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Abstract. The new generation of health information standards, where the syntax 
and semantics of the content is explicitly formalized, allows for interoperability in 
healthcare scenarios and analysis in clinical research settings. Studies involving 
clinical and genomic data include accumulating knowledge as relationships 
between genotypic and phenotypic information as well as associations within the 
genomic and clinical worlds. Some involve analysis results targeted at a specific 
disease; others are of a predictive nature specific to a patient and may be used by 
decision support applications. Representing knowledge is as important as 
representing data since data is more useful when coupled with relevant knowledge. 
Any further analysis and cross-research collaboration would benefit from 
persisting knowledge and data in a unified way. This paper describes a 
methodology used in Hypergenes, an EC FP7 project targeting Essential 
Hypertension, which captures data and knowledge using standards such as HL7 
CDA and Clinical Genomics, aligned with the CEN EHR 13606 specification. We 
demonstrate the benefits of such an approach for clinical research as well as in 
healthcare oriented scenarios. 
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1. Introduction 

Standards are used to exchange information between disparate applications serving a 
variety of healthcare processes, often within the same enterprise. The goal is to have 
'semantic interoperability' between the trading applications, so that an entity can deal 
with received data in the same way it deals with its own data. The new generation of 
object oriented standards facilitates this approach by serving as conceptual data models 
of persistency layers accessed by the applications. The HL7 v3 Reference Information 
Model1 (RIM) is an ANSI and ISO-approved standard information model for 
healthcare data used to derive consistent health information standards such as 
laboratory, public health, clinical trials and clinical genomics. The Clinical Document 
Architecture2 (CDA) model is derived from the RIM and specifies the structure for 
clinical documents. Similarly, the Clinical Genomics Genetic Variation3 (GV) model 
captures genotype-phenotype relationships. These models are serialized to W3C XML 
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schemas. In order to allow for a wide variety of use cases, these models have a generic 
nature. Thus, typically the models are further constrained in implementation guides 
(also called 'templates') targeted at specific use cases (e.g., CDA Operative Note). 
Traditionally, health standards were used to exchange patient-specific data. With the 
emergence of decision support applications, it is evident that knowledge representation 
becomes crucial to enable the evaluation of relevant knowledge and to generate 
recommendations. Thus it would be more efficient to have data and knowledge 
represented over a common language. Indeed, several current efforts use the RIM to 
represent knowledge models, e.g. HL7 and CDISC clinical trials work in the Study 
Design model4. The HL7 Clinical Genomics workgroup is developing a new Domain 
Information Model5 with the genome as the highest organizational entry point. Based 
on this effort, we have developed derivations of GV models to hold knowledge 
generated in the course of analyzing SNPs of hyper- and normotensive subjects in a 
Genome-Wide Association Study. Various approaches and analyses were applied, 
yielding different results. The GV model can be instantiated so that each 'knowledge 
instance' holds the results of a certain analysis; thus, researchers can exchange and 
compare results. More importantly, decision support applications can use the results to 
combine patient data and disease knowledge to generate advice for the clinician. 

In Hypergenes6, a European Commission FP7 project exploring the essential 
hypertension disease model, we built a set of templates for capturing the different 
artifacts created in the project. For clinical and environmental data, we created an 
essential hypertension CDA-based template as a comprehensive data representation of 
data collected on Hypergenes subjects. For other artifacts such as genomic analysis 
results, subject genotyping, and decision support information, we created templates 
based on the GV standard. These templates extend information sharing by serving as 
the underlying data model representing interactions between environmental, clinical, 
and genomic factors relevant in studying the complex disease of essential hypertension. 
Moreover, these templates can be incorporated into the CEN EHR 13606 standard7 
when it is implemented over the RIM, where the CDA is a composition in the subject's 
EHR and GV instances are linked compositions in the same EHR folder where the 
CDA is placed. In this paper we depict the methodology used to capture data and 
knowledge artifacts in the Hypergenes project, along with concrete examples. 

