analysis to the first visits of patients in the data­
base; 765 patients had a first visit with sufficient data to com­
pute their total CDR scores. 

Attributes used in the ML analysis 
The attributes used in the M L analysis consisted of educational 
level, temporal and spatial orientation from the Mini-Mental 
Status Exam (MMSE) [8], short term verbal memory from the 
M M S E and the CERAD D E L A Y E D R E C A L L TEST [9], short 
term visual memory from the Wechsler Memory Scale for Vis­
ual Reproductions [10], judgment and reasoning from the 
WAIS-R Information and Similarities subtests [11] and from 
the clinician's estimation of the patient's insight, plus activities 
of daily living in the areas of job, hobbies, community activi­
ties, household activities, finances, and personal care. These 
were the same attributes that a computer algorithm used to 
derive the CDR subscale scores that were then used to derive 
the gold standard total CDR score as previously described. 

Table I - Sample C h a r a c t e r i s t i c s 

Attributes Dementia Staging (CDR total score) 

Normal 
(0) 
n=77 

Very 
Mi ld (0.5 
n=194 

Mild (1) 
n=193 

Moderate-
Severe (2,3) 
n=301 

Mean Age 
in years 

65.1 69.6 74.2 75.8 

% Female 61.8 49.7 56.0 67.4 

Mean 
Years 
Education 

15.3 14.9 13.5 12.3 

Sample Description 
The total sample consisted of the initial visits of 765 subjects 
ranging from normal to severely demented. Table 1 gives their 
breakdown according to age, sex, education and dementia 
severity. A l l subjects were seen at the University of California, 
Irvine ADRC. Patients received a complete diagnostic evalua­
tion consisting of patient and caregiver interviews, general 
physical and neurological exam, two hours of cognitive testing 
including the CERAD [9] neuropsychological battery and other 
selected tests, routine laboratory testing for memory loss, and 
magnetic resonance neuroimaging with or without single pho­
ton emission with computed tomography. Approximately 50% 
of the subjects met CERAD criteria for probable or possible 
Alzheimer's disease [12], 20% met the Alzheimer's Disease 
Diagnostic and Treatment Center criteria for vascular dementia 
[13], 7% met diagnostic criteria for Lewy Body dementia, 15% 
had multiple etiologies, and the remaining 8% were due to a 
variety of causes. Control subjects were either community vol­
unteers or unaffected spouses of patients, and received an 
abbreviated, 45 minute version of the patient cognitive battery, 
which consisted of the CERAD plus measures of activities of 
daily living. They did not receive a medical exam, laboratory 
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testing or neuroimaging unless cognitive or functional testing 
suggested an impairment. Dementia severity using the total 
CDR score was assigned to each subject as previously 
described. 

ML methods 
Specific algorithms. We concentrated on decision tree learners 
(C4.5, CART), rule learners (C4.5Rules) and the naive Baye-
sian classifier. Decision trees and rules generate clear descrip­
tions of how the M L method arrives at a particular 
classification. The Naive Bayesian classifier was included for 
comparison purposes. MLC++ (Machine Learning in C++) 
[14] is a software package developed at Stanford University 
which implements commonly used machine learning algo­
rithms. It also provides standardized methods of running exper­
iments using these algorithms. C4.5 [15] is a decision tree 
generator and C4.5rules produce rules of the form, if then from 
the decision tree. Naive Bayes [16] is a classifier based on 
Bayes Rule. Even though it makes the assumption that the 
attributes are conditionally independent of each other given the 
class, it is a robust classifier and serves as a good comparison in 
terms of accuracy for evaluating other algorithms. CART [17] 
is a classifier which uses a tree-growing algorithm that mini­
mizes the standard error of the classification accuracy based on 
a particular tree-growing method applied to a series of training 
subsamples. We used Caruana and Buntine's implementation of 
CART (the "IND" package), and ran CART twenty times on 
randomly selected 2/3 training sets and 1/3 testing sets. For 
each training set, CART built a classification tree where the size 
of the tree was chosen based on cross-validation accuracy on 
the training set. The test accuracy of the chosen tree was then 
evaluated on the unseen test set. 

