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Abstract. A new adaptive method for heart sounds reduction from lung sounds, based 
on wavelet transform, is presented in this paper. The use of a wavelet transform domain 
filtering technique as an adaptive de-noising tool, implemented in lung sounds analysis, 
is introduced. The multiresolution representations of the signal, produced by wavelet 
transform, are used for signal structure extraction. Experimental results have shown that 
implementation of this wavelet-based filter in lung sound analysis results in an efficient 
reduction of heart sounds from lung sounds, producing an almost noise-free output sig-
nal. 

1. Introduction 

Heart beating produces an intrusive, quasi periodic, interference that influences the clinical 
auscultative interpretation of lung sounds. The introduction of pseudo-periodicity, the mask-
ing of the relevant signal and the modification of the energy distribution in the spectrum of 
lung sounds, due to heart sounds [1],  require an effective reduction of heart sounds from the 
contaminated lung sound signal, to yield a successful lung sounds classification. High Pass 
Linear Filtering (HPF) and Adaptive Filtering (AF) are the two basic approaches for heart 
noise reduction. Although HPF (50-150Hz) is effective in heart sound reduction [2, 3], de-
grades the respectively overlapped frequency region of breath sounds and fails to track the 
changing signal characteristics. The AF technique overcomes those limitations, since it is 
based on a gradual reduction of the mean square error between the primary input signal 
(contaminated lung sounds) and a recorded or artificially produced reference signal, highly 
correlated to the noise component of the input signal (heart sounds) [4, 1, 5]. In this paper, a 
new type of adaptive filter for de-noising the contaminated lung sounds, based on Wavelet 
Transform (WT) is presented. The WT sets a new perspective in lung sounds analysis, since it 
decomposes them into multiscale details, describing their power at each scale and position [6, 
7]. Applying a threshold-based criterion at each scale, a filtering scheme can be composed, 
which weights WT coefficients according to signal structure. An adaptive separation of signal 
from "noise", without requiring any reference signal, can be achieved through an iterative re-
construction-decomposition process, based on the derived weighted WT coefficients, at each 
iteration. 

2. Wavelet and Multiresolution Analysis 

A time-scale description, consisted of inner products of a signal f(t) with translated and dilated 
versions of a single function iv, is given by the Continuous WT (CWT) [7], i.e.: 

+00 	 b 
Wf(a,b)= 1a1o5 J f(t) w * ( t 	d 	 (1) 

a 



Medical Informatics Europe '97 	 537 

where * denotes the complex conjugate. A nested sequence of subspaces ...1 74c Voc V+1  ... is 
generated such that the projection of the signal f(t) into VV is a coarse, blurred version, at a 
scale The decomposition of a signal into the sequence of approximation subspaces IV;)JEZ 
of L2(91), and into the orthogonal complement (detailed spaces) of [Vih Ez, IO hEz, in 
IVJ+1)jEZ, is called multiresolution approximation [7]. It can be realised using a pair low pass 
and high pass FIR filters H, G (and their adjoints H*, G *), defining a MultiResolution Decom-
position-Reconstruction scheme (MRD-MRR), where fE Va is equivalent to f(2 

3. Filtering Algorithm 

The proposed algorithm is a wavelet domain filtering technique, based on the fact that explo-
sive peaks in time domain (heart sound peaks) have large components over many wavelet 
scales, while "noisy" background (lung sounds) dies out swiftly with increasing scale. The 
definition of "noise" is not always clear. Instead, it is better to view a N-sample signal as be-
ing noisy or incoherent relative to a basis of waveforms if it does not correlate well with the 
waveforms of the basis [8]. From this notion, the separation of heart sounds from lung sounds 
becomes a matter of breath sounds coherent structure extraction. A schematic representation 
of the proposed algorithm, called WT STationary-NonSTationary filter (WTST-NST), is 
shown in Fig. 1. From Fig.1 it can be seen that an iterative MRD-MRR is employed to form 
different levels of noise separation. Specifically, at k iteration, the WT of fa), (for k=1, 
f(2)=X(A), 2L=1 , ...N, where X(2i) is the normalised input signal) at m adjacent resolution scales 
(m=1,...,M, where M=log2N) is first calculated, using previously-defined libraries of or-
thonormal bases [6] . The resulted WT coefficients at j scale are compared with a hard thresh-
old, defined as follows: 

