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Abstract. This paper presents a formal convergence proof for E-
IPFP, an algorithm that integrates low dimensional probabilistic 
constraints into a Bayesian network (BN) based on the mathematical 
procedure IPFP. It also extends E-IPFP to deal with constraints that 
are inconsistent with each other or with the BN structure. 12

 

1     CONVERGENCE OF E-IPFP  

Let ( , )
S P

G G G=
denote the given BN of n variables ( , )

i n
x x x= L , 

where {( , )}
S i i

G x π= gives the network structure and 

{ ( | )}
P i i

G P x π= is the set of conditional probability tables (CPTs). 

Denote JPD of x defined by G as P(x). Let 1

1
{ ( ),R R y=   

2

2
( ), , ( )}m

m
R y R yL  be a set of probabilistic constraints, where 

( )j

j
R y x⊆ . Our objective is to construct a new BN 'G =  

( ' , ' )
S P

G G  
with its JPD '( )P x  meeting the following conditions: 

C1: Constraint satisfaction: '( ) ( )  

j j

j
P y R y= ∀ ( )j

j
R y R∈ ; 

C2: Structural invariance: '

S S
G G=

; 

C3: Minimality: '( )P x is as close to ( )P x as possible. 

E-IPFP [1] is based on the mathematical procedure IPFP (itera-

tive proportional fitting procedure) [2] which iteratively modifies 

the JPD by the constraints until convergence. It has been shown that 

the converging JPD satisfies all constraints in R (C1) and is closest 

to the original JPD measured by the I-divergence (C3). To satisfy 

the structural invariance (C2), E-IPFP extends IPFP by making the 

BN structure (
S

G ) an additional constraint 

                          1 1 1
( ) ( | )n

m i k i i
R x Q x π

+ = −
= Π .                              (1) 

 

E-IPFP( ( , )
S P

G G G= , },,{
21 m

RRRR L= ) { 

1. 
0 1
( ) ( | )n

i i i
Q x P x π

=

= Π  where ( | )
i i P

P x Gπ ∈ ; 

2. Starting with k = 1, repeat the following procedure until con-

vergence  

{ 2.1. j = ((k-1) mod (m+1)) + 1; 

   2.2. if  j < m+1 
             

1 1
( ) ( ) ( ) / ( )j j

k k j kQ x Q x R y Q y
− −

=
 

    2.3. else   

            {extract ( | )
k i i

Q x π from ( )
k

Q x according to S
G ; 

              
1

( ) ( | )n

k i k i i
Q x Q x π

=

= Π
;} 

   2.4. k = k+1;} 
    3. return 

'

' ( , )
S P

G G G=  with ' { ( | )}
P k i i

G Q x π= ;} 

E-IPFP is exactly the same as standard IPFP except in Step 2.3 

where the structural constraint applies. However, convergence 

proofs for IPFP’s [2,3] do not apply to E-IPFP because 1) 
1+m

R  

changes its value in every iteration and 2) the set of all JPD satisfy-

ing 
S

G  
is not convex. We have shown in [4] that IPFP with 
1

1
{ ( ), ( )}m

m
R R y R y= L

is equivalent to IPFP with a single composite 

constraint 1 2
'( )

m

R y y y y= ∪ ∪L , which is computed by applying 
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IPFP to 
0
( )Q y with 1

1
{ ( ), ( )}m

m
R R y R y= L

. So it suffices to prove the 

convergence of E-IPFP with a single constraint R(y). 

Denote the set of JPD of x that satisfy R(y) as ( )R y
P and the set of 

JPD that satisfy structural constraint as 
S

G
P . Let 

0
( )Q x =  

( | )
i
x x i i

P x π
∈

Π be the JPD of the given BN; 
1
( )Q x =  

0 0
( ) ( ) / ( )Q x R y Q y  the I-Projection of 

0
( )Q x

 
to
 ( )R y
P ; 

2
( )Q x =  

1
( | )

i
x x i i

Q x π
∈

Π the structural constraint; and 3
( )Q x =  

2 2
( ) ( ) / ( )Q x R y Q y

 
be the I-Projection of 

2
( )Q x back to ( )R y

P . 

Points of Q0 through Q3 are depicted in Figure 1 below. Note that 

Q1 is obtained from Q0 by Step 2.2, Q2 from Q1 by Step 2.3, and Q3 

from Q2 by Step 2.2 in the next iteration of E-IPFP. 
 

