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Abstract. Logic programs under the stable models semantics, or
answer-set programs, provide an expressive rule based knowledge
representation framework, featuring formal, declarative and well-
understood semantics. However, handling the evolution of rule bases
is still a largely open problem. The AGM framework for belief
change was shown to give inappropriate results when directly ap-
plied to logic programs under a nonmonotonic semantics such as the
stable models. Most approaches to address this issue, developed so
far, proposed update operators based on syntactic conditions for rule
rejection.

More recently, AGM revision has been successfully applied to a
significantly more expressive semantic characterisation of logic pro-
grams based on SE models. This is an important step, as it changes
the focus from the evolution of a syntactic representation of a rule
base to the evolution of its semantic content.

In this paper, we borrow results from the area of belief update to
tackle the problem of updating (instead of revising) logic programs.
We prove a representation theorem which makes it possible to con-
structively define any operator satisfying a set of postulates derived
from Katsuno and Mendelzon’s postulates for belief update. We de-
fine a specific operator based on this theorem and compare the be-
haviour of this operator with syntactic update operators defined in the
literature. Perhaps surprisingly, we uncover a very serious drawback
in a large class of semantic update operators to which it belongs.

1 Introduction

Answer-Set Programming (ASP) [11, 5] is now widely recognised
as a valuable approach for knowledge representation and reasoning,
mostly due to its simple and well understood declarative semantics,
its rich expressive power, and the existence of efficient implementa-
tions.

However, the dynamic character of many applications that can
benefit from ASP calls for the development of ways to deal with the
evolution of answer-set programs and the inconsistencies that may
arise.

The problems associated with knowledge evolution have been ex-
tensively studied, over the years, by researchers in different research
communities, namely in the context of Classical Logic, and in the
context of Logic Programming.

In the context of Classical Logic, the seminal work by Alchourrón,
Gärdenfors and Makinson (AGM) [1] proposed a set of desirable
properties of belief change operators, now called AGM postulates.
Subsequently, Katsuno and Mendelzon distinguished update and re-
vision as two very related but ultimately different belief change op-
erations [13]. While revision deals with incorporating new informa-
tion about a static world, update takes place when changes occurring
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in a dynamic world are recorded. Katsuno and Mendelzon also for-
mulated a separate set of postulates for updates, now known as KM
postulates. One of the specific update operators that satisfies these
postulates is Winslett’s minimal change update operator [21].

In the context of Logic Programming, earlier approaches based
on literal inertia [17] proved not sufficiently expressive for dealing
with rule updates, leading to the development of semantics for rule
updates based on different intuitions, principles and constructions,
when compared to their classical counterparts. For example, the in-
troduction of the causal rejection principle [15] lead to several ap-
proaches to rule updates [3, 14, 10, 2], all of them with a strong
syntactic flavour. Though useful in practical applications, it turned
out that most of these semantics have undesirable behaviour in cer-
tain situations [2, 19]. For example, in most of these semantics ([2]
being an exception), tautological updates may influence the origi-
nal rule base, a behaviour that is highly undesirable when consider-
ing knowledge update operations2. But more important, the syntac-
tic nature of these formalisms makes any analysis of their semantic
properties a daunting task. The postulates set forth in the context of
Classical Logic (AGM and KM) were also studied in the context of
Logic Programming, only to find that their formulations based on a
nonmonotonic semantics such as the stable models semantics were
inappropriate [10].

Recently, in [7], AGM based revision was reformulated in the con-
text of Logic Programming in a manner analogous to belief revision
in classical propositional logic, and specific revision operators for
logic programs were investigated. Central to this novel approach are
SE models [20] which provide a monotonic semantic characterisation
of logic programs that is strictly more expressive than the answer-set
semantics. Furthermore, two programs have the same set of SE mod-
els if and only if they are strongly equivalent [16], which means that
programs P,Q with the same set of SE models can be modularly
replaced by each other with respect to the answer-set semantics, be-
cause strong equivalence guarantees that P ∪R has the same answer
sets as Q ∪R for any program R.

