
Medical Informatics Europe '97 
	

465 
C. Pappas et al. (Eds.) 
IOS Press, 1997 

DIPE: A Distributed Environment for 
Medical Image Processing 

Marios ZIKOSI,  2 , Eleni KALDOUDII, Stelios C. ORPHANOUDAKISI ,  2 
' Institute of Computer Science, FORTH, P.O. Box 1385, 711 10 Heraklion, Greece 

2Department of Computer Science, University of Crete, Heraklion, Greece 
E-mail: {zikos, kaldoudi, orphanou}@ics.forth.gr  

Abstract. DIPE is a distributed environment that provides image processing 
services over integrated teleradiology services networks. DIPE integrates existing 
and new image processing software and employs sophisticated execution scheduling 
mechanisms for the efficient management of computational resources within a 
distributed environment. It can also be extended to provide various added-value 
services, such as management and retrieval of image processing software modules, 
as well as advanced charging procedures based on quality of service. DIPE can be 
viewed as the natural evolution of the legacy field of medical image processing 
towards a service over the emergent health care telematics networks. 

1. Introduction 

In recent years, advances in information technology and telecommunications have acted as 
catalysts for significant developments in the sector of health care. These technological 
advances have had a particularly strong impact in the field of medical imaging, where film 
radiographic techniques are gradually being replaced by digital imaging techniques, and 
this has provided an impetus to the development of integrated hospital information systems 
and integrated teleradiology services networks which support the digital transmission, 
storage, retrieval, analysis, and interpretation of distributed multimedia patient records [1].  
One of the many added-value services that can be provided over an integrated teleradiology 
services network is access to high-performance computing facilities in order to execute 
computationally intensive image analysis and visualisation tasks [2] . 

In general, currently available products in the field of image processing (IP) meet only 
specific needs of different end user groups. They either aim to provide a comprehensive 
pool of ready to use software within a user-friendly and application specific interface for 
those users that use IP software, or aim for the specialised IP researcher and developer, 
offering programmer's libraries and visual language tools. However, we currently lack the 
common framework that will integrate all prior efforts and developments in the field and at 
the same time provide added-value features that support and in essence realise what we call 
a 'service'. In the case of image processing, these features include: computational resource 
management and intelligent execution scheduling; intelligent and customisable 
mechanisms for the description, management, and retrieval of image processing software 
modules; mechanisms for the "plug-and-play" integration of already existing 
heterogeneous software modules; easy access and user transparency in terms of software, 



I request & data 

response & data 

local system 
	 remote system 

466 	 Medical Informatics Europe '97 

hardware, and network technologies; sophisticated charging mechanisms based on quality 
of service; and, methods for the integration with other services available within an 
integrated health telematics network. 

In this paper we present the architecture of DIPE, a novel distributed environment for 
image processing services. DIPE is based on a distributed, autonomous, co-operating agent 
architecture [3]. It is designed so that it is modular, scaleable and extensible, and it can be 
readily implemented on different hardware and software platforms, and over heterogeneous 
networks. DIPE consists of a functional core which supports the persistent distributed 
execution of IP algorithms, and can be extended to support other added-value services such 
as macros, resource management, algorithm retrieval, charging, etc. Here we describe the 
functional core of the system and discuss the mechanisms and notions employed to allow 
integration of third party IP algorithms and the development of new IP software. Finally, 
we describe the functional extensions of the core that support macro execution and resource 
management. DIPE has been developed to support distributed medical imaging processing, 
an added-value teleradiology service within the integrated regional health telematics 
network, currently under development by the Institute of Computer Science (ICS), 
Foundation for Research and Technology - Hellas (FORTH), on the island of Crete [4]. 

2. Architecture and Implementation 

The core of the system consists of several communicating components: user applications, 
execution agents, pools of IP algorithms, and management agents. 

The management agent is the central element. Its main purpose is to realise the 
network of individual modules (applications and execution agents) and initialise the 
communication among them. However, the main body of messages is communicated 
directly among the individual modules. The local cluster can be further expanded through a 
network of management agents, within the same or even different organisations. Thus, the 
management agent ensures the scaleability of the environment, a basic requirement of an 
integrated teleradiology services network [1].  Additionally, the management agent 
authenticates users and provides unique image ids by using standard digital signature 
technology. 