THR; = 61 Fad; 

where 6k  is the standard deviation of WT at k iteration and j scale, and Fads is an adjusting 
multiplicative factor, used to sustain the threshold at high value, at different scales. We have 
used a factor of around 3.0. From this comparison, the WT coefficients are divided into big 
(>_THRik) and small (<THRRk) ones, W7kc(2.) and WTkR (A), respectively. If the signal f(íß) is 
coherent, then applying MRR(m scales) to W7 c(A) and WTkR(A) coefficients, f(íß) can be de-
composed into Ck(A) and Rk(?t), respectively. The iterative procedure stops after a fixed num-
ber of decompositions (usually 8 are enough) or after the following STopping Criterion-STC 
is satisfied, i.e.: 

STC = IE{Rk_, (a,)} — E{Rk (X,)}I « , 	1 » E > 0. 

We have used s=0.00001 and Ro(A) =0. After the last iteration (L) the coherent part of the sig-
nal (Heart Sounds Noise-HSN) is composed superposing the coherent parts derived at each 
iteration k, i.e.: 

	

HSN(A.) = I C k  (í.), 	 (4) 
k=1 

while the remains (De-Noised Breath Sounds-DNBS), i.e.: 

	

DNBS(A.) = R,(2,), 	 (5) 

qualify as "noise", since it cannot be well-represented by any sequence of waveforms of the 
basis. In fact, RL(A) is the desired output, since the WTST-NST filter separates heart sounds 
from lung sounds, only at locations of their presence, keeping unchanged the rest of the input 
signal. Consequently, WTST-NST filter results in an adaptive de-noising tool of lung sounds, 
separating the stationary part (lung sounds) from the non-stationary one (heart sounds). 

(2) 

(3) 
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Fig. 1. A schematic representation of the Wavelet Transform  

STationary-NonSTationary filter (WTST-NST algorithm).  

From the abovementioned description 
it is evident that the proposed wavelet-
based WTST--NST filter peels the re-
corded lung sounds in layers, reveals 
their coherent structure, and serves as 
a true adaptive de-noising tool, in  
separating the heart sound noise from 
lung sounds. 

4. Implementation  

The study was conducted on 4 healthy 
volunteers, aged 23-50 yrs, with no 
known pulmonary or cardiac disorder. 
Several recordings took place on each 
subject from appropriate locations 
where heart sounds could be heard with 
the highest intensity [9], using a modi-
fied Littmann stethoscope. The whole 
analysis was implemented on an IBM-
PC(586/120MHz) using the program-
ming language ASYST 4.1 (Keithley). 
After antialiasing filtering, records of 
30sec of the signals were digitised by a 
12-Bit A/D converter, at a sampling 
rate of 2500Hz. Sections of 2048 sam-
ples of the recorded signal were used as 
an input to the algorithm. The calcula-
tion of WT was based on orthonormal 
bases introduced by Daubechies [6], 
using, her Quadrature Mirror Filters 
(QMFs) of 8 coefficients. 

5. Results and Discussion  

Due to nonavailability of pure lung sounds, a qualitative rather than a quantitative procedure 
must be employed to evaluate the performance of WTST-NST algorithm. A rough estimation 
of noise reduction can be achieved, if it is assumed that non-breathing noises do not change 
significantly when breathing normally or when holding one's breath [5]. With this assump-
tion, close enough to reality, it can be possible to estimate efficiently the location and the 
shape of heart sound noise, especially when the signal is analysed in breath holding case. Con-
sequently, the evaluation of the WTST-NST algorithm's performance, for both cases, except 
from inspecting and listening to the processed and unprocessed signals, can be achieved 
through the calculation of Local Heart Noise Reduction Percentage (L-HNRP), by means of 
mean energy reduction, only at locations pointed out by the WTST-NST heart sound nonzero 
output, since the rest of the signal remains unchanged, i.e.: 