Indeed, the results of [7] constitute an important breakthrough in
the research of answer-set program evolution, as they change the fo-
cus from the syntactic representation of a program to its semantic
content.

In this paper, we follow a similar path, but to tackle the problem
of answer-set program updates, instead of revision as in [7].

Using SE models, we adapt the KM postulates to answer-set pro-
gram updates and show a representation theorem which provides a
constructive characterisation of program update operators satisfying
the postulates, making it possible to define and compute any opera-
tor satisfying the postulates using an intuitive construction. We also
show how this constructive characterisation can be used by defining

2 This behaviour is also exhibited by [18, 22], where change operators were
defined, somehow intermixing update and revision.
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a specific answer-set program update operator which is a counterpart
of Winslett’s belief update operator.

However, while investigating the operator’s properties, we uncover
a serious drawback which, as it turns out, extends to all meaning-
ful answer-set program update operators based on SE models and
the Katsuno and Mendelzon’s approach to updates. This finding is
very important as it guides the research on updates of answer-set
programs away from the semantic approach materialised in Katsuno
and Mendelzon’s postulates or, alternatively, to the development of
semantic characterisations of answer-set programs, richer than SE
models, that are appropriate to describe their dynamic behaviour.

The remainder of this paper is structured as follows: In Sect. 2
we introduce the notions that are necessary throughout the rest of
the paper. Section 3 contains the reformulation of KM postulates
for logic program updates and the representation theorem that es-
tablishes a general constructive characterisation of program update
operators obeying the postulates. In Sect. 3 we also show how this
theorem can be used by defining a specific program update operator.
In Sect. 4 we analyse the operator defined in Sect. 3 and establish
that a large class of semantic update operators to which it belongs
exhibits an undesired behaviour. We then conclude in Sect. 5.

2 Preliminaries

We consider a propositional language over a finite set of proposi-
tional variables L and the usual set of propositional connectives to
form propositional formulae. A (propositional) interpretation is any
I ⊆ L and the set of all interpretations is I = 2L. We use the stan-
dard semantics for propositional formulae and for a formula φ we
denote by �φ� the set of its models. We say a formula φ is satisfiable
if �φ� is nonempty and that it is complete if �φ� is a singleton set. For
formulae φ, ψ we say φ implies ψ, denoted by φ |= ψ, if �φ� ⊆ �ψ�
and that φ is equivalent to ψ, denoted by φ ≡ ψ, if �φ� = �ψ�.
As we are dealing with the finite case, every knowledge base can be
expressed by a single formula.

2.1 Belief Update

Update is a belief change operation which captures changes occur-
ring in the modelled environment [13]. An update operator is simply
any function that takes two formulae as arguments, representing the
original knowledge base and its update, respectively, and returns a
formula representing the updated knowledge base.

Katsuno and Mendelzon, in [13], proposed the following eight de-
sirable properties of a belief update operator �, that should hold for
all propositional formulae φ, φ1, φ2, ψ, ψ1, ψ2:

(KM 1) φ � ψ |= ψ.
(KM 2) If φ |= ψ, then φ � ψ ≡ φ.
(KM 3) If both φ and ψ are satisfiable, then φ � ψ is satisfiable.
(KM 4) If φ1 ≡ φ2 and ψ1 ≡ ψ2, then φ1 � ψ1 ≡ φ2 � ψ2.
(KM 5) (φ � ψ) ∧ χ |= φ � (ψ ∧ χ).
(KM 6) If φ � ψ1 |= ψ2 and φ � ψ2 |= ψ1, then φ � ψ1 ≡ φ � ψ2.
(KM 7) (φ � ψ1) ∧ (φ � ψ2) |= φ � (ψ1 ∨ ψ2) if φ is complete.
(KM 8) (φ1 ∨ φ2) � ψ ≡ (φ1 � ψ) ∨ (φ2 � ψ).

