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Abstract. This paper deals with two important issues related to the
handling of uncertain and causal information in a qualitative (or min-
based) possibility theory framework. The first issue addresses encod-
ing interventions using the possibilistic conditioning under uncertain
inputs problem. More precisely, we analyze the min-based possibilis-
tic counterpart of Jeffrey’s rule of conditioning and point out that
contrary to the probabilistic setting, this rule does not guarantee the
existence of a solution satisfying the kinematics conditions. Then we
show that this rule can naturally encode the concept of interventions
in causal graphical models. Surprisingly enough, we show that when
dealing with interventions the min-based counterpart of Jeffrey’s rule
provides a unique solution. The second issue deals with the efficient
handling of sets of observations and interventions in min-based pos-
sibilistic networks, where we propose a solution based on a series of
equivalent and efficient transformations on the initial causal graph.

1 INTRODUCTION

Possibility theory is among the main frameworks for representing
and reasoning with uncertain information. Beliefs and background
knowledge can be represented by means of possibility distributions
and they can be revised and updated in the presence of new informa-
tion. In probability theory, there are two main and similar methods
for revising a probability distribution in case where the new infor-
mation is uncertain. The first one is Jeffrey’s rule [12] for revising
probability distributions which is based on the probability kinemat-
ics principle. The second one is to use Pearl’s method of virtual evi-
dence [15] proposed in the context of probabilistic graphical models.
The possibilistic counterpart of Jeffrey’s rule was directly used in
[10] without neither a real reference to probability kinematics nor an
analysis of the existence/uniqueness of the solution. More recently,
the possibilistic counterparts of Jeffrey’s rule are investigated for
possibilistic-based belief revision [3] and it is argued that this rule
can successfully recover most of the belief revision kinds such as the
natural belief revision [6], drastic belief revision [14], etc.
Possibilistic networks [1], in their two different forms (quantitative
and qualitative), are graphical models based on possibility theory
allowing to compactly represent the prior background knowledge
and efficiently reason in the presence of new information. While the
quantitative (or product-based) networks are very similar to Bayesian
networks, the qualitative (or min-based) ones, which are the focus of
this paper, have significant differences. Causal possibilistic models
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are updated with two types of information: observations and inter-
ventions which correspond to external actions forcing some variables
to some values. Handling sets of observations and interventions is an
important issue that can appear in many applications such as diag-
nosis and simulation where some pieces of information are directly
observed (by testing some variables) while one must act on the sys-
tem as an experimenter (by performing interventions) to obtain some
other useful information. One way to handle sets of observations and
interventions is to directly revise the joint possibility distribution en-
coded by the causal networks. This paper deals with these issues and
addresses two important problems regarding the handling of uncer-
tain and causal information in qualitative possibilistic networks:

• The first issue is related to the analysis of the existence and
uniqueness of the solution obtained by the possibilistic counter-
part of Jeffrey’s rule of conditioning in the qualitative possibilistic
framework. We point out that the kinematics conditions underly-
ing Jeffrey’s rule are too strong and does not always guarantee the
existence of a solution. Then we show how interventions in pos-
sibilistic causal graphs can be naturally and equivalently handled
using the possibilistic counterpart of Jeffrey’s rule of conditioning.
In particular, we show that the min-based possibilistic counterpart
of Jeffrey’s rule satisfies the requirements of handling interven-
tions and leads to a unique revised possibility distribution when
the uncertain inputs encode an intervention.

• The second issue deals with the efficient handling of sets of ob-
servations and interventions in qualitative possibilistic networks.
We propose an efficient method for handling sequences of obser-
vations by directly performing equivalent transformations on the
causal graph. This method takes inspiration in a method developed
in [2] and guarantees the same results as handling observations by
revising the underlying joint possibility distribution but without
computing a new joint possibility distribution at each time an ob-
servation arrives. Finally, we point out that the proposed method
for handling observations and interventions takes into account the
order of arrival of interventions and observations.

