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Abstract. Existing Clinical Decision Support Systems (CDSSs) typically rely on 
rule-based algorithms and focus on tasks like guidelines adherence and drug 
prescribing and monitoring. However, the increasing dominance of Electronic 
Health Record technologies and personalized medicine suggest great potential for 
prognostic data-driven CDSS. A major goal for such systems would be to 
accurately predict the outcome of patients' candidate treatments by statistical 
analysis of the clinical data stored at a Health Care Organization. We formally 
define the concepts involved in the development of such a system, highlight an 
inherent difficulty arising from bias in treatment allocation, and propose a general 
strategy to address this difficulty. Experiments over hypertension clinical data 
demonstrate the validity of our approach. 
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1. Introduction 

The need for Clinical Decision Support Systems (CDSSs) increases rapidly [1]. Most 
existing systems are rule-based systems focused at guidelines adherence, drug 
prescribing and monitoring, etc. [2]. The increasing pace by which Health Care 
Organizations (HCOs) adopt Electronic Health Record (EHR) technologies and the 
increasing recognition of personalized medicine importance suggest great potential for 
another type of CDSS, aiming to predict the outcomes of treatments considered for an 
individual patient via statistical and machine learning algorithms. We suggest a formal 
general description for such a prognostic data-driven CDSS (pdd-CDSS) and highlight 
an inherent difficulty associated with the development of such a system, related to the 
inherent bias in HCO's clinical data. We then propose a general strategy to address this 
difficulty and demonstrate our approach over clinical data of hypertension patients. 

2. Methods 

2.1. Defining Relevant Concepts 

We consider a patient who is at stage k of disease d. The pdd-CDSS should assist the 
physician by predicting the expected outcome of relevant candidate treatments for this 
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individual patient, through mining the HCO's clinical data. Let T be a random variable 
with values {t1 ,…, tNt}, representing distinct candidate treatments. Let O be a random 
variable with values {o1 ,…, oNo}, representing distinct outcomes. We assume that the 
HCO maintains data about Nf clinical features, denoted by the random variables, {f1 ,…, 
fNf}. The sample population for the pdd-CDSS consists of Np patients that have already 
been at stage k of disease d and their received treatment and resulting outcome are 
recorded in the HCO's database. These Np patients can thus be divided into mutually 
exclusive and exhaustive treatment groups, according to the their treatment value, T, 
denoted {gt1 ,…, gtNt}.2 The data mined by the pdd-CDSS can thus be represented by a 
matrix M, where M(i,j) indicates the value of the i-th patient according to the j-th 
feature. The treatment and the outcome variables can be represented via two additional 
column vectors. Finally, we denote a new patient by the index i*, and the data 
associated with her is represented via an additional row in M, while T(i*) and O(i*), are 
obviously unknown. All these notations are depicted in Fig. 1a.  

2.2. Treatment Groups are Inherently Biased  

Our first observation is that from a statistical perspective, different treatment groups 
often represent different populations, reminiscent to an observational study [3]. As an 
extreme example, let us assume that gender, denoted for example by fj, affects 
treatment success. We further assume that in the HCO's data for all patients in gt1, fj=M, 
while for all patients in gt2, fj=F, e.g., due to the HCO's guidelines. Next, we consider a 
new female patient. Since there are no examples in the data for female patients who 
received treatment t1, and assuming gender affects the treatment success, machine 
learning and statistical analysis algorithms will not be able to properly predict the 
outcome of applying t1 to this new patient based on the HCO's records. In practice, we 
do not expect the distinction between the treatment groups to be that obvious. However 
any bias in baseline covariates between treatment groups will affect prediction ability 
and must be considered in the design of a pdd-CDSS. Next, we propose one strategy to 
address this issue.  

 
Figure 1. (a) Notations. (b) A flow chart for the proposed pdd-CDSS. 

