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Abstract. Debugging is an important prerequisite for the wide-
spread application of ontologies, especially in areas that rely upon
everyday users to create and maintain knowledge bases, such as the
Semantic Web. Recent approaches use diagnosis methods to identify
sources of inconsistency. However, in most debugging cases these
methods return many alternative diagnoses, thus placing the burden
of fault localization on the user. This paper demonstrates how the
target diagnosis can be identified by performing a sequence of obser-
vations, that is, by querying an oracle about entailments of the target
ontology. We exploit probabilities of typical user errors to formulate
information theoretic concepts for query selection. Our evaluation
showed that the suggested method reduces the number of required
observations compared to myopic strategies.

1 Introduction
The application of semantic systems, including the Semantic Web
technology, is largely based on the assumption that the development
of ontologies can be accomplished efficiently even by every day
users. For such users and also for experienced knowledge-engineers
the identification and correction of erroneous ontological definitions
can be an extremely hard task. Ontology debugging tools simplify the
development of ontologies by localizing a set of axioms that should
be modified in order to formulate the intended target ontology.

To debug an ontology a user must specify some requirements such
as coherence and/or consistency. Additionally, one can provide test
cases [2] which must be fulfilled by the target ontology Ot. A user
has to change at least all of the axioms of one diagnosis in order to
satisfy all of the requirements and test cases.

However, the diagnosis methods can return many alternative diag-
noses for a given set of test cases and requirements. In such cases
it is unclear how to identify the target diagnosis. In this paper we
present an approach to acquire additional information by generat-
ing a sequence of queries that are answered by some oracle such
as a user, an information extraction system, etc. Each answer to a
query reduces the set of diagnoses until finally the target diagnosis is
identified. In order to construct queries we exploit the property that
different diagnoses imply unequal sets of axioms. Consequently, we
can differentiate between diagnoses by asking the oracle if the target
ontology should imply an axiom or not. These axioms can be gener-
ated by classification and realization services provided in reasoning
systems.

2 Entropy-based query selection
In order to focus on the essentials of our approach we employ the
following simplified definition of diagnosis without limiting its gen-
erality. A more detailed version can be found in [2]. We allow the
user to define a background theory (represented as a set of axioms)
which is considered to be correct, a set of logical sentences which
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must be implied by the target ontology and a set of logical sentences
which must not be implied by the target ontology. Δ is a set of ax-
ioms which are assumed to be faulty.

Definition 1: Given a diagnosis problem
〈
O, B, T |=, T �|=

〉
where

O is an ontology, B a background theory, T |= a set of logical sen-
tences which must be implied by the target ontology Ot, and T �|= a
set of logical sentences which must not be implied by Ot. A diagnosis
is a partition of O in two disjoint sets D and Δ (D = O \Δ) s.t. D
can be extended by a logical description EX and D∪B∪EX |= t|=

for all t|= ∈ T |= and D ∪B ∪ EX �|= t�|= for all t �|= ∈ T �|=.
A diagnosis (D,Δ) is minimal if there is no proper subset of the

faulty axioms Δ′ ⊂ Δ such that (D′,Δ′) is a diagnosis. The fol-
lowing proposition allows us to characterize diagnoses without the
extension EX . The idea is to use the sentences which must be im-
plied to approximate EX .

Corollary 1: Given a diagnosis problem
〈
O, B, T |=, T �|=

〉
, a par-

tition of O in two disjoint sets D and Δ is a diagnosis iff D ∪ B ∪
{∧t|=∈T |= t|=} ∪ ¬t �|= consistent for all t�|= ∈ T �|=.

In the following we assume that a diagnosis always exists under
the (reasonable) condition that the background theory together with
the axioms in T |= and the negation of axioms in T �|= are mutually
consistent. For the computation of diagnoses the set of conflicts is
usually employed.