E{1 2 } —E{0 2 }  
L — HNRP(%) = 100 , 	 (6) E12  

{}  
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where I is a windowed input signal, consisting of sections of each epoch at the true locations 
of heart sound presence, and 0 is the corresponding WTST-NST de-noised output. 
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Fig. 2. A time section of 2.457s of lung sounds from a subject. (a) Breath holding that the heart peak 

 case, (b) Breathing normally case. (*-1) input, (*-2) WTST-NST DNBS output, locations in input and 
(*-3) WTST-NST HSN output, (*4) HPF-75Hz output. in heart sound WTST- 

NST output are synchronised, without employing any reference signal. Furthermore, compar-
ing Figs 2(*-1), (*-2) & (*-4) it can be seen that, the signal included between the heart sounds  

remains unchanged in (*-2) but not in (*-4). In addition, from Figs 2(*-1) & (*-4) it is obvious  

the loss of low frequencies of breath sounds, simultaneously with heart sounds reduction.  

Consequently, the WTST-NST process has a localised effect on input signal, at the true loca-
tions of heart sound presence, without requiring any reference signal, while linear HP filter-
ing deteriorates the whole signal, due to elimination of low frequencies.  

According to the structure of the input signals of Fig. 2(*-1), the L-HNRPs have been cal-
culated for 8 and 9 peaks, respectively (marked with arrowheads). The mean L-HNRPs were  

found equal to 84.11 % and 67.76%, for breath holding and breathing normally, respectively.  

Similar values of L-HNRPs were also found for the other three subjects, indicating an effi-
cient reduction of heart sound noise from lung sounds by WTST-NST filter. To elaborate on  

the followed procedure, the smoothed spectrum of one epoch of 2(b-1) input (2048 samples),  
of WTST-NST de-noised and HP filtering outputs were calculated. The results are illustrated  

in Fig. 3, corresponding to Cl, C2 and C3, respectively. From Fig. 3, it is evident that WTST-
NST filtering (C2) retains frequencies higher than 120Hz and does not remove most of energy  

of the input signal (CI) in the frequency band below 75Hz, as does the HP filtering (C3).  

The use of soft thresholding in the WTST-NST filter instead of hard thresholding, was also  

examined, but it was found that hard thresholding still performed better than the soft one, re-
vealing in an more detailed manner the HSN structure. Furthermore, according to our experi- 

(a) 	 Time 
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ments, the use of Daubechies QMFs of 
different length, did not influence signifi-
cantly the quality of the overall perform-
ance. The average execution time of the 
whole filtering procedure it was found 
roughly 8sec/vector, with vectors of di-
mension 2048, while the computation of 

Hz 	the iterative scheme MRD-MRR, which 
requires O(NlogN) operations for a N-
sample signal, accounted for 95% of the 
overall computational effort. Comparing 
the adaptive schemes proposed by Iyer et 
al. [1] and Kompis et al. [5] with WTST-

NST filter, we note that: i) Both Iyer's and Kompis' schemes, unlike WTST-NST filter, re-
quire a reference signal. ii) They assume similarity between 1 St  and 2nd  heart sound in order to 
estimate the location and the shape of 1 St  and 2nd  heart sound. The WTST-NST filter does not 
need this assumption in order to locate the true positions and time duration of the two heart 
sounds. iii) Iyer's method needs an extra recording in order to achieve high noise reduction 
percentages. Although Kompis' method avoids the extra recording, results in moderate noise 
reduction percentages. With the WTST-NST filter, high noise reduction percentages are 
achieved, without requiring any extra recording. iv) The implementation of the WTST-NST 
filter is simpler, easier and faster than Iyer's and Kompis'. 

6. Conclusions 

Summarising, a new adaptive noise reduction scheme (WTST-NST filter), that combines the 
efficiency of multiresolution analysis with hard thresholding, implemented in heart sound 
noise reduction of lung sounds, was presented. Experiments have shown that the WTST-NST 
filter has resulted, in all cases, in a generally high de-noised signal quality, without requiring 
any reference signal, with low computational cost, and with fast and easy implementation. 
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