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1 INTRODUCTION

Markov Decision Processes (MDP) constitute a general model for
solving planning problems under uncertainty. In its standard form,
the objective is to maximize the expectation of the sum of rewards.
As in practice, actions are generally valued over several dimensions
(cost, time, energy consumption, reward. . . ), MDPs have been ex-
tended to take into account multiple (generally conflicting) objec-
tives or criteria. When several objectives must be optimized simulta-
neously, most of the studies on MDPs concentrate on the determina-
tion of the entire set of Pareto-optimal solutions, i.e. policies having
a value vector that cannot be improved on a criterion without be-
ing downgraded on another criterion. However, the size of the Pareto
set is often very large due to the combinatorial nature of the set of
deterministic policies, its determination induces prohibitive response
times and requires very important memory space when the number of
states and/or criteria increases. Fortunately, there is generally no need
to determine the entire set of Pareto-optimal policies, but only spe-
cific compromise policies achieving a good tradeoff between the pos-
sibly conflicting objectives. The quality of the compromise achieved
can be measured using a scalarizing function discriminating between
Pareto-optimal solutions [6].

2 BACKGROUND

An MDP [5] is described by a finite set S of states, a finite set A of
actions, transition probabilities T (s, a, s′) of reaching state s′ from
state s with action a, immediate rewards R(s, a) ∈ IR obtained when
executing action a in state s. In this context, a policy π is a procedure
that determines which action to choose in each state. A policy can
be deterministic, i.e. defined as π : S → A, or more generally,
randomized, i.e. defined as π : S → P(A) where P(A) is the set of
probability distributions over A. The value of a policy π is defined
by a value function vπ : S → IR that gives the expected discounted
total reward yielded by applying π from each initial state, i.e. ∀s ∈ S,
vπ(s) = E(

P
t>0 γt−1Rt|π, s0 = s) where γ ∈ [0, 1[ is a discount

factor, Rt is a random variable giving the reward at step t and s0 is
the initial state.

In this standard framework, there exists an optimal deterministic
policy that yields the best expected discounted total reward in each
initial state. Solving an MDP amounts to finding one of those poli-
cies. There are three main approaches for solving MDPs [5]. Two are
based on dynamic programming: value iteration and policy iteration.
The last one is based on linear programming.

MDPs have been extended to take into account multiple dimen-
sions or criteria. A multiobjective MDP (MMDP) is defined as an
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MDP where rewards R(s, a) are now defined as vectors of IRn where
n is the number of criteria, R(s, a) = (R1(s, a), . . . , Rn(s, a)) and
Ri(s, a) is the immediate reward for criterion i.

Now, a policy π is valued by a value function V π : S → IRn,
which gives the expected discounted total reward vector in each
state. To compare the value of policies in a given state s, the ba-
sic model adopted in most previous studies [7, 8, 1] is Pareto-
dominance defined by: for two policies π, π′, for a state s, V π(s)

Pareto-dominates V π′
(s), denoted V π(s) �P V π′

(s) if and only
if V π(s) �= V π′

(s) and ∀i = 1 . . . n, V π
i (s) ≥ V π′

i (s). For a
set X ⊂ IRn, the set of Pareto-optimal vectors of X is defined by
M(X,�P ) = {x ∈ X : ∀y ∈ X, not y �P x}.

Standard methods for MDPs can be extended to solve MMDPs
although some problems remain opened as noted by [8] for methods
based on dynamic programming. [7] proposed a multiobjective linear
program for finding Pareto-optimal solutions in a MMDP.

Looking for all Pareto-optimal solutions can be difficult and time-
consuming as �P being partial, there could be many Pareto-optimal
solutions. In fact, there exists instances of problems where the num-
ber of Pareto-optimal deterministic policies is exponential in the
number of states [4]. Besides, in practice, one is generally only in-
terested in one particular solution among all the Pareto-optimal solu-
tions that gives interesting tradeoffs between all the criteria. A more
interesting approach for MMDP would be to directly search for that
particular solution instead of finding first all the Pareto-optimal solu-
tions.

3 SEARCH FOR COMPROMISE SOLUTIONS

We introduce the notion of scalarizing function that will be used to
discriminate between Pareto-optimal vectors in a given state. For-
mally, a scalarizing function is a function ψ : IRn → IR that defines
an overall value function v : S → IR from a vector value function
V : S → IRn by v(s) = ψ(V1(s), . . . , Vn(s)).

The most straightforward choice for ψ seems to be the weighted
sum. In this case, v(s) =

Pn
i=1 λiVi(s) where λi > 0, ∀i = 1 . . . n

so as to preserve the monotonicity with respect to Pareto domi-
nance. By linearity of the mathematical expectation and the weighted
sum, optimizing v is equivalent to solving the standard MDP ob-
tained from the MMDP where the reward function is defined as:
r(s, a) =

Pn
i=1 λiRi(s, a), ∀s, a. In that case, an optimal determin-

istic policy exists and standard solution methods can then be applied.
However, using a weighted sum is not a good procedure for reaching
balanced solutions as weighted sum is a fully compensatory operator
that does not encode the idea of balanced solutions. Besides, gener-
ally good balanced solutions can only be obtained with randomized
policy, which excludes the use of a weighted sum.
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In multiobjective optimization, the question of finding balanced
solutions among the Pareto-optimal ones is a crucial issue. The stan-
dard way of generating compromise solutions in the Pareto-optimal
set is to resort to the so-called reference point approach that con-
sists in finding a feasible vector that minimizes a distance to a pre-
scribed reference point [9, 6, 3]. This distance is given by the Tcheby-
cheff scalarizing function defined for all x ∈ IRn by: ψ(x, r, λ) =
maxi=1...n λi|ri − xi| + ε