They also proved an important representation theorem which
makes it possible to define and compute any operator satisfying these
postulates using an intuitive construction. It is based on treating the
models of a knowledge base as possible real states of the modelled
environment. An update of the original knowledge base φ is per-
formed by modifying each of its models as little as possible to make

it consistent with the new information in the update ψ, obtaining a
new set of interpretations – the models of the updated knowledge
base. More formally,

�φ � ψ� =
⋃

I∈�φ�

incorporate(�ψ�, I) ,

where incorporate(S, I) returns the members of S closer to I . A
natural way of defining incorporate(S, I) is by assigning a preorder
≤I to each interpretation I and taking the minima of S w.r.t. ≤I , i.e.

incorporate(S, I) = min(S,≤I)

Hence, we define the notion of an order assignment as follows:

Definition 1. A preorder over S is a reflexive and transitive binary
relation over S. A strict preorder over S is an irreflexive and tran-
sitive binary relation over S. The strict preorder < induced by a
preorder ≤ is defined for all a, b ∈ S as follows: a < b if and only if
a ≤ b and not b ≤ a.

A partial order over S is any preorder over S that is antisymmetric.
The set of minimal elements of T ⊆ S w.r.t. a preorder ≤ over S

is defined as min(T,≤) = {x ∈ T | (�y ∈ T )(y < x) } where <
is the strict preorder induced by ≤.

Definition 2 (Preorder assignment, partial order assignment). A pre-
order assignment is any function ω which assigns a preorder ≤ω

I over
I to each interpretation I ∈ I. By <ω

I we denote the strict preorder
induced by ≤ω

I .
A partial order assignment is any preorder assignment ω such that

≤ω
I is a partial order over I for every interpretation I ∈ I.

A natural condition on the assigned preorders is that every inter-
pretation be the closest to itself. This is captured by the notion of a
faithful order assignment:

Definition 3 (Faithful assignment). A preorder assignment ω is
faithful if for every interpretation I the following condition is sat-
isfied: For every J ∈ I with J 
= I it holds that I <ω

I J .

The mentioned representation theorem relates the above described
construction with the postulates:

Theorem 4 ([13]). Let � be a belief update operator. Then the fol-
lowing conditions are equivalent:

1. The operator � satisfies conditions (KM 1) – (KM 8).
2. There exists a faithful preorder assignment ω such that for all for-

mulae φ, ψ

�φ � ψ� =
⋃

I∈�φ�

min(�ψ�,≤ω
I ) .

3. There exists a faithful partial order assignment ω such that for all
formulae φ, ψ

�φ � ψ� =
⋃

I∈�φ�

min(�ψ�,≤ω
I ) .

The most commonly used and studied belief update operator sat-
isfying Katsuno and Mendelzon’s postulates is Winslett’s minimal
change update operator [21]. It can be defined using the above pre-
sented construction as follows: Let the preorder assignment W be
defined for any interpretations I, J,K as follows:

J ≤W
I K if and only if (J ÷ I) ⊆ (K ÷ I)

where ÷ denotes set-theoretic symmetric difference. Winslett’s op-
erator �W is then characterised by

�φ �W ψ� =
⋃

I∈�φ�

min(�ψ�,≤W
I ) .
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2.2 Logic Programming

We define the syntax and semantics of logic programs, borrowing
some notation used in [7].

An atom is any p ∈ L. A literal is an atom p or its default negation
∼p. Given a set of literals X , we define X+ = { p ∈ L | p ∈ X },
X− = { p ∈ L | ∼p ∈ X } and ∼X = {∼p | p ∈ X ∩ L}. A rule
is any expression of the form

p1; . . . ; pm;∼q1; . . . ;∼qn ← r1, . . . , ro,∼s1, . . . ,∼sp (1)

where m,n, o, p are natural numbers such that m + n ≥ 1 and
pi, qj , rk, sl ∈ L for i ∈ { 1, 2, . . . ,m }, j ∈ { 1, 2, . . . , n },
k ∈ { 1, 2, . . . , o }, l ∈ { 1, 2, . . . , p }. Operators ‘;’ and ‘,’ express
disjunctive and conjunctive connectives, respectively. We also define

H(r) = { p1, . . . , pm,∼q1, . . . ,∼qn } ,

B(r) = { r1, . . . , ro,∼s1, . . . ,∼sp } .

