
MEDINFO 9 8
B . C e s n i k et a l . (Eds)
A m s t e r d a m : I O S Press
© 1 9 9 8 IMIA. A l l r i g h t s r e s e r v e d

Middleware for Healthcare Information Systems

Stephane Spahnia, Jean-Raoul Scherrer3, Dominique Sauquetb, Pier-Angelo Sottilec

a D i v i s i o n d ' I n f o r m a t i q u e M e d i c a l e , H o p i t a l C a n t o n a l U n i v e r s i t a i r e de Geneve Geneve, Suisse.
b B r o u s s a i s University H o s p i t a l , P a r i s , F r a n c e

C G E S I / G e s t i o n e Sistemiper I ' l n f o r m a t i c a SRL, R o m a , I t a l y

Abstract

M i d d l e w a r e is now a c o m m o n l y used e x p r e s s i o n a n d a n y o n e
b u i l d i n g d i s t r i b u t e d a p p l i c a t i o n s is referring t o " m i d d l e w a r e
services". Nevertheless t h i s n o t i o n l a c k s of s o u n d t h e o r e t i c a l

f o u n d a t i o n . This p a p e r t r i e s t o clarify t h e r e l a t i o n s h i p between
t h e components of d i s t r i b u t e d e n v i r o n m e n t s , e s p e c i a l l y i n
h e a l t h c a r e , a n d t o e s t a b l i s h some classification a i m i n g a t g a i n ­
i n g a c o m m o n u n d e r s t a n d i n g of t h e f u n c t i o n a l i t i e s a n d i n t e r d e -

pendency of t h e e x i s t i n g modules of d i s t r i b u t e d e n v i r o n m e n t s .

Keywords

Middleware; Healthcare Information Systems ; OSI

Introduction
As stated by P. A . Bernstein in A C M communication [1], the
computing facilities of large enterprises are evolving into a util­
ity. This is especially true for Healthcare Information Systems
(HIS), which should become far more portable for one site to
another in order to . aiit development and maintenance costs.
Each application terminal (e.g. a PC, a workstation) is a desktop
appliance that connects to the utility, the utility itself being an
enterprise-wide network of information services including
applications and databases. Servers on the local area network
support applications such as electronic mail, board minutes,
document preparation, and printing as well as access to DBS
(Database System) or transaction processing applications. Some
servers are gateways to services and could offer electronic doc­
ument interchange between institutions or equivalent.

To help solve users heterogeneity and distribution problems,
information utilities that have standard programming interfaces
and services are called middleware (MW) services, because
they sit in above the operating system and networking software
and below specific applications. For many new applications,
middleware components are becoming more important than the
underlying OS and networking services on which the applica­
tion services formerly depend. As an example, new applications
often depend more on a SQL DB (Database Manager) rather
than on an OS's record oriented file system and more on an RPC
(Remote Procedure Call) mechanism rather than on transport -
label messaging.

A "middleware service" is a general purpose service that sits
between "platforms" and applications. A "platform" here is a
set of low level services and processing elements - defined by a
processor architecture and an operating system's API (Applica­
tion Programme Interface). It therefore implements functional­
ity of general interest for complex distributed systems, and in
particular for healthcare distributed systems. '
However the present situation is messy! There are as many dif­
ferent ways of doing things as there are implementations of dis­
tributed information systems using varied pathways, e.g. as
indicated in Figure 1. It is thus highly desirable to consensually
restrict the commendable pathways to only the most appropriate
ones deduced from the critical analysis of the present situation.

The concept of the "Middleware" approach

The design concept
Middleware is quite a fuzzy notion, often used without any ref­
erence to a sound theoretical foundation. However, when build­
ing structured applications, distributed ones in particular, it is
difficult not to deal with this middleware approach. Although
the literature about middleware is relatively scarce [1-2], sev­
eral common characteristics may be identified straight away:

• The middleware is at the application service level: then it
implements services for high level applications. The com­
mon functionalities are grouped into a "layer" called mid­
dleware, enabling the developers to concentrate on the ap­
plication's specific concerns.

• The middleware is strongly connected to distributed sys­
tems: then it addresses essentially complex applications
spread over many systems, i.e. used in a distributed envi­
ronment.