2 BASIC BACKGROUNDS ON POSSIBILITY
THEORY AND CAUSAL NETWORKS

Possibility theory is an alternative uncertainty theory [9] which uses
a pair of dual measures to assess the knowledge relative to an event
in hand. In the following, V ={A1, A2,..,An} denotes a set of vari-
ables. DAi ={a1, a2,..,am} denotes the domain of a variable Ai

while Ω=×Ai∈V DAi denotes the universe of discourse. An inter-
pretation w=(a1, a2, .., an) is an instance of Ω. φ, ϕ denote subsets
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of Ω, called events. A possibility distribution π is a mapping from
the universe of discourse Ω to the unit scale [0, 1] where a possi-
bility degree π(wi) assesses to what extent it is consistent that the
interpretation wi can be the actual state of the world. By convention,
π(wi)=1 means that wi is totally plausible and π(wi)=0 denotes
an impossible event. The relation π(wi)>π(wj) means that wi is
more plausible than wj . A possibility distribution π is normalized if
maxwi∈Ω(π(wi))=1. According to the interpretation underlying the
possibilistic scale [0,1], there are two variants of possibility theory:

• Qualitative (min-based) possibility theory: In this case, the pos-
sibility distribution is a mapping from the universe of discourse Ω
to an ordinal scale where only the ordering of values is important.

• Quantitative (product-based) possibility theory: In this case,
the possibilistic scale [0,1] is numerical and possibility degrees
can be manipulated by arithmetic operators.

In this paper, we only focus on the min-based setting which has sig-
nificant differences with the probabilistic and product-based frame-
works. Conditioning is a fundamental notion for updating a possibil-
ity distribution when a new evidence (consisting in a completely sure
event) arrives. Note that there are several definitions of possibilistic
conditioning [11][9] subject to the qualitative or quantitative inter-
pretation underlying the possibilistic scale [0,1]. The qualitative pos-
sibilistic setting uses the well-known min-based conditioning pro-
posed in [11][9] and defined as follows (we assume that Π(φ)�=0):

π(wi|φ) =

{
1 if π(wi)=Π(φ) and wi ∈ φ;
π(wi) if π(wi)< Π(φ) and wi ∈ φ;
0 otherwise.

(1)

In the min-based setting, conditioning a possibility distribution π
with a sure input φ consists in making impossible all the interpreta-
tions that do not satisfy φ and changing only the possibility degree
of the most plausible element of φ up to the value 1.

2.1 Causal possibilistic graphical models

Graphical models such as probabilistic networks [8][13] and possi-
bilistic networks [4] are well-known and very efficient tools for rep-
resenting and reasoning with uncertain, incomplete and complex in-
formation. Like Bayesian networks, possibilistic ones consist of two
components (see the example of Figure 1):

• A graphical component: it consists in a directed acyclic graph
(DAG) where the nodes denote the domain variables and arcs en-
code direct influence relationships existing between the variables.

• A numerical component: it is composed of a set of local possibil-
ity distributions measuring the influence endured by each variable
Ai in the context of its parents Ui.

The normalization condition requires that every local possibility dis-
tribution should satisfy the following condition:

maxai∈DAi
(π(ai|ui)) = 1. (2)

In the min-based possibilistic setting, the joint possibility distribu-
tion is factorized using the min-based chain rule:

π(a1, a2, .., an) =
n

min
i=1

π(ai|ui). (3)

A causal possibilistic model refers to a possibilistic network
where the graph only encodes causal relationships (each arc
denotes a cause-effect relationship) instead of mere correlations.
Hence, in a causal graph, the parent set Ui of a node Ai represents all
the direct causes of Ai while Ai’s children denote Ai’s direct effects.

Example

In the rest of this paper, we will illustrate our results on a simplified
example about a toothaches problem. Dental caries (or cavities) most
often cause toothaches and infections. As shown in Figure 1, some
toothaches are due to gum problems while caries result from inade-
quate oral care (and dietary habits). Note that this academic example
is only concerned with patients consulting a doctor for toothaches.
We define the following five variables:

• O (for Oral care) whose domain is DO={Good, Bad}.

• C (for Caries) taking its values in DC={Yes, No}.

• I (for Infections) taking its values in DI={Infected, NoInfected}.

• T (for Toothaches) taking its values in DT ={Aching, NotAching}.

• G (for Gum problems) with DG={Healthy, NotHealthy}.

