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Probabilistic Logic with Conditional Independence
Formulae

Magdalena Ivanovska and Martin Giese'

Abstract. We investigate a probabilistic propositional logic that is
an extension of the logic proposed by Fagin et al. [4] with condi-
tional independence formulae. We give an axiomatization which we
show to be complete for the kind of inferences allowed by Bayesian
networks.

1 Introduction

We report? work carried out within the CODIO project on COllab-
orative Decision support for Integrated Operations. The goal of this
project is to develop a decision support system for petroleum drilling
operations. As one part of the CODIO project, we have designed a
system based on a Bayesian network [9] model [6]. When testing this
approach on case data from a major oil company, Bayesian networks
as a modeling tool showed some shortcomings. It seems as if a logic-
based approach to decision support would make it possible to resolve
some of the issues like inability to cope with imprecise information,
time, and the fact that different people with different information are
involved in the decision making.

We are currently in the process of investigating logics to express
decision problems. The topic of this paper is a small but important
part of this endeavor, namely the combination of quantitative reason-
ing about uncertainty with the qualitative reasoning about conditional
independence which is central to approaches based on Bayesian net-
works, but which has received comparatively little attention from the
logical side. There have previously been attempts at a combination
of the expressiveness and the inference mechanisms of probabilis-
tic logics and probabilistic networks, see e.g. [7, 3, 1, 2]. Our work
differs from these in that we represent all information within the log-
ical formalism, while most others represent independence using a
network. Moreover, we describe inference with an axiomatic system
instead of referring to linear or non-linear programming. While this
surely doesn’t give the most efficient reasoning, we consider the suf-
ficiency of a relatively small axiomatic system to be interesting in its
own right. It will, for instance make it easier to combine the formal-
ism with temporal, epistemic, or other kinds of reasoning.

2 Probabilistic Propositional Logic with
Independence Formulae

Following Fagin, Halpern, and Megiddo [4], we consider a prob-
abilistic propositional logic obtained by augmenting propositional
logic with linear likelihood formulae

arl(ep)+---+arl(er) > a
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where ay,...,a,a are real numbers and @y, ..., @ are pure proposi-
tional formulae. The intention is that £(¢) expresses the probability
of ¢ being true, and the language allows expressing arbitrary linear
relationships between such probabilities.

This logic is interpreted over is a set of possible worlds, u is a
probability measure that assigns a value in [0, 1] to any subset of W,
and 7 is an interpretation function. To each element w € W, the func-
tion 7 assigns a truth-value function 7, that fixes the interpretation
of propositional letters. We extended ,, to arbitrary formulae in the
usual way, where the interpretation of linear likelihood formulae is
defined as follows:

(a1 l(@r) + -+ apl(@r) > a) = 1 iff ayu(e)) + -+
apt (M) > a, where oM := {w|m,,(¢) = 1} for any ¢.

Conditional likelihood formulae can be introduced as abbrevia-
tions: £(@/y) > c is defined as £(@ A ) — cl(y) > 0. We also intro-
duce ¢(¢/y) < c and ¢(¢/y) = c in the obvious way. Linear com-
binations of conditional likelihood terms are not allowed.

Fagin et al. [4] give a sound and complete axiomatization consist-
ing of the following axioms and inference rules:

Prop All substitution instances of tautologies in propositional logic;

QU1 {(¢) > 0;

QU2 «T)=1;

QU3 /(@) =L(¢ ANy)+L(@ A—y), where @ and  are pure propo-
sitional formulae;

Ineq All substitution instances of valid linear inequality formulae;

MP From f and f = g infer g;

QUGen From ¢ < v infer (@) = £(y).

What is not expressible in this logic is stochastic independence
of formulae. In fact, it is not hard to see that any statement about
independence leads to non-linear statements about probabilities.

We choose to represent conditional independence by defining con-
ditional independence formulae (CI-formulae)

I(X;,X,/X3)

where X, X», and X3 are sets of propositional letters.

We interpret the CI-formulae in a structure M = (W, i, 7) in the
following way: 7, (I(X1,X»/X3)) = 1 iff , (X}, X3 /X, where
XM= {XM|Xx eX;}.

We denote the logic given by this syntax and semantics by L.

3 Expressing Bayesian Networks

A Bayesian network (BN) consists of a DAG (directed acyclic graph)
with a set of nodes V representing random variables and cpts (con-
ditional probability tables) for every node (variable) in the graph.
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A cpt gives the probability of every value of a node’s variable,
conditional on every possible combination of values of the parent
node’s variables. The graph structure captures qualitative informa-
tion about conditional independencies among the random variables
in V, whilst the cpt entries determine conditional probability distribu-
tions of these random variables. It can be shown that each BN deter-
mines a unique joint probability distribution of its variables; we will
refer to it as to the probability distribution described by the network.
We refer to the literature on BNs for details [9]. We restrict ourselves
to binary BNs, where variables can have only two states 0 and 1.