Figure 1: Communication within a DIPE cluster 



_File edit View Algorithms Help  

Available Algorithms  

looetion . 	 irrdmaltarc  

e J lxalAlpodhnn  
D Atithmetic Opaatims  
B J Eden  
^ ArisobopicDifvsion  

rl GauwiSmootFrg  
J MedatFäei 
C., Gaussian None  

Negate 

J Conti.  
J  Bij 

 Thtesholórp 

::.) Edge Detection  
fj J Segmentation  

® _ 

^ RegionGtov^p 

^ Moiphobm  
a 	Spatial  

Pei itiietsi Name  

1HA(i^IN: 	 ^Imaoe 

144giWT 	Oupa 

C7_fACTOR 	127  

eceívs IÁxèculivïl Result 1  

:^ ^ ^ ^ K Hais, G. Tzditas, and S. Oipharouddkis , 

Medical Informatics Europe '97 	 467  

The execution agent is responsible for the execution of a specific algorithm. It receives 
requests for execution through the management agent and creates a communication link 
with the requesting application in order to receive further information and input data 
required for the execution (Figure 1). After this point, this agent can proceed autonomously 
to the execution of the algorithm. It stores input data into a local cache area and executes 
the requested algorithm. Output generated through the execution of the algorithm is sent 
back to the agent. The execution agent is responsible to forward this output to the 
requesting application. In case there is a network failure or the requesting application is not 
running any longer, the agent keeps the results of the execution in temporary storage for 
delivery upon request. This ensures persistent algorithm execution and enhances the 
robustness of the system. 

The user application is the front end of the system and consists primarily of a 
customisable graphical user interface. A virtual temporary storage management module 
ensures that the application can handle synchronously a considerable number of large data 
sets. An important feature of the user application is that it incorporates certain image 
processing algorithms that require real-time response, and thus it is not sensible to redirect 
their execution to an agent or over the network. These include routines necessary for image 
visualisation (e.g., zoom, focus, resize, contrast adjustment, etc.), as well as certain 
algorithms for local, real-time image processing. Finally, the graphical user interface 
provides toolkits that support the various functionalities of the environment (algorithm 
insertion, monitoring of the system's status, resource management, macro composition and 
execution, etc.). A typical screen of the application is shown in Figure 2.  

The basic requirement that DIPE is readily implemented on various operating systems 
and over heterogeneous networks poses certain implementation constraints. Thus, inter-
process communication is based on the TCP/IP network protocol, while operating system 
transparency is ensured by using ACE, an object-oriented network programming toolkit for 
developing communication software [5]. DIPE is now implemented on UNIX and 
Windows NT/95 workstations. 

AVWtK': Od 'PSm.  

Figure 2: A typical screen of DIPE  



468 	 Medical Informatics Europe '97 

3. The Algorithm Repository 

The functional core of DIPE is the set of available image processing algorithms, private or 
public, local or network wide. An important feature of DIPE is that it allows easy 
integration of third party algorithms, i.e. software modules where only an executable is 
available and the only information known is the command line syntax, as well as the input 
and output data formats. The integration is achieved through the algorithm wrapper, a 
single generic process. The wrapper converts input data from the application format to the 
format that a specific IP algorithm requires, executes the algorithm and finally converts the 
output data of the algorithm to the format of the user application. While the algorithm is 
being executed, the wrapper is responsible to handle requests from the user application. 
Such requests include the termination or pause of the execution, or the resumption of a 
previously paused execution. Additionally, DIPE provides a library of ready-to-use 
routines for the development of new IP algorithms, which consists of basic routines related 
to the starting and ending phases of the algorithm, as well as of routines that support a more 
sophisticated mode of user-algorithm communication during execution. 

In routine medical image processing, a common situation involves processing images 
using the same set of algorithms often with a standard set of parameter values. DIPS 
provides the mechanisms to simplify the complicated process of executing individual 
algorithms sequentially, by grouping them together and thus creating a macro-algorithm 
(macro). In general, the DIPE macro is a set of individual algorithms that may be 
performed independently on the same or different data sets, or may be performed 
sequentially. There is no constraint on the complexity of algorithm combinations and the 
inter-relationships of their input and output data. The execution of a macro is the 
responsibility of a special macro agent. The macro agent acts as a mediator for macro 
executions. It consists of three main functional parts: the interface with the application, the 
interface with the rest of the system (management and execution agents), and the module 
which is responsible for the management of the macro execution. The macro agent models 
macros as a directed acyclic graph, thus enabling macro decomposition and individual 
scheduling of its components. 