The causal possibilistic network representing a doctor’s beliefs on
the toothaches problem is given in Figure 1 where the statement

O

I

GC

T

T C G π(T|C,G)
Aching Yes Healthy 1
NotAching Yes Healthy .8
Aching No Healthy 1
NotAching No Healthy .2
Aching Yes NotHealthy 1
NotAching Yes NotHealthy .2
Aching No NotHealthy 1
NotAching No NotHealthy .6

I C π(I|C)
Infected Yes 1
NotInfected Yes .2
Infected No .4
NotInfected No 1

C O π(C|O)
Yes Good .6
No Good 1
Yes Bad 1
No Bad .6

O π(O)
Good 1
Bad .8

G π(G)
Healthy 1
NotHealthy .4

Figure 1. The causal possibilistic network of the toothaches problem

oral care is Good is completely plausible while the state Bad is
exceptional. Similarly, Healthy is the most common state for the
gum problems variable G while the state NotHealthy is very
exceptional. Regarding the toothaches variable T , if the patient has
a cavity (C=Y es) then the statement tooth is aching is completely
plausible, etc.
Causal graphical models are expressive and compact representations
which are updated with two forms of inputs: a set of evidences
(observations) which are the results of testing some variables, and a
set of interventions [16] which represent external actions that force
some variables to have some specific values. One way to handle
observations and interventions in causal graphical models is to
view these tasks as belief change operations transforming the joint
distribution encoded by the causal network into an a posteriori one
constrained by the observation or the intervention.

3 JEFFREY’S RULE IN A QUALITATIVE
POSSIBILISTIC FRAMEWORK

This section analyzes the conditioning under uncertain inputs
and encoding interventions using Jeffrey’s rule. In particular, we
analyze an issue that has not been considered before regarding the
uniqueness of conditioning rules with respect to the well-known
kinematics rules in the context of min-based causal networks.
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3.1 Qualitative possibilistic counterpart of
Jeffrey’s rule

Jeffrey’s rule of conditioning [12] can be viewed as an extension of
the standard probabilistic conditioning to the case where the evidence
is uncertain [7]. The possibilistic counterpart of Jeffrey’s rule is used
for revising a prior possibility distribution π into a new updated or
posterior distribution π′ given a set of imposed constraints con-
sisting in a set of mutually exclusive and exhaustive uncertain events
λi. This method imposes two strong constraints corresponding re-
spectively to the way the uncertain evidence is specified and the way
the prior beliefs are revised:

1. Specifying the uncertain evidence: The uncertainty is of the
form (λi, αi) meaning that after the revision operation, the pos-
sibility degree of each event λi must be equal to αi. The set
{λ1, .., λn} induces a partition of Ω.

2. Computing the revised possibility distribution: The kinemat-
ics assumption states that even if there is a disagreement about
the events λ1..λn in the old and new distributions, the conditional
possibility degree of any event φ given any event λi should remain
the same in the original and the revised distributions.

The two conditions underlying Jeffrey’s rule of conditioning are for-
malized as follows:

Condition 1: ∀ λi⊂Ω, Π′(λi)=αi

Condition 2: ∀ λi⊂Ω, ∀ φ⊆Ω, Π(φ|λi)=Π′(φ|λi).

In the following, we analyze the existence and uniqueness of the re-
vised distribution π′ in the min-based possibilistic framework.

3.2 Jeffrey’s rule analysis in the min-based
possibilistic setting

In the min-based setting, the revision according to Jeffrey’s rule can
be performed by the following formula (proposed in [10]):

∀φ ⊆ Ω, Π′(φ) = Π(φ|(λi, αi)) = max
λi

(min(Π(φ|λi), αi)).

(4)
Unlike the probabilistic and product-based possibilistic settings

where there always exists a unique solution [5], in the min-based
framework, there exist situations where Equation 4 does not guaran-
tee the existence of a solution satisfying Condition 1 and Condition 2.
As shown in the example of Table 1 and Table 2, this problem is due
to the fact that in Equation 4, when imposing Π′(λi)=αi lesser than
Π(λi), there might be several interpretations w∈λi (namely those
having π(w)>αi) which will have their possibility degrees down-
graded (and collapsed) to αi in the revised distribution π′ (namely,
π′(w)=αi). This results in losing the relative order of plausibility of
interpretations w when moving from π to π′. One interesting option
to be considered in the future is to replace the min operation in Equa-
tion 4 by an operation that encodes some lexicographic ordering.

Example(continued)

Assume that a doctor expresses his beliefs on dental cavities
(variable C) and infections (variable I) using the joint possibility
distribution π of Table1.