• The middleware runs on different platforms: then the
middleware evidently has to be available on heterogene­
ous platforms in order to support independence between
the environment and the applications. The most common­
ly used environment for distributed applications is based
on client/server approach, where the servers are typically
Unix or Windows NT™ servers and clients PCs, Macin­
toshes or even Unix workstations in the 3-tier architecture
[3]-

212

213
S. Spahni

• The middleware takes advantage of bitways or DBMS
services: it relies on lower level bitways services for gain­
ing access to the network, and possibly uses DBMS serv­
ices for getting access to database systems.

The middleware aims therefore at reducing the impact of prob­
lems related to the development of complex applications within
heterogeneous environments, offering high level standardized
services hiding most of this heterogeneity. Indeed the concept
itself of middleware has its origin in the development of distrib­
uted systems, where the applications run on a sort of "cloud of
systems" and are therefore clients of good and easy-to-use
information exchange facilities implementing the required com­
munication between processes.

How standardized functionalities are implemented into the
"middleware"
If, for instance, portability, interoperability and wide availabil­
ity terms are related to standards, then it appears that middle­
ware is quite often subject to standardization.
In general, two categories of standards are identified: de facto
standards and expressed standards. De facto standards are
mainly issued by software companies while expressed ones are
issued by standardization bodies like the International organiza­
tion for standardization (ISO), the American National Standard
Industry (ANSI), the International Union of Telecommunica­
tions (ITU), and others. The main difference between the two
categories comes from the way they are promoted. Expressed
standards are defined by groups of people, and when a consen­
sus is met, the standard is published and implementations are
then expected to be achieved! De facto standards are based on
already implemented products, widely accepted and with
already a certain level of robustness and of performance. When
the product becomes widely enough available and used, it
becomes a standard!

Middleware standards can be found in both categories, although
most of them are de facto standards as it will be noticed in the
next chapter. But there is quite a significant amount of work
being done for example in the medical field for establishing
expressed standards.

Principal trends in the development of MW

Middleware is being developed since several years: some com­
mon characteristics can therefore already be identified for
establishing a classification of the various trends in the develop­
ments. One of the most significant is the level of abstraction of
the services provided by the middleware. Three classes or gen­
erations can already be defined:

First generation: Elementary Middleware
The first generation of middleware dates from the mid-eighties,
when distributed systems really became "the" way for replacing
ageing mainframes. Basic tools, called "Remote Procedure
Call" (RPC), were developed for enabling applications to dele­
gate part of their work to other systems. This quite rudimentary
way of delegating tasks implies that the remote machine knows
some pre-defined functions and is able to process requests to

these functions with parameter values received from the net­
work, the results being sent back the same way. It has to be
noted that although the concept of RPC is widely accepted,
there are different and generally incompatible implementations
(e.g. Sun RPC, DCE RPC (Distributed Computing Environ­
ment), OSI (Open Systems Interconnection) RPC, etc.).
Extensions to the RPCs rapidly became available in order to
govern transparent access to distributed databases. "Transpar­
ency" refers here both to the location of the database when net­
worked databases are being accessed and to the real database
manager being used (e.g. Ingres, Oracle, DB2, etc.), "folklore"
into which we are reluctant to enter since it is against the con­
cept of openness! The SQL language is an example of a middle­
ware-level interface enabling this independence against
product-specific query languages.

Second generation: Middleware as a support of distribution
With the development of more and more complex and varied
distributed systems came a growing demand for extended serv­
ices handling the distribution (dynamic or not) of tasks, for
localizing resources over the network, or for managing share
common resources. This resulted in the development of m i d d l e ­
w a r e e n v i r o n m e n t s , from which one may mention DCE, P V M
(Parallel Virtual Machine), or TUXEDO®.
Although the complexity and the services of these environments
differ with each other, they all offer various more advanced
services compared to those offered by the middleware of the
first generation. DCE, for example, offers in addition to basic
RPC time synchronization between systems, resources sharing
and a directory service.

These tools have now been enhanced in order to take into
account the growing use of object-oriented concepts. This led to
expressed standards on object technology (e.g. CORBA, the
Common Object Request Broker Architecture) [4] and to object
oriented environments like HELIOS [5], Microsoft® OLE
(Object Linking and Embedding) or ORBIX-TUXEDO® [6] to
mention only some of the main ones.
The second generation of middleware, as well as the first,
enhances the portability of applications over different plat­
forms. However, the reusability of an application in another
environment is still not easy to achieve as many specific serv­
ices depend on the type of organizational environment in use.
Healthcare information systems are a good example of one type
of such organisational environments. This concern led to the
latest generation of middleware, tailored to specific domains of
activity.