H(r) is dubbed the head of r and B(r) the body of r. For simplicity,
we sometimes use a set-based notation, expressing a rule (1) as

H(r)+;∼H(r)− ← B(r)+,∼B(r)− .

A program is a set of rules. A rule as in (1) is called normal if m = 1
and n = 0; definite if it is normal and p = 0; fact if o = p = 0 and
m + n = 1. A program is normal if all its rules are normal and it is
definite if all its rules are definite.

Turning to the semantics, we need to define answer sets and SE
models of a logic program. We start by defining the more basic notion
of a (classical) model of a logic program. A model of a program P is
an interpretation in which all rules from P are true according to the
standard definition of truth in propositional logic, and where default
negation is treated as classical negation. We write I |= P if and only
if I is a classical model of P .

An interpretation I is an answer set of a program P if and only if
I is a subset-minimal model of

PI =
{
H(r)+ ← B(r)+ | r ∈ P ∧H(r)− ⊆ I

∧B(r)− ∩ I = ∅} .

An SE interpretation [20] has a richer structure than a proposi-
tional interpretation. It consists of a pair of propositional interpreta-
tions, the first representing the true atoms and the second the atoms
that are not false. Formally:

Definition 5 (SE Interpretation). An SE interpretation is a pair
X = 〈I, J〉 of interpretations such that I ⊆ J ⊆ L. A set S
of SE interpretations is well-defined if, for each 〈I, J〉 ∈ S, also
〈J, J〉 ∈ S. The set of all SE interpretations is denoted by ISE. For
every SE interpretation X = 〈I, J〉 we denote by X∗ the SE inter-
pretation 〈J, J〉.

We are now ready to define the notion of an SE model. SE models
provide a monotonic characterisation of logic programs that we later
use to adapt KM postulates for program updates, similarly as was
done for revision in [7].

Definition 6 (SE Models). An SE interpretation 〈I, J〉 is an SE
model of a program P if J |= P and I |= PJ . The set of all SE
models of a program P is denoted by �P�SE.

We say that a program P is satisfiable if �P�SE is nonempty and
that it is basic if �P�SE is either a singleton set, or has two elements
X,Y such that Y = X∗. For programs P,Q we say P implies Q,
denoted by P |=s Q, if �P�SE ⊆ �Q�SE, and that P is strongly
equivalent to Q, denoted by P ≡s Q, if �P�SE = �Q�SE.

Note that J is an answer set of P if and only if 〈J, J〉 ∈ �P�SE and
no 〈I, J〉 ∈ �P�SE with I � J exists. Also, we have 〈J, J〉 ∈ �P�SE

if and only if J is a classical model of P .
The following result pinpoints the fact that the set of SE models of

a logic program is always well-defined.

Proposition 7 ([7]). A set of SE interpretations S is well-defined if
and only if S = �P�SE for some program P .

3 Semantic Program Update Operators

In this section we study semantic program update operators based on
Katsuno and Mendelzon’s update postulates and SE models. Since
SE models provide a monotonic characterisation of logic programs,
the analysis provided in [10], which showed KM postulates not ap-
propriate to be used with nonmonotonic semantics, no longer applies.
We are then able to re-define KM postulates in the context of Logic
Programming and SE models, and show a representation theorem
which provides a constructive characterisation of update operators
satisfying the postulates. These operators are semantic in nature, in
contrast with those defined in [3, 14, 10, 2], and are in line with KM
postulates, in contrast with those defined in [18, 22].

We start by defining a program update operator as a function that
takes two programs, the original program and the updating program,
as arguments and returns the updated program:

Definition 8 (Program update operator). A program update operator
is any function that assigns a program to each pair of programs.

In order to reformulate postulates (KM 1) to (KM 8) for logic pro-
grams under the SE models semantics, we first need to specify what
a conjunction and disjunction of logic programs is. To this end, we
introduce program conjunction and disjunction operators. These are
required to assign, to each pair of programs, a program whose set of
SE models is an intersection and union, respectively, of the sets of
SE models of the argument programs. Formally:

Definition 9 (Program conjunction and disjunction). A binary oper-
ator ∧̇ on the set of all programs is a program conjunction operator
if an only if �P ∧̇ Q�SE = �P�SE ∩ �Q�SE for all programs P,Q.