                                                             
2 For simplicity, if a patient received more than one treatment during the same stage of the disease, her 
assignment to a treatment group is done based on the most recent treatment she received. 
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2.3. A Valid Flow for pdd-CDSS 

In the example above, while we could not predict the outcome of applying t1 to the new 
patient, we could have predicted the outcome of applying t2 to that patient. Thus, if the 
“customary”3 treatment can be determined for a new patient, the outcome of that 
treatment may be reliably predicted. This suggests a strategy of limiting outcome 
prediction to “customary” treatments. However, identifying the "customary" treatment 
for a new patient might be far from trivial, involving complex considerations. Here, we 
propose to first exploit the bias in treatment allocation to predict the HCO's 
“customary” treatment. If a treatment group is clearly identified, it implies that the 
patients in that treatment-group are relatively similar to the new patient, in particular in 
the context of the covariates that distinguish the different treatment groups. Hence, 
outcome prediction can be reliably performed in that treatment group. Thus we propose 
to decompose outcome prediction for a new patient into two separate tasks (cf. Fig 1b): 

• Treatment prediction: predict T(i*), i.e., the HCO's “customary” treatment for 
the new patient, using all Np patients as training data.  

• Outcome prediction for the predicted treatment: predict the outcome only for 
the predicted treatment; namely, predict O(i*) given that the treatment is T(i*), 
using only patients who underwent T(i*) as training data. 

3. Results 

We demonstrate our methodology over clinical data collected for hypertension patients 
as part of the Hypergenes project4. We identified three major possible treatments in the 
data: non-drug therapy (t1); angiotensin II receptor blockers (t2); and beta blockers (t3). 
We focused on patients that suffer from Stage-1 hypertension and for which: (a) the 
treatment group is known and the date in which this treatment was assigned is known5; 
(b) Systolic and diastolic blood pressure (BP) were measured when treatment was 
selected and at an additional later time point. This led to a dataset of Np=1771 patients 
with respect to 181 clinical features. Decrease in BP to below hypertension levels 
(diastolic < 90, systolic <140) was denoted as outcome o1, while failing to do so was 
denoted by o2. In treatment groups gt1, gt2, gt3, we had 750, 475, and 63 patients, 
respectively, for which 39%, 51%, and 37%, had a resulting outcome o1, respectively.  

3.1. Prediction Algorithms 

For both classification tasks (Section 2.3) we used a k-Nearest Neighbor (kNN) 
classifier [4]. Given a new patient, the algorithm finds her k NNs in the training data 
and predicts her label via a weighted majority of their labels. In the treatment-
prediction task the training data consisted of all 1771 patients and the label was the 
given treatment. For the outcome-prediction task, we first predict the patients 
“customary” treatment, and then use the patients within this treatment-group as the 
training data, and their outcome as the label. An inherent challenge in k-NN 

                                                             
3 Importantly, this “customary”' treatment is not necessarily optimal for the new patient. Rather, it solely 
reflects decisions made in the past in this HCO for patients with somewhat similar characteristics. 
4 For more details, See http://www.hypergenes.eu/. 
5 For simplicity we assume that this is also the date when treatment course started. 
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classification is to define the distance measure used to determine the NNs. Ideally, this 
measure should be adapted to the classification task, e.g., by assigning different 
weights to features based on their prediction power. In our context, while some features 
might contribute to treatment prediction, others might contribute to outcome prediction. 
Further, different features may affect the success of different treatments. For example, 
initial weight may significantly affect the success of a life-style change treatment while 
having a smaller affect on the success of drug therapy. This suggest that 4 different 
distance measures should be learned in our data; one for treatment prediction, and 3 for 
outcome prediction - one within each treatment group. 