Definition 2: Given a diagnosis problem
〈
O, B, T |=, T �|=

〉
, a con-

flict CS is a subset of O s.t. there is a t �|= ∈ T �|= and CS ∪ B ∪
{∧t|=∈T |= t|=} ∪ ¬t �|= is inconsistent.

A conflict is the part of the ontology that preserves the inconsis-
tency. Note, incoherence can be reduced to inconsistency by adding
background axioms or recognized by built-in reasoning services. A
minimal conflict CS has no proper subset which is a conflict. (D,Δ)
is a (minimal) diagnosis iff Δ is a (minimal) hitting set of all (mini-
mal) conflict sets. In the following we represent a diagnosis by the set
of axioms D assumed to be correct. In order to differentiate between
the minimal diagnoses an oracle can be queried for information about
the entailments of the target ontology.

Property 1: Given a diagnosis problem
〈
O, B, T |=, T �|=

〉
, a set of

diagnoses D, and a set of logical sentences X representing the query
Ot |= X ? : If the oracle gives the answer yes then every diagnosis
Di ∈ D is a diagnosis for T |= ∪X iff Di ∪ B ∪ {∧t|=∈T |= t|=} ∪
{X} ∪ ¬t �|= is consistent for all t �|= ∈ T �|=. If the oracle gives the
answer no then every diagnosis Di ∈ D is a diagnosis for T �|=∪{X}
iff Di ∪B ∪ {∧t|=∈T |= t|=} ∪ ¬X is consistent.
Note, a set X corresponds to a logical sentence where all elements
of X are connected by ∧. This defines the semantic of ¬X .

As possible queries we consider sets of entailed concept defini-
tions provided by a classification service and sets of individual asser-
tions provided by realization. In fact, the intention of classification
is that a model for a specific application domain can be verified by
exploiting the subsumption hierarchy.

One can use different methods to select the best query in order to
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minimize the number of questions to the oracle. For these methods
it is essential to compute the set of diagnoses that can be rejected
depending on the query outcome. For a query X the set of diagnoses
D can be partitioned in sets of diagnoses DX, D¬X and D∅ where

• for each Di ∈ DX it holds that Di ∪B ∪ {∧t|=∈T |= t|=} |= X

• for each Di ∈ D¬X it holds that Di∪B∪{∧t|=∈T |= t|=} |= ¬X
• D∅ = D \ (DX ∪D¬X)

Given a diagnosis problem we say that the diagnoses in DX pre-
dict yes as a result of the query X , diagnoses in D¬X predict no,
and diagnoses in D∅ do not make any predictions.

Property 2: Given a diagnosis problem
〈
O, B, T |=, T �|=

〉
, a set of

diagnoses D, and a query X: (a) If the oracle gives the answer yes
then the set of rejected diagnoses is D¬X and the set of remaining
diagnoses is DX∪D∅. (b) If the oracle gives the answer no then the
set of rejected diagnoses is DX and the set of remaining diagnoses
is D¬X ∪D∅.

To select the best query we make the assumption that knowledge is
available about the a-priori failure probabilities in specifying axioms.
Such probabilities can be estimated by observing the typical failures
of specific users working with an ontology development tool. If the
probabilities are not known they can be initialized with some small
number. Given the failure probabilities p(ax i) of axioms, the diag-
nosis algorithm first calculates the a-priori probability p(Dj) that Dj

is the target diagnosis. Since all axioms fail independently, this prob-
ability can be computed as [1]:

p(Dj) =
∏

axn �∈Dj

p(axn)
∏

axm ∈Dj

1− p(axm) (1)

The prior probabilities for diagnoses are then used to initialize an
iterative algorithm that includes two main steps: (a) selection of the
best query and (b) update of the diagnoses probabilities given the
query feedback.