 

Figure 1.  Successive JPDs from E-IPFP 

 

The convergence of E-IPFP can be established by showing 

1 0 3 2
( || ) ( || )I Q Q I Q Q≥ , i.e., the I-divergence between the two end-

points of I-projection to 
( )R y

P is monotonically decreasing in succes-

sive iterations. Since  1 3 ( )
,

R y
Q Q ∈P , and 

3
Q  is an I-Projection of 2

Q , 

we have 
1 2 3 2

( || ) ( || )I Q Q I Q Q≥ . So E-IPFP converges if  

                          
1 0 1 2

( ) ( || ) ( || )x I Q Q I Q QΔ = −                       (2) 

is non-negative 

Theorem 1. For any given ( , )
s P

G G G=  and R(y), ( ) 0xΔ ≥ .  

Proof. By induction on |x|, the number of variables in G.  

Base case: |x| = 1, 
1

( )x x= , the constraint is 
1

( )R x . It is trivial 

that 
2 1 1 1 1
( ) ( ) ( )Q x Q x R x= = . Then by (2) 

1

1 1 0 1

0 1

( )
( ) ( ) log ( ( ) || ( )) 0,

( )

R x
x R x I R x Q x

Q x
Δ = = ≥∑

 

Inductive assumption: 
1 2

( , ,..., ) 0
n

x x xΔ ≥  for any 1n ≥ . 

Inductive proof: show that
0 1 2

( , , ,..., ) 0
n

x x x xΔ ≥ . Without loss of 

generality, let 
0
x  be a root node of the BN. For clarity, 

let
1 2

( , ,..., )
n

x x x x= . By (2), 

0 0

0 0

2 0 1 0 2 0

0 1 0 1 0

, ,0 0 0 0 0 0

1 0 2 0

1 0 1 0 1 0 2 0

, ,0 0 0 0

( , ) ( ) ( | )
( , ) ( , ) log ( , ) log

( , ) ( ) ( | )

( ) ( | )
( , ) log ( , ) log  ( , ) ( , )

( ) ( | )

x x x x

x x x x

Q x x Q x Q x x
x x Q x x Q x x

Q x x Q x Q x x

Q x Q x x
Q x x Q x x x x x x

Q x Q x x

Δ = =

= + = Δ + Δ

∑ ∑

∑ ∑

0 0

0

1 0 1 0

1 0 1 0 1 0

, 0 0 0 0

1 0

1 0 1 0 0 0

0 0

( ) ( )
( , )= ( , ) log ( ( , )) log

( ) ( )

( )
( ) log ( ( ) || ( )) 0                            (3)

( )

x x x x

x

Q x Q x
x x Q x x Q x x

Q x Q x

Q x
Q x I Q x Q x

Q x

Δ =

= = ≥

∑ ∑ ∑

∑

 

Now consider
2

Δ . 
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Case 1. 
0
x y∈ .Let { }0' \y y x= , then 

0
( ) ( , ')R y R x y= . Since  

1 0 1 0 1 0
( , ) ( ) ( | )Q x x Q x Q x x= ⋅

 and   

0 0

1 0 0 0 0 0

0 0 0 0

( ) ( ' | )
( , ) ( ) ( | )

( ) ( ' | )

R x R y x
Q x x Q x Q x x

Q x Q y x
=

 

and 
1 0 0
( ) ( )Q x R x= , then 

1 0 0 0 0 0 0
( | ) ( | ) ( ' | ) / ( ' | ).Q x x Q x x R y x Q y x=  

Note that, for any particular state *

0
x  of variable 0

x , 
* *

0 0 0
( | ) ( | )

i
x x i i

Q x x Q x π
∈

=Π  is a BN of x, where 

    
*

* 0 0 0 0

0

0

( | , ) if is a child of ;
( | )      (4)

( | ) otherwise.

i i i

i i

i i

Q x x x x x
Q x

Q x

π

π

π

⎧ =⎪
= ⎨
⎪⎩

 

Therefore, 
*

1 0
( | )Q x x  is an I-Projection of 

*

0 0
( | )Q x x  to 

0
( '| )R y x

P  from 

which CPTs of 
*

2 0
( | )Q x x  are extracted, so  

*

* *2 0

1 0 0*

0 0

( | )
( | ) log ( | ) 0;

( | )
x

Q x x
Q x x x x

Q x x
= Δ ≥∑

 

by inductive assumption, and 

         

0

2 0

2 0 1 0 1 0

0 0

( | )
( , ) ( ) ( | ) log 0         (5)

( | )
x x

Q x x
x x Q x Q x x

Q x x
Δ = ≥∑ ∑

 

Case 2. 0
x y∉ . By definition of 1

Q , we have 

1 0

1 0 0 0

0 0 0

( ) / ( )
( | ) ( | )

( ) / ( )

R y Q x
Q x x Q x x

Q y Q x
=

. 

Since 0 0 0 0 0 0 0
( ) / ( ) ( | ) / ( | )Q y Q x Q y x Q x y= , then  

                  
*

1 0 0 0

0 0

( )
( | ) ( | )                   (6)

( | )

R y
Q x x Q x x

Q y x
=

 

where *

0 0 1 0
( ) ( ) ( | ) / ( )R y R y Q x y Q x=

. 