Third generation: Domain-specific Middleware
The middleware has to provide generic services to applications,
which does not mean that the applications have to be generic!
We can therefore classify under the name "third generation of
middleware" what is being developed now: middlewares tai­
lored to specific environments. The goal of these environments
is to offer generic services in one specific domain of activity,
grouping the domain-specific tasks and information common to
all applications into the middleware layer. Through the identifi­
cation and isolation of high level but domain-specific tasks, a
higher level of portability can be reached, and applications can

2 1 4
Infrastructures f o r t h e t h i r d m i l l e n i u m

lHlSAp-|pSAp^| ImSAp-l
mm in sin

1 HL-7 1

Helios

Helios

jHISAp-l

DHE

— — — — ^ — —

I I [DOME] lORBIXl I HELIOS |

(CORBA)

1 DCE j 1 PVM | [TUXE-

DCE/

Di-

Di-

NICE

F A
Sun/

k(JP4) K T C P

[HlSAp-1 -§
•9

HL-7

OLE I

CD

Acronyms:

COM: Component Object Model
CORBA: Common Object Request Broker
Architecture
DHE: Distributed Healthcare Environment
Diogene 2: Distributed HIS from Geneva's
hospitals
DOME: Distributed Object Management En­
vironment
HELIOS HUB: Helios Unification Bus
HL-7: Health Level Seven
IP: Internet Protocol
NICE: Network Independent Communication
Environment
OSI L4-L1: OSI transport to physical layers

Product CZ> Stand-

C D Formal- O Socket API

F i g u r e 1 - Classification
be easily ported from one organization to another. It can be
noted that the difference between the second and the third gen­
eration can be easily compared to the difference between
objects and specialized objects, or "objets metier".
Developments currently made in the field of healthcare are
good instantiations of such middleware services. Several
research projects are exploring desired features of Health Infor­
mation System's Middleware (HIS middleware) in order to
facilitate the exchange of data between hospitals and to make
possible the reuse of the same applications in several sites. As
example, one can mention the work of the Health Level Seven
group (HL-7) - accredited by the ANSI to write the standard of
the same name [7], or the SYNAPSES project briefly described
afterwards.

As a summary, the Figure 1 presents a refinement of the 3 lay­
ers model (bitways, middleware, application) commonly used
to describe the tools and protocols for building an application:
the middleware layer is divided into 3 sub-layers, reflecting the
classification presented above. One can see that most of the
(n+1) generation middleware is based on services from the (n)
generation. It has to be noted that Figure 1 is not intended with
the idea of being exhaustive regarding the products listed, but
rather wants to present graphically the various abstraction levels
making up the protocol stack of a HIS (Healthcare Information
System / Hospital Information System) application.

Middleware and the OSI model

As seen in the previous chapter, there are many middleware
environments, with different levels of functionality. Some for­
malization of the structure and the relationships between these
environments becomes mandatory, in order to make possible
structured descriptions of the applications and the services
being used. To help establishing this structure we refer to the
Open Systems Interconnection Reference Model (OSI RM)
defined by the International Organization for Standardization

of some m i d d l e w a r e modules
(ISO). This model defines 7 hierarchically structured layers,
numbered 1 to 7. The layers can be divided in two groups: the
lower layers group, responsible for the transmission, is formed
by layers 1 to 3; the upper layers group, session to application
layers, contains layers 5 to 7. In between is the transport layer,
or layer 4, providing the necessary glue between the network-
oriented lower layers and the application-oriented upper layers.
It is important to note that despite its name, the "application"
layer is concerned by services for applications, and does not
contain any application! These can be considered as forming the
8th layer, not addressed by the OSI R M .
The figure establishes a first intuitive mapping between the 3
layers model defined by the middleware approach and the 7 lay­
ers OSI model. The equivalence between most of the layers is
evident: the applications based on the middleware are above the
OSI upper layers, and the end-to-end transmission of bits and
bytes is performed by the OSI lower layers.
The parallel between the structure of the middleware and the
upper layers can be further expressed by taking into account the
specific structure of the OSI application layer and its notion of
Application Service Objects. It is then possible to describe the
relationships between the middleware components, allowing
the necessary understanding of their behaviour. While this can
be considered as a necessary step towards the establishment of a
library of HIS-related middleware services, it can also be used
for determining where and how parallelism could enhance the
performances of the middleware stack. For a more detailed
description, see [9]