P
i=1...n λi|ri − xi| where r ∈ IRn is

the reference point, λ ∈ IRn is a positive weighting vector and ε is a
positive real chosen arbitrarily small. The best compromise solution
V T∗ : S → IRn, called Tchebycheff-optimal, can then be computed
with V T∗ = argminV ψ(

P
s∈S μ(s)V (s), r, λ) where μ is a distri-

bution probability over initial states.
To exploit this equation, we need to set properly those parame-

ters. Generally, reference point r is taken as the ideal point. It can
be computed with n different one-dimensional optimizations, that is
we solve the MMDP as a standard MDP successively with reward
function Ri for i = 1 . . . n. We denote V i∗ : S → IRn the opti-
mal value function for the i-th criterion. In a state s, the ideal point
then can be formally defined as follows: vI

i =
P

s∈S μ(s)V i∗
i (s) for

all i = 1 . . . n. With the V i∗s, a second point can also be defined:
vA

i (s) =
P

s∈S μ(s)minj=1...n V j∗
i (s) which is in fact an approx-

imation of the Nadir point, i.e. a lower bound of the Pareto-optimal
solutions. We use an approximation of the Nadir point as it is gener-
ally difficult to determine exactly [2]. Then the weights are defined
as follows: λi(s) = wi

|vI
i (s)−vA

i (s)| where w ∈ IRn represents the
weights of criteria.

As shown in [9], this way of constructing compromise solutions
guarantees some nice properties. Contrary to the weighted sum,
here, any Pareto-optimal solution can be reached by minimizing the
Tchebycheff scalarizing function with a proper choice of w. More-
over, any Tchebycheff-optimal solution is Pareto-optimal.

4 SOLUTION METHOD AND EXPERIMENTS

As the Tchebycheff scalarizing function is not linear, solving meth-
ods based on dynamic programming can not be exploited directly.
However, the multiobjective linear program proposed for MMDP [7]
can be adapted to our problem. The Tchebycheff-optimal solutions
can be found with the following linear program:

min z + ε
X

i=1...n

λi

`
vI

i −
X

s∈S

X

a∈A

Ri(s, a)x(s, a)
´

s.t. z ≥ λi

`
vI

i −
X

s∈S

X

a∈A

Ri(s, a)x(s, a)
´ ∀i = 1 . . . n

X

a∈A

x(s, a) − γ
X

s′∈S

X

a∈A

x(s′, a)T (s′, a, s) = μ(s)

∀s ∈ S

x(s, a) ≥ 0 ∀s ∈ S,∀a ∈ A

Due to the non-linearity of the Tchebycheff scalarizing function, so-
lutions now depend on the initial state. Therefore, when the initial
state s0 is known, μ(s0) = 1 and μ(s) = 0 when s �= s0; other-
wise, distribution μ can be chosen as the uniform distribution over
the possible initial states.

We tested our solving method on the navigation problem over a
grid NxN. In this problem, the robot can choose among four actions:
Left, Up, Right, Down. Figure 1 gives the transitions for action Right.
The whole transition function can then be obtained by symmetry. Re-
wards are two-dimensional vectors whose components are randomly

drawn within interval [0, 1]. The discount factor is set to 0.9 and the
initial state is set arbitrarily to the upper left corner of the grid.
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Figure 1. Transitions

As in real problems, criteria are generally conflicting, for the first
set of experiments, to generate realistic random instances, we simu-
late conflicting criteria with the following procedure: for each state
and action, one criterion (picked randomly) is drawn uniformly in
[0, 0.5] and the other is drawn in [0.5, 1]. The results over 100 ex-
periments are represented on Figure 2. One point on that figure (a
dot for weighted sum and a circle for the Tchebycheff norm) repre-
sents the optimal value function in the initial state for one instance.
Naturally, for some instances, the weighted sum yields a balanced so-
lution. But, in most cases, the weighted sum gives a bad compromise
solution. Figure 2 actually shows that we do not have any control on
tradeoffs obtained with a weighted sum. On the contrary, when using
a Tchebycheff norm, the profile of the solutions are always balanced.

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10

weighted
tchebycheff

�� ��

�

��

�

�

��

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�
��

�

�

�

�
��

�

�

��

�

�

�

�

�

�

� �

�

�

�
�

�

�
�

�

�

�
�

�

� �

�

�

�
�
�

�

�

�
�
�

�

�

�

�

�

�
�

�

�

Figure 2. First experiments
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Figure 3. Second experiments

To show the effectiveness of our approach, we ran a second set of
experiments on pathological instances. Rewards are drawn randomly
as for the first set of experiments. Then in the initial state, for each
action, we randomly pick one criterion and add a constant (here, ar-
bitrarily set to 5). Then by construction, the value functions of all de-
terministic policies in the initial state are unbalanced (Figure 3). Re-
assuringly, Tchebycheff-optimal solutions are always well-balanced.
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