4. Resource Management 

Quality of service in DIPE is guaranteed by a sophisticated resource management and 
execution scheduling mechanism. The scheduling of a requested algorithm execution to the 
most appropriate processing element (PE) is a distributed decision making process based on 
the market metaphor, and is realised through the co-operation of the execution agents [6, 3].  
Upon request for an algorithm execution, the management agent initialises an 'auction'. 
The request is forwarded to the appropriate `bidders', that is those execution agents that are 
able to perform the request. Each execution agent evaluates the request by taking into 
consideration the load of the local PE, the possible existence of the required input data in its 
local cache vs. the cost for transferring the data through the network, and the execution 
characteristics of the particular algorithm. Then, each execution agent makes a bid to the 
management agent by returning the estimated `cost' of the execution. The management 
agent evaluates all the bids it receives and assigns the execution to a particular execution 
agent. 

It is important to note that the execution characteristics of each algorithm are drawn 
from its execution profile, which includes information on size of input/output data, PE 



Medical Informatics Europe '97 	 469 

memory needed at runtime (relative to input data) and time needed for execution 
(normalised to input data and PE). A good approximation about the memory requirements 
and the execution time of an algorithm is derived from a statistical analysis based on 
previous execution profiles of the algorithm. 

5. Discussion 

DIPE has been designed and developed to offer image processing services over integrated 
health care services networks, and to act as an integration platform for diverse image 
processing software. It exhibits a modular, extensible and scaleable architecture that 
ensures system robustness and execution persistence. A sophisticated resource 
management and execution scheduling mechanism allows the medical expert to take full 
advantage of geographically distributed computational resources. Future research will 
address the development of intelligent and customisable mechanisms for the description, 
management, and retrieval of image processing software modules, as well as charging 
mechanisms based on quality of service. 

DIPE is currently being extended through its functional integration with other medical 
information systems that have been developed in our laboratory. Important examples 
include CoMed [7], a desktop conferencing application which allows interactive real-time 
co-operation among several medical experts, as well as Te1ePACS [4], an information 
system for medical image management and communication. DIPE is one of the diverse 
telematics applications incorporated in the regional health telematics network, which is 
currently being developed by ICS-FORTH on the island of Crete. 

6. References 

[1] S.C. Oprhanoudakis, E. Kaldoudi, and M. Tsiknakis, "Technological Advances in 
Teleradiology", Eur. J. Radiology, vol. 22, 205-217, 1996. 

[2] S.C. Orphanoudakis, "Supercomputing in Medical Imaging" IEEE Eng Med Biol, vol. 
7, 16-20, 1988. 

[3] P. Maes, "Modelling Adaptive Autonomous Agents", Artificial Life Journal, ed. C. 
Langton, vol. 1, nos. 1&2, MIT Press, 1994. 

[4] S.C. Orphanoudakis, M. Tsiknakis, C. Chronaki, S. Kostomanolakis, M. Zikos, and Y. 
Tsamardinos, "Development of an Integrated Image Management and Communication 
System on Crete". In: Lemke HU, Inamura K, Jaffe CC, Vanier MW, eds. Proc. of 
CAR' 95, Berlin, p. 481-487, 1995.   

[5] D.C. Schmidt, "The ADAPTIVE Communication Environment: An Object-Oriented 
Network Programming Toolkit for Developing Communication Software", 12th Sun 
User Group Conference, San Francisco, California, June 14-17, 1993. 

[6] D.F. Ferguson, Y. Yemini, C. Nikolaou, "Microeconomic Algorithms for Load 
Balancing in Distributed Computer Systems.", . In Proceedings of International 
Conference on Distributed Systems (ICDCS 88). San Jose, California: IEEE Press, 
1988. 

[7] M. Zikos, C. Stephanidis, and S.C. Orphanoudakis, "CoMed: Cooperation in 
Medicine", Proceedings of EuroPACS'96, pp. 88-92, Heraklion, Greece, October 3-5, 
1996. 