According to information theory the best query is the one that,
given the answer of an oracle, minimizes the expected entropy of a
the set of diagnoses [1]. Let p(Xi = vik) where vi0 = no and vi1 =
yes be the probability that query Xi is answered with either no or
yes. Let p(Dj |Xi = vik) be the probability of diagnosis Dj after
the oracle answers Xi = vik. The expected entropy after querying
Xi is:

He(Xi) =
1∑

k=0

p(Xi = vik)×

−
∑

Dj∈D

p(Dj |Xi = vik) log2 p(Dj |Xi = vik)

The query which minimizes the expected entropy is the best one
based on a one-step-look-ahead information theoretic measure. This
formula can be simplified to the following score function [1]:

sc(Xi) =
1∑

k=0

p(Xi = vik) log2 p(Xi = vik) + p(D∅
i ) + 1 (2)

where D∅
i is the set of diagnoses which do not make any predic-

tions for Xi. Since, for a query Xi the set of diagnoses D can be
partitioned into the sets DXi , D¬Xi and D∅

i , the probability that an
oracle will answer a query Xi with either yes or no can be computed
as:

p(Xi = vik) = p(Sik) + p(D∅
i )/2 (3)

where Sik corresponds to the set of diagnoses that predicts the out-
come of a query, e.g. Si0 = D¬Xi for Xi = no and Si1 = DXi

in the other case. p(D∅
i ) is the total probability of the diagnoses that

predict no value for the query Xi. Under the assumption that both
outcomes are equally likely the probability that a set of diagnoses
D∅

i predicts Xi = vik is p(D∅
i )/2.

Since all diagnoses are statistically independent the probabilities
of their sets can be calculated as:

p(D∅
i ) =

∑

Dj∈D∅
i

p(Dj) p(Sik) =
∑

Dj∈Sik

p(Dj)

Given the feedback v of an oracle to the selected query Xs, i.e.
Xs = v we have to update the probabilities of the diagnoses to take
the new information into account. The update is made using Bayes’
rule for each Dj ∈ D:

p(Dj |Xs = v) =
p(Xs = v|Dj)p(Dj)

p(Xs = v)
(4)

where the denominator p(Xs = v) is known from the query selection
step (Equation 3) and p(Dj) is either a prior probability (Equation 1)
or is a probability calculated using Equation 4 during the previous
iteration of the debugging algorithm. We assign p(Xs = v|Dj) as
follows:

p(Xs = v|Dj) =

⎧⎨
⎩
1, if Dj predicted Xs = v;
0, if Dj is rejected by Xs = v;
1
2
, if Dj ∈ D∅

s

We implemented the computation of diagnoses following the ap-
proach proposed by Friedrich et al. [2] and employ the combination
of two algorithms, QUICKXPLAIN and HS-TREE. The set of mini-
mal hitting sets computed by HS-TREE is used to create a set of min-
imal diagnoses D. For each diagnosis Di ∈ D the algorithm gets a
set of entailments from the reasoner and computes the set of queries.
For each query Xi it partitions the set D into DXi , D¬Xi and D∅

i ,
as defined previously. In the next step the algorithm computes prior
probabilities for a set of diagnoses given the fault probabilities of the
axioms. To take past answers into account the algorithm updates the
prior probabilities of the diagnoses by evaluating Equation 4 for each
diagnosis in D. The algorithm stops if there is a diagnosis probability
above the acceptance threshold σ or if no query can be used to differ-
entiate between the remaining diagnoses (i.e. all scores are 1). The
most probable diagnosis is then returned to the user. If it is impos-
sible to differentiate between a number of highly probable minimal
diagnoses, the algorithm returns a set that includes all of them.

Our experiments were performed on artificial examples that were
generated taking into account the latest studies reporting typical
faults of ontology creators. The average results of the evaluation
performed on each test suite (depicted in Figure 1) show that the
entropy-based approach outperforms the split-in-half method as well
as random query selection by more than 50% for the |Dt| = 2 case
due to its ability to estimate the probabilities of diagnoses.
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Figure 1. Number of queries required to select the target diagnosis Dt with
threshold σ = 0.95. Random and “split-in-half” are shown for |Dt| = 2.
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