It can be shown easily that 
*( )R y  is a PD of y. Therefore, for 

any given
*

0
x , by (6), 

*

1 0
( | )Q x x  is an I-Projection of 

*

0 0
( | )Q x x  

to
*

( )R y
P . Then by inductive assumption and analogous to (5), 

                 

0

2 0

2 0 1 0

, 0 0

( | )
( , ) ( , ) log 0. 

( | )
x x

Q x x
x x Q x x

Q x x
Δ = ≥∑

          �  

2    INCONSISTENT CONSTRAINTS 

When constraints 
1

1
{ ( ), ( )}m

m
R R y R y= L  are inconsistent either with 

each other or with the BN structure, E-IPFP (and IPFP) will not 

converge to a single point but rather oscillates between some JPDs. 

We have developed an algorithm SMOOTH to deal with inconsis-

tent constraints for IPFP with general JPD [4]. Now we adopt it to 

E-IPFP. The basic idea of SMOOTH is to make the modification bi-

directional: at each iteration, not only the JPD is pulled closer to the 

constraint but also the constraint is pulled towards the current JPD. 

By doing so, the inconsistency among the constraints is gradually 

reduced or smoothened.  
 

E-IPFP-SMOOTH( ( , )
S P

G G G= , },,{
21 m

RRRR L= ) { 

1. 
0 1
( ) ( | )n

i i i
Q x P x π

=

= Π  where ( | )
i i P

P x Gπ ∈ ; 

2. Starting with k = 1, repeat the following procedure until con-

vergence  

    { 2.1. j = ((k-1) mod (m+1)) + 1; 

2.2. if  j < m+1 

    
1

{ ( ) ( ) (1 ) ( );j j j
j j kR y R y Q yα α

−

= + −
 

               
1

1

( )
( ) ( ) ;}

( )

j

j

k k j

k

R y
Q x Q x

Q y
−

−

= ⋅

 

    2.3. else   

            {extract ( | )
k i i

Q x π from ( )
k

Q x according to S
G ; 

              1
( ) ( | )n

k i k i i
Q x Q x π

=

= Π ;} 

   2.4. k = k+1;}  
      3.  return '

' ( , )
S P

G G G=  with ' { ( | )}
P k i i

G Q x π= ;} 

 

Note that this algorithm differs from E-IPFP only in Step 2.2 

where it modifies the constraint before the I-projection is performed. 

The convergence of E-IPFP-SMOOTH is given in the theorem be-

low. Here we only deal with the situation that the constraints are 

inconsistent with the BN structure (the convergence for situations in 

which constraints are inconsistent with each other has been estab-

lished in our earlier work [4]). Similar to Theorem 1, we only show 

the convergence with a single (possibly composite) constraint. 
 

Theorem 2. For any given ( , )
s P

G G G= and constraint R(y) incon-

sistent with GS, E-IPFP-SMOOTH converges to Q* consistent with 

GS. 
 

Recall that from Theorem 1 we have
1 0 3 2

( || ) ( || )I Q Q I Q Q≥ , 

where, as shown in Figure 1, Q3 is an I-projection of Q2 to ( )R y
P

 
if 

E-IPFP is used. Now with E-IPFP-SMOOTH, R(y) is modified in 

Step 2.2 to  

                 

2
'( ) ( ) (1 ) ( )                             (7)R y R y Q yα α= + −

 

Let 3

'Q
 be the I-projection of Q2 to 

'( )

 

R y
P using ' ( )R y . To show the 

convergence of E-IPFP-SMOOTH, we only need to show that 
'

1 0 3 2
( || ) ( || )I Q Q I Q Q≥ . This can be done by showing that 

 

                               
'

3 2 3 2
( || ) ( || )                                  (8)I Q Q I Q Q≥  

 

We proof (8) by showing that when α moves from 0 toward 1, 
'

3 2
( || )I Q Q  strictly increases from 0 toward 

3 2
( || )I Q Q . Due to the 

page limit, the actual proof of Theorem 2 is omitted.  
 

Experiments with BN of different size and with different sets of 

constraints (both marginal and conditional) have shown that both E-

IPFP and E-IPFP-SMOOTH work as expected with time complexity 

exponential to the BN size. The computation can be significantly 

speed-up if the constraint set R can be decomposed and the update is 

allowed to be localized (see D-IPFP in [1]). Further speed-up can be 

achieved for the SMOOTH version by allowing the smooth factor α 

to gradually decreasing toward 0 (see [4]). 

For inconsistent constraints, SMOOTH modifies the constraints 

to fit the BN structure; it is more challenging to change the structure 

to fit the constraints. We are actively working on this problem and 

have some leads that are interesting and promising. 
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