3.2. Information Based Distance 

A natural way to quantify the dependency of a feature with a label is via the Mutual 
Information (MI) associated with their joint probability [5]. This measure is especially 
attractive in our context as it similarly applies for continuous and categorical random 
variables; allows capturing any type of dependency, including non-linear relations; and 
there is much literature on correcting MI estimates due to sample size effects, a 
dominant problem in real world clinical data. Here, we used the technique in [6] to 
estimate the MI between each feature and the relevant label. As expected, the MI value 
associated with a feature changes along with the task. For example, for the feature 
“Patient age” we observed high MI for the treatment-prediction task (0.17 bits), while 
nearly zero MI in all outcome-prediction tasks. In Table 1 we present the MI estimates 
in each prediction task for the three features with the highest observed MI. In all 
prediction tasks we used the obtained MI values to determine the distance measure [7], 
discarding features with MI<0.01 bits, and weighting the remaining features by their 
relative MI value. This led to 4 different similarity measures, where in each prediction 
task the most informative features contribute the most to the similarity estimates. 
Table 1. Features MI (in bits) under different tasks for the three features with the highest MI per task. 

Treatment Prediction gt1  
Outcome Prediction 

gt2  
Outcome Prediction 

gt3  
Outcome Prediction 

Diastolic BP at 
decision (0.34) 

Average systolic BP 
prior to decision (0.34) 

Systolic BP at decision 
(0.08) 

Systolic BP at decision 
(0.13) 

Systolic BP at decision 
(0.23) 

Average LDL 
cholesterol prior to 

decision (0.24) 

Diastolic BP at 
decision (0.04) 

Height (0.03) 

Age (0.17) Average systolic BP 
prior to decision (0.19) 

LDL cholesterol at 
decision (0.02) 

Alcohol consumption at 
decision (0.01) 

3.3. Prediction Results 

Using the distance measure learned for the treatment-prediction task and k=10 we 
predicted the treatment for all 1771 patients. The prediction accuracy was 85% 
suggesting a significant statistical bias between the treatment groups, exploited by the 
k-NN classifier. Next, we focused on patients for whom the predicted treatment was 
correct and relatively certain, i.e., there was a relatively clear majority for the correct 
label amongst the patient's k-NN. This resulted with 632, 361 and 10 patients in gt1, gt2, 
and gt3, respectively. For each of these patients we predicted the outcome using the 
similarity measure learned within the relevant treatment-group and k=10, ending up 
with an average prediction accuracy of 66%. 
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4. Discussion 

The increasing scale and complexity of recorded clinical features that affect treatment 
choice highlights the need for CDSSs [1]. Here we formally defined pdd-CDSS that 
utilize HCO's clinical data to predict patient outcome to candidate treatments. In recent 
years, several decision support tools have been developed that rely on mining clinical 
trials' results [8]. However, the increasing pace by which HCOs adopt EHR 
technologies suggests great potential in mining HCOs' clinical data, along with non 
obvious challenges. Here we discussed how treatment allocation bias hampers the 
ability to predict outcome for all candidate treatments. We suggested a framework to 
identify such biases and pinpoint for which treatments prediction can be made reliably. 
Treatment group bias has been discussed in papers that evaluate non-randomized 
clinical trials and observational studies [3] and various methods have been proposed to 
try and correct for this bias [9]. In contrast, here we do not aim to correct for treatment 
bias, but to narrow outcome prediction to cases where this bias is less harmful. 
Considering bias-correction tools within the pdd-CDSS framework suggested here is 
left for future research. The pdd-CDSS framework raises additional challenges. First, 
such systems cannot be detached from external knowledge sources such as published 
guidelines. Integrating guideline based CDSSs with pdd-CDSSs can add important 
information such as contraindications and sharpen the recommendations created by 
such systems. In parallel, much work remains in developing prediction algorithms that 
properly handle the heterogeneity in clinical data, consider dependencies between 
features, and more. Finally, remains the challenge of prediction evaluation. Obviously 
it is impossible to measure outcomes of treatments not delivered. Thus, alternative 
methods to evaluate the accuracy of prediction algorithms must be formulated. 
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