Treatment of missing data. We used each M L algorithm's par­
ticular approach for handling missing data. In C4.5 missing 
attributes are assigned to both branches of the decision node, 
and the average of the classification accuracy is used for these 
cases. Therefore, it attempts to learn a set of rules that tolerates 
missing values in some variables. In the Naive Bayesian Clas­
sifier, missing values are ignored in the estimation of probabili­
ties, while CART uses surrogate tests for missing values. 
Generation of Training and Testing Samples and analysis. 
The complete sample was used to randomly assign subjects to 
either the training or testing set in a 2/3 to 1/3 ratio. This was 
done 20 times with the complete sample of subjects to generate 
20 pairs of training and testing sets. The M L algorithms were 
trained on the training set and the resulting decision model then 
classified the unseen testing set. The classification accuracy of 
each M L algorithm is hence the mean of the accuracies obtained 
for the 20 runs of the testing set. 

T a b l e 2 - T o t a l A c c u r a c y of ML a l g o r i t h m s 

Algorithm Number of runs Raw accuracy 

C4.5 20 68.60 

C4.5Rules 20 63.92 

naive Bayes 20 76.47 

CART 20 68.37 

Results 

Using M L algorithms to estimate the total CDR score from the 
pool of attributes used to derive the CDR subscale scores gave 
accuracies ranging from 64%, with C4.5Rules, to 76% with 
Naive Bayes (Table 2). These classification accuracies are 
somewhat misleading because they are due primarily to poor 
classification of the mildly demented subjects (CDR=1). 
Table 3 shows the classification accuracies for each CDR 
dementia severity class based on the results of the Naive Bayes 
M L algorithm. A l l CDR classes have clinically acceptable 
accuracies except the mildly demented subjects (CDR=1), 
which are most often misclassifled as very mildly demented. 

Table 3 - N a i v e Bayes confusion m a t r i x 

True 
CDR 

Estimated C D R Class by Naive 
Bayes 

% Class 
Accuracy 

Normal Very 
Mi ld 

Mi ld Mod-
Severe 

Normal 19 5 0 0 79% 

Very 
Mild 

0 58 6 2 88% 

Mild 0 17 35 8 58% 

Mod-
Severe 

0 4 18 83 79% 

To make the M L results more clinically useful, the very mild 
and mild dementia CDR categories could be grouped in a man­
ner similar to the moderate and severe dementia CDR catego­
ries. Such a classification scheme is still useful because the 
most important clinical distinctions are between normal aging, 
very mild to mild dementia, and moderate to severe dementia. 
When grouped in this manner, Table 4 shows that the classifica­
tion accuracies are quite acceptable. The very mild-to-mild 
dementia class accuracy is now 92%. 
Clinical settings that cannot use a computer algorithm would 
not be able to use the results obtained from Naive Bayes 
because it does not provide easily understandable decision 
rules. Furthermore, all the attributes used by Naive Bayes need 
to be used to compute the dementia severity class for each 
patient. In contrast, a tree or rule-based M L algorithm can clas­
sify with a subset of the attributes represented in the tree or rule 
set for individual patients. This feature makes it very clinically 
attractive. For example, in Figure 1, i f a patient's score for ori­
entation to time and place using the items from the M M S E is 
less than 4.5, no other attributes need to be collected*—the 
patient is classified as moderate to severely demented. We 
elected to examine the decision tree from CART over C4.5 
because, although C4.5 and CART gave similar classification 
accuracies, the decision tree produced by CART were more 
compact than C4.5. A neurologist practicing in the community 
inspected the decision rule sets generated by the 20 CART runs, 
then ranked them by giving higher priority to those which used 
inexpensive information at the top of the tree (root) and to those 
which used the fewest costly tests. Of the twenty decision trees, 
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one tree had clear practical advantages over the rest (Figure 1). 
It only used two relatively costly attributes (the CERAD 10 
item Delayed Free Recall and the WAIS-R Similarities tests) 
compared to three or more for all the other trees. It also used 
these attributes only in the subtree pertaining to less demented 
subjects (those scoring more than 12 points on the orientation 
questions of the MMSE), such that these more expensive tests 
could be restricted to higher functioning subjects. Furthermore, 
the key attributes, mmse orientation to time and place, CERAD 
Delayed Recall, and WAIS R Similarities, appeared in 17, 19, 
and 20 of the 20 decision trees generated by CART; mmse ori­
entation and CERAD Delayed Recall were the root node for all 
but three trees. This means that the generated tree models are 
reasonably stable. 