Both qualitative and quantitative information embedded in a bi-
nary BN can be appropriately represented in our logical language
L. For example, if a network consists of the nodes A, B, and C,
and edges (B,A) and (C,A) and the cpt contains the following infor-
mation about the conditional probability distribution: p(A = 1/B =
1,C=1)=a;, pA=1/B=1,C=0)=ay, p(A=1/B=0,C =
1) =a3 and p(A = 1/B = 0,C = 0) = ay, then this information can
be given in our language in the following way: ¢{(A/BAC) = ay,
L(A/BN—C) = ap, L(A/-BAC) = a3 and L(A/-~B A —C) = ay.
In addition to this we add the conditional independence formulae
I(A,{B,C}/{B,C}),I(B,C/0) and I(C,B/0) to represented the qual-
itative information about p.

We generalize the idea in the following definition. Before we give
it, we define an atom to be a conjunction of possibly negated proposi-
tional letters. An S-atom for some set S C P is an atom that contains
all the letters from S. It is easy to see that every atom corresponds
to one assignment of the variables represented by the letters in it. In
what follows we will use the same notation for both the atoms and
the corresponding assignments.

Definition 1 Let BN be the class of all binary BNs and F be the set
of all formulae in L. The specific axioms function, Ax : BN — 2F js
a function that to each BN A assigns the set of formulae containing

o ((X/6)=c forevery node X €V and every Pa(X)-atom &, where
¢ =p(X =1/0) and Pa(X) are the parents of X, and
o I(X,ND(X)/Pa(X)) for every node X €'V.

Bayesian networks capture only the probabilities of combinations
of certain events identified by the nodes, and not a probability mea-
sure on some underlying set of worlds or elementary outcomes. Also
the formulae in our logic only describe certain properties of mod-
els. It is easy to show however that any conditional probability of
conjunctions of literals that can be computed from a BN can also be
inferred from the network’s set of specific axioms.

Theorem 1 Let % be a binary BN and let p be the probability distri-
bution described by B. If p(@/w) = b, then Ax(%#) = L(¢/y) =b,
where @ and  are atoms (resp. the corresponding assignments).

While Theorem 1 guarantees the semantic connection between a
BN £ and its axiomatization Ax(Z) in our logic L, it says nothing
about the derivability of conditional likelihood formulae. This will
be covered in the following section.

4 Axiomatic System and Theorem for Syntactic
Entailment

The axiomatic system given in Sect. 2 is complete for reasoning in a
logic without CI-formulae. The axiomatization of conditional inde-
pendence has been the subject of a certain amount of research, see
e.g. [5] for a survey, and it has been shown that no complete axiom-
atization of independence statements exists.

In this work, we are less interested in deriving new CI formulae.
We want to mimic the kind of reasoning possible with a BN, so we
want a system that allows to derive arbitrary statements about condi-
tional likelihood of propositional formulae from the specific axioms
Ax(%) of a BN.

Our axiomatic system consists of four parts, each dealing with a
different type of reasoning: propositional reasoning, reasoning about
probability, reasoning about linear inequalities, and reasoning about
conditional independence. For the first three parts, we use the axioms
from the system AXjgas in [4], as given in Sect. 2. For conditional
independence reasoning, we add the following inference rules:

SYM From I(Xl,Xz/X3) infer I(Xz,Xl/X3)

DEC From I(X] , X5 UX3/X4) infer I(X[ 7XQ/X4)

IND From /(X{,X/X3) and £(@;/@3) < (>)a infer £(¢;/¢@> A
@3) < (>)a, where @; is an arbitrary X;-atom, fori € {1,2,3}.

Theorem 2 Let % be a binary BN and let p be the probability dis-
tribution described by B. If p(@/y) = b, then Ax(B) - L(o/y) =b,
where @ and y are atoms (resp. the corresponding assignments).

5 Future Work

Credal networks [2] allow to give ranges of probabilities in cpts in-
stead of sharp values. This can be useful in applications when prob-
ability elicitation is difficult. While such ranges can be expressed in
our logic, the given axiom system is not complete for the inference
of tight bounds on arbitrary conditional probabilities. We would like
to investigate whether our calculus can be extended so as to obtain
completeness also in this case. We also want to explore more efficient
reasoning techniques, possibly by recasting ideas from Bayesian net-
works into a logic setting.

We are currently in the process of extending our logic with a mech-
anism for expressing decision scenarios, including options and utili-
ties, which will make it possible to infer optimal strategies from a set
of observations.
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