A binary operator ∨̇ on the set of all programs is a program dis-
junction operator if an only if �P ∨̇ Q�SE = �P�SE ∪ �Q�SE for all
programs P,Q.

In the following we assume that some program conjunction and
disjunction operators ∧̇, ∨̇ are given. Also note that the program con-
junction operator is the same as the expansion operator defined in
[7]. A syntactic operator for program disjunction operator can be de-
fined by translating the argument programs into the logic of here and
there, taking their disjunction and transforming the resulting formula
back into a logic program (using results from [6]).

Finally, we need to substitute the notion of a complete formula
used in (KM 7) with a suitable class of logic programs. It turns out
that the notion of a basic program is a natural candidate for this
purpose because the set of SE models of a program is always well-
defined. We recall that a program is called basic if and only if it either
has a single SE model 〈J, J〉 or a pair of SE models 〈I, J〉 , 〈J, J〉.

The following are the reformulated postulates of a program update
operator ⊕ that should hold for all programs P,P1,P2,Q,Q1,Q2:

(PU 1) P ⊕Q |=s Q.
(PU 2) If P |=s Q, then P ⊕Q ≡s P .
(PU 3) If both P and Q are satisfiable, then P ⊕Q is satisfiable.
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(PU 4) If P1 ≡s P2 and Q1 ≡s Q2, then P1 ⊕Q1 ≡s P2 ⊕Q2.
(PU 5) (P ⊕Q) ∧̇ R |=s P ⊕ (Q ∧̇ R).
(PU 6) If P ⊕Q1 |=s Q2 and P ⊕Q2 |=s Q1,

then P ⊕Q1 ≡s P ⊕Q2.
(PU 7) (P ⊕Q1) ∧̇ (P ⊕Q2) |=s P ⊕ (Q1 ∨̇ Q2) if P is basic.
(PU 8) (P1 ∨̇ P2)⊕Q ≡s (P1 ⊕Q) ∨̇ (P2 ⊕Q).

We now turn to a constructive characterisation of program update
operators satisfying postulates (PU 1) – (PU 8). Similarly as for be-
lief update, it is based on the equation

�P ⊕Q�SE =
⋃

Z∈�P�SE

min(�Q�SE,≤Z) ,

where ≤Z is a preorder over ISE assigned to Z using some SE pre-
order assignment:

Definition 10 (SE preorder assignment, SE partial order assignment).
An SE binary relation assignment is any function ω which assigns a
binary relation Rω

Z over ISE to every SE interpretation Z.
An SE preorder assignment is any SE binary relation assignment

ω for which Rω
Z is a preorder over ISE. In this case we denote Rω

Z

by ≤ω
Z and use infix notation instead of prefix notation. By <ω

Z we
denote the strict preorder induced by ≤ω

Z . Given an SE preorder as-
signment ω we denote by op(ω) the set of program update operators
⊕ such that for all programs P,Q it holds that

�P ⊕Q�SE =
⋃

Z∈�P�SE

min(�Q�SE,≤ω
Z) .

We say that ω is well-defined if op(ω) is nonempty and for each
⊕ ∈ op(ω) we say that ω characterises ⊕.

An SE partial order assignment is any SE preorder assignment ω
such that ≤ω

Z is a partial order over ISE for every Z ∈ ISE.

Similarly as before, we will require the preorder assignment to be
faithful, i.e. to consider each SE interpretation the closest to itself.

Definition 11 (Faithful SE preorder assignment). An SE preorder
assignment ω is faithful if for every SE interpretation Z the following
condition is satisfied: For every X ∈ ISE with X 
= Z it holds that
Z <ω

Z X .

Interestingly, faithful assignments generate the same class of op-
erators as the larger class of semi-faithful assignments, defined as:

Definition 12 (Semi-faithful SE preorder assignment). An SE pre-
order assignment ω is semi-faithful if for every SE interpretation Z
the following conditions are satisfied:

1. For every X ∈ ISE with X 
= Z and X 
= Z∗ either Z <ω
Z X or

Z∗ <ω
Z X .