T a b l e 4 - N a i v e Bayes confusion m a t r i x r e c a l c u l a t e d 

True 
CDR 

Estimated C D R Class by 
Naive Bayes 

% Class 
Accuracy 

Normal Very 
Mi ld -
Mi ld 

Mod-
Severe 

Total 

Normal 19 5 0 24 79% 

Very 
Mild-
Mild 

0 116 10 126 92% 

Mod-
Severe 

0 22 83 105 79% 

Total 19 143 93 255 85% 

Discussion 

Comparison to the gold standard total CDR dementia sever­
ity score Since the M L algorithms did not perform as well as 
that derived by the human experts, why bother considering the 
M L algorithms? First, the human experts used 34 attributes to 
estimate the CDR subscale scores, which were then used with a 
published algorithm to estimate the total CDR score. Only 
about 50%) of the initial patient visits (765 out of approximately 
1,500) had all these attributes. In contrast, the tree selected by 
the community neurologist required only seven attributes to 
estimate the total CDR score with accuracy at or above 80%, if 
one groups the very mild and mildly demented CDR classes. 
This reduction in number of attributes would considerably 
increase the proportion of cases for which a total CDR score 
could be derived. The M L algorithms therefore increase by a 
wide margin the proportion of cases that can be assessed for 
dementia severity in community settings, while also reducing 
the time and expense required for obtaining this information. 

Why did the M L algorithms perform at a lower level than an 
algorithm derived by human experts using a trial-and-error 
approach with the same attributes? One reason is that the human 
experts used these attributes to compute the CDR subscale 
scores, not the total CDR score. Our next set of experiments 

F i g u r e 1 - The c l i n i c a l l y most p a r s i m o n i o u s C A R T m o d e l f o r 
e s t i m a t i n g d e m e n t i a s e v e r i t y i n c o m m u n i t y p r a c t i c e . 

mmse time&place orientation < 12.5: 
| mmse time orientation < 4.5: moderate-to-severe 
| mmse time orientation >= 4.5: 
| | staying alone < 1.5: 
| | | making meals in 2,8,3,1: mild 
| | | making meals in 0: very mild 
| | staying alone >= 1.5: moderate-to-severe 
mmse time&place orientation >= 12.5: 
| CERAD delayed recall < 5.5: 
| | CERAD delayed recall < 0.5: moderate-to-severe 
| | CERAD delayed recall >= 0.5: 
| | | writing < 1.5: very mild 
| | | writing >= 1.5: mild 
| CERAD delayed recall >= 5.5: 
| | WAIS R Similarities < 11.5: very mild 
| | WAIS R Similarities >= 11.5: 
| | | housekeeping in 1,8,3,2: very mild 
| | | housekeeping in 0: normal aging 

will be to examine the classification accuracies when M L algo­
rithms use these attributes to estimate the CDR subscale scores 
directly. Once this is accomplished, the published algorithm for 
computing the total CDR score can be used. The difference in 
classification accuracies obtained by the M L algorithms when 
used directly vs. indirectly (via CDR subscale score estimation), 
in estimating total CDR score from the same attributes, can then 
be compared, and the best results implemented in our high vol­
ume dementia clinic. 
How useful are these results? When the CDR severity catego­
ries are grouped into normal, very mild-to-mild, and moderate-
to-severe classes, the classification accuracies parallel that 
obtained from human experts using an extensive interviewing 
process. For many clinical practice settings, this coarser classi­
fication scheme is adequate, and still makes the important dis­
tinctions between normal and demented, and between mild and 
more-than-mild dementia. Without the data reduction provided 
by M L algorithms, it is likely that community clinicians would 
estimate dementia severity (if they do it at all) much worse than 
the 80%) inter-rater reliability obtained by experts. The M L 
algorithms therefore provide a substantive contribution to the 
practical estimation of dementia severity in community settings. 
It is clear from our and others work that M L algorithms can 
optimize clinical practice guidelines and streamline costs of 
health care delivery. However, the ability for M L algorithms to 
do this is frequently constrained by an insufficient number of 
exemplars, particularly when samples are subdivided to address 
questions more precisely. This problem emphasizes the impor­
tance of developing facile, structured data collection methods 
for clinical medicine so that the true potential of Machine 
Learning for intelligent decision support is not held back by 
insufficient data. 
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Conclusion 

This initial set of experiments in estimating the Clinical Demen­
tia Rating severity score shows that Machine Learning algo­
rithms achieved a substantial reduction in information and cost 
of information with only a minimal reduction in accuracy. The 
M L methods generated very simple models for assessing 
dementia severity, which could be employed in community set­
tings with considerable ease. Further experiments will be 
directed at estimating the subscale scores of the CDR to deter­
mine whether accuracy can be further improved. 
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