2. Methods 

We classify the artifacts of our research into three categories: data, knowledge and 
information. Data is raw clinical or genomic patient data. Knowledge is an 
understanding of the studied disease that is not specific to any patient. Knowledge may 
publically available or generated within the project scope, e.g. analysis on data. 
Information is a subject-specific analysis result that can be used as a prediction or for 
decision support purposes. The first step in any data-driven research endeavor is data 
collection (top of Figure 1). Data integration is a multi-step process that involves 
harmonization, validation, normalization, and transformation into standard structures 
that can be accepted by the healthcare and medical research communities.  Furthermore, 
the relationships among data items are often described implicitly, e.g., in some 
supplementary documentation or as tacit knowledge of human experts. These 
relationships must be expressed explicitly to allow analysis algorithms, which are 
oblivious to implicit semantics, to use them effectively and avoid wrong conclusions 
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based on missing implicit data. To that end, we used the HL7 RIM as the information 
model coupled with the Web Ontology Language (OWL) and Resource Description 
Framework (RDF) as the semantic data integration technology. By constraining the 
CDA standard, we designed the Essential Hypertension Summary Document template 
(EH-CDA) tuned to the use case of essential hypertension. Details on data integration 
are described in previous works8,9. We genotyped the genomic samples using Illumina 
1M arrays, and analyzed raw intensity data with Illumina Genome Studio for genotype 
calling. We converted the raw data to PLINK PED and MAP files for statistical 
analysis by PLINK10, an open-source whole genome association analysis toolset. 

 
Figure 1. Data & Knowledge Representation Methodology Overview. 

Our next step involved generating disease-specific knowledge by data analysis. 
Whole-genome association studies (GWAS) are the state-of-the-art approach in genetic 
epidemiological studies of complex diseases. These diseases are caused by interaction 
between genetic, environment and lifestyle factors. GWAS aim to reveal the genetic 
basis for susceptibility to a disease, with the underlying assumption that diseases 
prevalent in the population are explained by common variations; this is known as the 
common disease-common variants premise. A main source of such genomic variations 
is Single Nucleotide Polymorphisms (SNP). Current high-throughput technologies 
allow simultaneous genotyping of a million SNPs in a single chip. Thus, genomic data 
used in these studies consists of the genotypes for ~1 million SNPs for thousands of 
individuals. In population-based case control studies, two groups of individuals are 
collected: a group that is affected by the disease and a control group. SNPs showing 
significantly different distribution between the two groups serve to predict a person's 
susceptibility to the disease and serve as candidates for further research of the disease 
mechanism, the final outcome of which is a custom chip for early diagnosis. 

Normally, the artifacts of the research thus far, i.e. data and analysis results, would 
be used in one of two ways: data may be re-analyzed and analysis results may serve to 
support a clinical decision. While these are important, we want to extend this approach 
by capturing the amassed knowledge in a formal and standard representation, allowing 
the reusability of knowledge. As aforementioned, GV models serve as the basis for 
both data and knowledge in the genetic variation domain. This is made possible 
through the Phenotype component used by the GV standard. The Phenotype model 
design is based on the distinction between observed and interpretive phenotype. The 
former represents phenotypes observed in the patient e.g., responsiveness to Gefitinib 
drug due to certain EGFR somatic mutations; the latter represents an interpretation of 
genomic observations e.g., patient might be resistant to Gefitinib drug due to EGFR 
somatic mutations. This way, genotype-phenotype associations in GV instances can be 
incorporated into a patient EHR and a knowledgebase serving clinical decision support 
applications. Moreover, in capturing analysis-results knowledge, we enable further 
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analysis to build on methodology and results, allow for reproducibility, and strengthen 
cross-research collaboration. Representation of analysis-results entails more than just 
capturing the results themselves, i.e. SNP-disease risk assessment. One must capture 
analysis metadata such as performer, instance details (e.g. date), and methodology. 
Finally, to allow reproducibility, one must explicitly define the input dataset. We used 
a GV template to capture analysis results. The GV model is powerful enough to 
represent all of the above but one: methodology. Methodology is the scientific 
workflow that documents the analysis and may even allow execution, given the 
appropriate input. We therefore used the encapsulation/reference mechanism of GV to 
reference a workflow markup that represents the algorithm, similar to the mechanism 
used for raw sequences. Having patient data and disease knowledge represented with 
the same HL7 v3 constructs enabled us to create instances that capture subject-specific 
information (i.e., analysis results specific to a subject). Thus, we designed another GV 
template to capture subject genotyping, analysis results as applied to the subject’s SNPs 
and references to clinical profile. In current efforts, we aim to combine the above data 
and knowledge to a patient report that can facilitate clinical decision at the point of care. 