2. There is no X ∈ ISE such that X <ω
Z Z.

Finally, we require the SE preorder assignment to satisfy one fur-
ther condition which is again related to the well-definedness of sets
of SE models of a program. It can naturally be seen as the semantic
counterpart of (PU 7).

Definition 13 (Organised SE preorder assignment). An SE preorder
assignment ω is organised if for any SE interpretations X,Z and any
well-defined sets of SE interpretations S1, S2 the following condition
is satisfied: If X is a minimum of S1 w.r.t. either ≤ω

Z or ≤ω
Z∗ and it is

a minimum of S2 w.r.t. either ≤ω
Z or ≤ω

Z∗ , then it is also a minimum
of S1 ∪ S2 w.r.t. either ≤ω

Z or ≤ω
Z∗ .

We are now ready to formulate the main result of this section:

Theorem 14 (Representation theorem). Let ⊕ be a program update
operator. Then the following conditions are equivalent:

1. The operator ⊕ satisfies conditions (PU 1) – (PU 8).
2. There exists a semi-faithful and organised SE preorder assignment

ω such that ⊕ ∈ op(ω), i.e. for all programs P,Q it holds that

�P ⊕Q�SE =
⋃

Z∈�P�SE

min
(
�Q�SE,≤ω

Z

)
.

3. There exists a faithful and organised SE partial order assignment
ω such that ⊕ ∈ op(ω), i.e. for all programs P,Q it holds that

�P ⊕Q�SE =
⋃

Z∈�P�SE

min
(
�Q�SE,≤ω

Z

)
.

This theorem provides a constructive characterisation of program
update operators satisfying the defined postulates. It facilitates the
analysis of their semantic properties as well as their computational
complexity. Note also that it implies that as far as the defined op-
erator is concerned, the larger class of semi-faithful and organised
SE preorder assignments is equivalent to the smaller class of faithful
and organised SE partial order assignments. Furthermore, it offers
a strategy for defining operators satisfying the postulates that can be
directly implemented. This strategy is also complete in the sense that,
up to strong equivalence, all operators satisfying the postulates can
be characterised and distinguished by applying this strategy.

In what follows, we define a specific update operator based on
Winslett’s minimal change update operator [21] defined in the pre-
vious section. As in [7], in case of the SE models semantics, the
preorder needs to give preference to the second component of SE
interpretations. We define the SE binary relation assignment W for
any SE interpretations X = 〈I1, J1〉 , Y = 〈I2, J2〉 , Z = 〈K,L〉
as follows: X ≤W

Z Y if and only if the following conditions are
satisfied:

1. (J1 ÷ L) ⊆ (J2 ÷ L);
2. If (J1 ÷ L) = (J2 ÷ L), then (I1 ÷ K) \ Δ ⊆ (I2 ÷ K) \ Δ

where Δ = J1 ÷ L.

Intuitively, first we compare the differences between the second com-
ponents of X and Y with respect to Z. If they are equal, we compare
the differences between the first components of X and Y with re-
spect to Z, but now ignoring the differences of the second compo-
nents. The following result shows that W indeed satisfies the neces-
sary conditions to characterise a program update operator satisfying
the postulates.

Proposition 15. The assignment W is a well-defined, faithful and
organised SE preorder assignment.

Let us pick an arbitrary program update operator ⊕W from op(W )
(note that op(W ) is nonempty since W is well-defined). Then, as a
consequence of the theorem and the above proposition, we obtain

Corollary 16. The program update operator ⊕W satisfies condi-
tions (PU 1) – (PU 8).

4 Support in Semantic Program Updates

In this section we take a closer look at the behaviour of semantic
program update operators.
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One of the benefits of dealing with program updates on a semantic
level is that semantic properties that are rather difficult to show for
syntactic update operators are much easier to be analysed and proven.
For example, one of the most widespread and counterintuitive side
effects of syntactic updates is that they are sensitive to tautological
updates, with the exception of [2]. In case of semantic update opera-
tors, such a behaviour is easily shown to be impossible given that the
operator satisfies postulate (PU 2).