S. Spahni

c n o t
Appl]cation
Presenta-
Session

Transport

Network transmis-
Network

~ L i n k ~
Physical

3-layers OS I model
F i g u r e 2 - E q u i v a l e n c e between M i d d l e w a r e a n d OSI l a y e r s

A case study: The SYNAPSES Project

Hospital Information Systems are particularly concerned by the
problem of reuse of software. This is emphasized by the neces­
sary migration towards complex distributed systems, where
many applications are sharing and exchanging data. Several
european projects are therefore developing strategies and stand­
ards in order to develop common distributed architectures and
make the reuse of software components possible. In particular,
the European project SYNAPSES aims at promoting the mid­
dleware approach for HIS applications and at establishing
standard interfaces for accessing HIS middleware services-
typically third generation middleware. According to the stand­
ardization terminology, this amounts to developing formulated
standards and immediately realizing prototypes assessing the
fitness of the standards.

The SYNAPSES project will not reinvent the wheel: it rather
tries to capitalize on existing or ongoing work wherever it is
possible. Figure 3 is an illustration of this strategy, where the
components of a HIS system are represented according to the
structure standardized by the Project Team 1-013 of the Com-
mite Europeen de Normalisation (CEN) Technical Committee
251 [10]. This standard defines three layers of abstraction:
applications, common components and bitways, respectively
represented in Figure 3 by applications and services, middle­
ware and bitways.

With respect to Figure 3, one goal of the SYNAPSES project is
to define the internal architecture, the functionality and the
interfaces of the "Middleware" elements specific to the Health­
care record architecture ("HCC" boxes in the above figure).
Fully standardizing such middleware services implies the defi­
nition of two interfaces: the interface between the HIS client
and the HIS Middleware Services (i.e. the " M W Client Inter­
face") makes possible the development of portable applica­
t i o n s , while the interface between HIS Services and the HIS
Middleware Services is concerned with portability of the mid­
dleware itself (and possibly of the HIS services, but in the usual
environment where such standards are deployed, changing the
HIS services is of no concern)

f .
Patient

Mgt. Sys-

>
Laborato­

ries

Radiology Image
manipulation

i ij

215

Pa- Imag-

MW Client Inter^^ j f m N Server Inter-
TTTTTTTT

TTT
Spool­

ing
TT?

TTT
G C - •

Identifica­
tion Server

Directo-
1±T_

HCC-

TTT
Health
Data

TTT
Patient
Manag-

I
BITWAYS

GC = Generic Components HCC = Healthcare Components
F i g u r e 3 - HIS a r c h i t e c t u r e a c c o r d i n g t o CEN/TC251/PT1-013
The main result of the project will be therefore a high level of
portability of applications and of the middleware itself, reached
through the standardization of these two interfaces and the defi­
nition of a common Federated Health Care Record - expressing
the available data using object-oriented technology.

Why use Middleware in Healthcare Information
Systems ?

Middleware-based approach for developing software environ­
ments in any category of information systems including HIS
can be seen just as an nice way of decomposing and classifying
functions. But it also offers strong advantages:

• The most important element of a computing environment
is the applications. Thanks to standard middleware, the
focus of the developments can be primarily user-oriented,
what is especially valuable in healthcare centres where
the users are changing regularly.

• Sharing of applications is becoming crucial for most or­
ganizations, as they cannot afford any more to develop all
applications by themselves. By the clear definition of
APIs to middleware services, a higher portability of both
applications and servers can be reached, enabling thus
their reuse in other organizations leading eventually to the
establishment of a library of middleware modules.

• In environments like SYNAPSES, the sharing of data is a
crucial activity in order to reach a certain level of cost-ef­
fectiveness in healthcare. At the University Hospital of
Geneva, where more than 50 heterogeneous databases co­
exist, developing specific tools for enabling each applica­
tion to access many of these different database managers
is unfeasible. The only realistic solution is to use a SYN¬
APSES-like approach, hiding the heterogeneity into the
application services layer, i.e. the middleware layer.

2 1 6
Infrastructures f o r t h e t h i r d m i l l e n i u m

The increasing consensus on the importance of the middleware
layers for the migration of large Healthcare Information
Systems - with a special focus now on specialized middleware -
proves that it is more than just the actual way of thinking. But
while the pathways across the first and second generations of
middleware are now clearly identified and standardized, it is not
yet the case with the third one. There is therefore a risk of get­
ting n 2 solutions, asking at the end for middleware for intercon­
necting middleware! In order to avoid this, it is vital to promote
agreed or de facto standards so that they are adopted by the wid­
est possible audience. This is the actual challenge of the special­
ized middleware.