3. Results and Discussion 

The Hypergenes project provided us with an opportunity to apply our approach to 
widely varying environmental and clinical datasets, and to the genomic data of the 
corresponding subjects. The clinical data included historical data spanning over 15 
years and environmental measures based on questionnaires. There were 28 data sources 
with ~30,000 records for ~12,000 subjects divided into a discovery phase (3,603) and a 
validation phase (~8,000). Data was stored in a warehouse (using DB2 pureXML) 
containing CDA-compliant XML instances following the EH-CDA template model. 
Our genomic data was comprised of SNP genotyping performed in two centers, Milan 
and Lausanne, using Illumina 1M-duo arrays in the discovery phase and Infinium 
iSelectHD beadchip 15K in the validation phase. The raw genotyping data converted to 
PED and MAP was stored in both file format and relational database for random access.  

Classic GWAS analyses test every SNP independently for association. Typically, a 
chi-square test is performed for every SNP, comparing the genotype distribution in the 
case and the control groups, and a p-value is provided for every SNP. These p-values 
are used to rank the SNPs. The top scoring SNPs are selected for further research. 
Since the signals are weak, and many SNPs are being tested, this is a challenging task. 
In Hypergenes, we enhanced classic analysis by incorporating prior knowledge11. We 
used public SNP annotations and relied on former studies for associating SNP to 
various diseases. Next, we trained a logistic regression model, so it learned to utilize 
SNP annotations to identify a-priori the potential of SNPs to be associated with a trait. 
The algorithm outputs the predicted prior probability of every SNP to be associated 
with a disease. This prior is used to re-rank the classic analysis results. The analysis can 
be described as a sequence of steps applied on the SNP data (feature selection, logistic 
regression, etc). This gave rise to a new tool for carrying out a sequence flow analysis - 
IBM Bio-clinical Data Mining12 (BDM) tool. The BDM enables the execution of 
machine learning and data mining algorithms on large datasets. A user can combine 
various algorithmic building blocks in a workflow to perform a desired task via an 
XML-based configuration file. Thus, users can utilize the BDM to build the required 
blocks to execute similar or different flows and analyze their own data. 
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Following the approach described in the Methods section of this paper, we applied 
the analysis-results GV template to generate an instance to capture all aspects of the 
above analysis. We captured SNP details, risk alleles, and p-values in appropriate GV 
geneticLocus XML constructs. The instance included metadata on the analysis, e.g. 
performer, date of execution. For methodology representation, we referenced the BDM 
workflow instance. We captured patient information in a similar manner, using the 
subject's genotyping with encapsulated BSML Isoform XML constructs for SNPs and 
alleles. The top sections captured metadata (e.g. genotyping center) and we used the 
phenotype association mechanism of GV to reference clinical blood pressure 
observations from the subject’s CDAs (useful mainly in validation phase). Finally, we 
used a geneticLoci component to analyze the results of an individual, encapsulating the 
BSML markup for the subject’s risk alleles as back-references to the genotyped alleles. 

4. Conclusion 

In this paper, we depict a methodology to capture data, information and knowledge 
under a standard meta-model. We describe how we implemented this methodology in 
the scope of Hypergenes. Finally, we demonstrate the benefits of such an approach for 
clinical research as well as in additional healthcare oriented scenarios. In future work 
we will investigate how to integrate information into an EHR following the CEN EHR 
13606 standard. 
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