However, semantic update operators do not always behave the way
we expect. Consider first an example using the update operator ⊕W

defined in the previous section3:

Example 17. Let the programs P1,P2 and Q be as follows:

P1 : p. P2 : p ← q. Q : ∼q.
q. q.

It can be easily verified that4:

�P1 ⊕W Q�SE = �P2 ⊕W Q�SE = { 〈p, p〉 } .

Hence, both P1 ⊕W Q and P2 ⊕W Q have the single answer set
I = { p }. In case of P1⊕W Q this is indeed the expected result. But
in case of P2 ⊕Q we can see that p is true in I even though there is
no rule in P2 ∪ Q justifying it, i.e. there is no rule with p in its head
and its body true in I . Hence, the behaviour of ⊕W is in disaccord
with intuitions underlying most Logic Programming semantics.

In the following we show that such counterintuitive behaviour is
not specific to ⊕W , but extends to a large class of semantic update
operators for answer-set programs based on SE models and Katsuno
and Mendelzon’s postulates for update.

The property of support [4, 9] is one of the basic conditions that
Logic Programming semantics are intuitively designed to satisfy. In
the static case, this property can be formulated as follows:

Definition 18 (Support in the static case). Let P be a program, L a
literal and I an interpretation. We say P supports L in I if and only
if there is some rule r ∈ P such that L ∈ H(r) and I |= B(r).

A Logic Programming semantics SEM is supported if for each
model I of a program P under SEM the following condition is sat-
isfied: Every atom p ∈ I is supported by P in I .

Note that the widely accepted Logic Programming semantics, such
as the answer-set and well-founded semantics, are supported (see [8,
9] for more on properties of Logic Programming semantics).

It is only natural to require that program update operators do not
neglect this essential property which also gives rise to much of the in-
tuitive appeal of Logic Programming systems. In particular, we con-
jecture that an update operator for answer-set programs should obey
the following properties related to support:

3 It has been shown that Winslett’s update operator has some drawbacks,
just as other update operators previously proposed in the context of Clas-
sical Logic do (see [12] for a survey). Nevertheless, we decided to choose
Winslett’s update operator as the basis to define a program update operator
and illustrate its properties because it is one of the most extensively stud-
ied and understood update operators, and because the undesired behaviour
illustrated in this example is shared by a much larger class of update oper-
ators based on KM postulates and SE models – as we shall see – and not a
specific problem due to our choice of Winslett’s update operator.

4 For the sake of readability, we omit the curly braces when listing SE
interpretations. For example, instead of 〈{ p } , { p, q }〉 we simply write
〈p, pq〉.

Definition 19 (Support for answer-set program update operators).
We say a program update operator ⊕ respects support if the follow-
ing conditions are satisfied for any programs P,Q, any answer set I
of P ⊕Q and any atom p:

1. If p ∈ I , then P ∪Q supports p in I .
2. If p appears only in the head of a single normal rule in P and

nowhere in Q, and p is supported by P in I , then p ∈ I .

The first condition simply requires all atoms true in an answer set
of P ⊕ Q to be supported by either P or Q in that same answer
set. We believe this is an intuitive criterion for update operators as
it reflects the static support property of most Logic Programming
semantics.

The second condition requires every atom with only a single oc-
currence in a rule of P which also supports it in an answer set of
P ⊕ Q to also be true in that answer set. Note that this second con-
dition applies only to a few very specific cases. In certain scenarios,
a stricter criterion may be desirable. However, the present condition
captures a very basic case in which support should be inherited by
inertia into the updated program.

The following theorem shows that reasonable update operators
satisfying even only some of the most basic postulates do not re-
spect support, i.e. they break at least one of the two above defined
conditions. By reasonable we mean all those operators that always
provide an answer set when updating a definite logic program by a
consistent set of facts. This is indeed a natural condition to put on
program update operators since definite logic programs are the most
basic and best understood class of logic programs and they always
have a unique least model (which coincides with the unique answer
set), so an update by something as simple as a consistent set of facts
should not cause the resulting program to be without an answer set.