Conclusion

Most large organisations view the evolution of their information
technology infrastructure as evolutionary, not revolutionary.
This translates into the requirement to support heterogeneous
configurations, in which applications on proprietary legacy sys­
tems interact with new ones.
Distributed systems support the actual business trends and pro­
vide direct answers to most of the needs of the market and the
users. They provide direct support for decentralised business
units, making use of their own local processing, while being
given access to company-wide information systems. They also
promise to maximize the use of networked resources, services
and databases, leading to a minimisation of costs.
New applications should be seen independently of the physical
structure of the system so that users finally perceive open sys­
tems as an opportunity to obtain equivalent products from sev­
eral suppliers. Federation is seen to be the key structuring
principle to combine components of a system. These issues are
nonspecific to medicine and healthcare!
Besides, regarding the client-server distributed new information
systems, there are more and more standardized application serv­
ices. These new services, like for instance the patient identifica­
tion server, the archive server, etc. constitute a kind of superior
middleware which on the one hand make domain-specific appli­
cations more easily portable from one environment to another
and on the other allow the interoperability with other heteroge­
neous sub-systems.
Hiding heterogeneity by using specialized middleware is now a
widely agreed trend, but there is a serious lack regarding meth­
ods and tools for describing the various middleware compo­
nents and their relationships. The importance of the present
work is therefore also in the normalisation in a generic manner
of middleware elements along with their mutual relationships.
Thanks to the approach adopted here, the progressive construc­
tion of HIS from the same common elements is made easier and
the comparison of systems becomes possible, which will be
highly valuable for avoiding the n 2 approach in interconnecting

heterogeneous distributed systems.

Acknowledgments
This study was supported by the SYNAPSES project funded by
the European Union (Telematics in Healthcare program, con­
tract no. HC 1046). The Swiss part of the project is fully sup­
ported by the Swiss government (Federal office for Education
and Science: contract no. OFES 95.0286).

References

[I] Bernstein PA. Middleware: A Model for Distributed Sys­
tem Services. C o m . of t h e A C M F e b . 1996: vol. 39/2, pp.
86-98.

[2] King SS. Middleware! D a t a C o m m u n i c a t i o n s Mar. 1992,
pp. 58-67.

[3] Scherrer JR, Baud R, de Roulet D. Moving towards the
future design of HIS: A view from the seventies to the end
of the nineties, the DIOGENE paradigm. In H.U. Proko-
sch, J. Dudeck (eds), Hospital information systems: design
and development characteristics; impact and future archi­
tecture. Elsevier, 1995:347-375.

[4] P T C / 9 6 - 0 3 - 0 4 : C O R B A 2.0 Specification. Object Man­
agement Group Inc., Jul. 1995.

[5] The HELIOS Software Engineering Environment. C o m ­
p u t e r methods a n d p r o g r a m s i n b i o m e d i c i n e suppl.
Elsevier, Dec. 1994; 45:S1-S152.

[6] http://www.iona.com/Orbix/index.html
[7] Rishel W. Pragmatic Considerations in the Design of the

HL7 Protocol. P r o c 1 3 t h AMIA A n n u F a l l Symp\ Wash­
ington DC Nov. 5-8 1989, pp. 687-691.

[8] Spahni S. P a r a l l e l i s a t i o n des couches s u p e r i e u r e s du
m o d e l e OSI: s t r a t e g i e s et mise en o e u v r e . These de doc-
torat no 2588, Geneve: Editions systemes et information,
1993.

[9] Spahni S, Scherrer JR, Sauquet D, Sottile PA. Consensual
trends for optimizing the constitution of middleware. Sub­
m i t t e d t o A C M C o m p u t e r C o m m . Review.

[10] E N V 1 2 9 6 7 - 1 : 1 9 9 7 H e a l t h c a r e Information System A r c h i ­
t e c t u r e P a r t 1 (HISA) H e a l t h c a r e M i d d l e w a r e L a y e r . CEN
TC/251 PT 1-013, March 1997.

[II] Appel RD, Bairoch A , Hochstrasser DF. Trends in Bio­
chemical Sciences (TIBS), 1994, 19:258-60

Address for correspondence
Dr. Stephane Spahni, Division d'informatique m^dicale, H6pi-
tal cantonal universitaire de Geneve, rue Micheli-du-Crest 24,
1211 Geneve 4, Switzerland.
E-mail: stephane.spahni@dim.hcuge.ch