Theorem 20. Let ⊕ be a program update operator satisfying condi-
tions (PU 1), (PU 3) and (PU 4) as well as the condition

• If P is a definite program and Q is a consistent set of facts,
then P ⊕Q has an answer set.

Then ⊕ does not respect support.

Proof. Consider again the programs

P1 : p. P2 : p ← q. Q : ∼q.
q. q.

We have �P1�
SE = �P2�

SE = { 〈pq, pq〉 } and �Q�SE =
{ 〈∅, ∅〉 , 〈∅, p〉 , 〈p, p〉 }. By (PU 4) we obtain that P1⊕Q is strongly
equivalent to P2 ⊕Q. Let S = �P1 ⊕Q�SE = �P2 ⊕Q�SE. S must
be nonempty by (PU 3) and by (PU 1) it must be a subset of �Q�SE.
Consequently, one of the following three cases must occur:

a) If 〈∅, ∅〉 ∈ S, then ∅ is an answer set of P1⊕Q in which p is false,
though it has a single occurrence in P1 ∪ Q and is supported by
P1 in ∅. Thus, ⊕ does not respect support by the second condition
of Def. 19.

b) If S = { 〈p, p〉 }, then { p } is an answer set of P2⊕Q in which p
is true, though it is not supported by P∪Q in { p }. Consequently,
⊕ does not respect support by the first condition of Def. 19.

c) If S = { 〈∅, p〉 , 〈p, p〉 }, then P1 ⊕Q has no answer set, contrary
to the assumption of the theorem.

The above theorem shows that a large class of reasonable answer-
set program update operators based on SE models and Katsuno and
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Mendelzon’s approach to belief update will not respect support, as
defined in Def. 19. We believe this is a major drawback of such op-
erators, severely diminishing their applicability.

The problems we identified might be lifted if a richer semantic
characterisation of logic programs was used instead of SE models.
Such a characterisation would have to be able to distinguish between
programs such as P1 = { p., q. } and P2 = { p ← q., q. } because
they have different expected behaviour when subject to evolution.

Another alternative is to use the syntactic approaches to program
updates [14, 2] that have matured over the years.

5 Conclusion

In this paper we revisited the problem of updates of answer-set pro-
grams, in an attempt to bring them in line with the more established
class of belief updates that follow Katsuno and Mendelzon’s postu-
lates. Whereas until recently this was not possible since these pos-
tulates were simply not applicable (nor adaptable) when considering
nonmonotonic Logic Programming semantics, as shown in [10], the
introduction of SE models [20], which provide a monotonic charac-
terisation of logic programs that is strictly more expressive than the
answer-set semantics, provided a new opportunity to cast KM postu-
lates into Logic Programming.

We adapted the KM postulates to be used for answer-set program
updates and showed a representation theorem which provides a con-
structive characterisation of program update operators satisfying the
postulates. This characterisation not only facilitates the investigation
of these operators’ properties, both semantic as well as computa-
tional, but it also provides an intuitive strategy for constructively
defining these operators. This is one of the major contributions of
the paper since it brings, for the first time, updates of answer-set pro-
grams in line with KM postulates. We illustrated this result with a
definition of a specific answer-set program update operator which is
a counterpart of Winslett’s belief update operator.

The second important contribution of this paper is the uncovering
of a serious drawback which extends to all meaningful answer-set
program update operators based on SE models and the Katsuno and
Mendelzon’s approach to updates. All such operators violate a no-
tion of support, which is a desirable property commonly enjoyed, in
the static case, by all widely accepted Logic Programming semantics.
This contribution is very important as it should guide further research
on updates of answer-set programs either a) away from the semantic
approach materialised in Katsuno and Mendelzon’s postulates, or b)
to the development of semantic characterisations of answer-set pro-
grams that are richer than SE models and appropriately capture their
dynamic behaviour, or even c) turning back to the more syntactic
approaches [14, 2] and see if they indeed offer a viable alternative.

Either way, updating answer-set programs is a very important the-
oretical and practical problem that is still waiting for a definite so-
lution. This paper contains, we believe, a relevant contribution to its
better understanding which will help guide future research.
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