Assume now that following the results of recent and reliable
surveys, the doctor wants to revise his beliefs in order to obtain
Π′(C=Y es)=.2 and Π′(C=No)=1 (the doctor wants to decrease the

C I π(C, I) Π(I|C) C Π(C)
Y es Infected .8 1 Y es .8
Y es NotInfected .6 .6 No 1
No Infected .4 .4
No NotInfected 1 1

Table 1. The possibility distribution π encoding the initial beliefs, the
conditional distribution Π(I|C) and the marginal distribution Π(C)

C I π′(C, I) Π′(I|C) C Π′(C)
Y es Infected .2 1 Y es .2
Y es NotInfected .2 1 No 1
No Infected .4 .4
No NotInfected 1 1

Table 2. The revised possibility distribution π′, the underlying conditional
distribution Π′(I|C) and the marginal distribution Π′(C)

possibility degree that an individual has a cavity). The revised possi-
bility distribution π′ computed using Equation 4 is given in Table 2.
In Table 1, we observe that Π(I=NotInfected|C=Y es)=.6 while
Π′(I=NotInfected|C=Y es)=1 in Table 2 violating Condition 2.
In this example, Jeffrey’s rule does not preserve the conditional pos-
sibility degree of having (or not) infections given that the individual
has a cavity (or not).
Proposition 1 gives the exact conditions where the solution computed
using Equation 4 does not satisfy Condition 1 and Condition 2.

Proposition 1 Let π be the initial joint possibility distribution and
(α1, λ1),..,(αn, λn) be a set of uncertain inputs. Let |λi, αi, π|
denote the number of different plausibility levels of interpretations
w satisfying λi such that αi≤π(w). Then

• If ∀λi, |λi, αi, π|<2, then there is a unique revised possibility
distribution π′ satisfying Condition 1 and Condition 2, com-
puted using Equation 4.

• Otherwise (namely if ∃λi such that |λi, αi, π|≥2), using the
min-based conditioning of Equation 1 there is no possibility
distribution π′ that satisfies Condition 1 and Condition 2.

Note that in case where Equation 4 does not guarantee the existence
of a solution satisfying both Condition 1 and Condition 2, the revised
possibility distribution π′ still satisfies Condition 1.
In Jeffrey’s rule view, the uncertain inputs are constraints that should
be completely accepted (Condition 1) which may appear too strong
in some applications. This however fully makes sense for handling
interventions in graphical models as we will show in the following.

3.3 Encoding interventions with Jeffrey’s rule

Handling interventions can be viewed as a belief change process that
transforms a prior possibility distribution π encoding the initial be-
liefs into a new distribution π′ constrained by the intervention. As-
sume that an intervention forces a variable Ai to take the value a∗

i

(such an intervention will be henceforth denoted by do(a∗
i ) as in

[16]). Assuming that the event Ai=a∗
i is somewhat plausible in π

(namely, Π(a∗
i )>0) and letting Ui be the set of direct parents of Ai

in the causal graph G encoding π and DUi be the domain associated
with Ui. Then, handling such an intervention in the new distribution
π′ should at least satisfy the two following constraints:

• R1 the event Ai=a∗
i is a sure piece of information. Consequently,

any interpretation w∈Ω where Ai is different from a∗
i is consid-

ered as completely impossible. Namely, ∀w∈Ω, π(w|do(a∗
i ))=0

if w[Ai] �=a∗
i .
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• R2 the beliefs on the direct causes of Ai remain unchanged.
Namely, ∀Aj∈Ui, ∀aj∈DAj , Π(aj |do(a∗

i ))=Π(aj).

Then interventions can be naturally encoded using the possibilistic
counterpart of Jeffreys rule by specifying the inputs as follows: When
handling an intervention do(a∗

i ), the uncertainty bears on Ai’s val-
ues. The revised distribution π′ should then guarantee that Π′(a∗

i )=1
and Π′(ai)=0 ∀ai∈DAi and ai �=a∗

i (constraint R1) and the beliefs
on Ui, the parents of Ai, must remain unchanged (constraint R2). By
associating with each uncertain event λi={a∗

i , ui} the plausibility
degree αi=Π(ui) and for the remaining events {ai} where ai �=a∗

i

the degree 0, the obtained possibility distribution π′ computed us-
ing Jeffrey’s rule of Equation 4 satisfies the conditions R1 and R2 as
formalized in the following proposition:

Proposition 2 Let π be a joint possibility distribution and do(a∗
i )

be an intervention forcing the variable Ai to take the value a∗
i .

Let μ={((a∗
i , ui), Π(ui)): a∗

i ∈DAi and ui∈DUAi
}∪{(ai, 0):

ai∈DAi and ai �=a∗
i } be the set of exhaustive and mutually exclu-

sive events. Then, the new possibility distribution π′ (representing
π revised with do(ai)) obtained using Equation 4 satisfies the two
constraints R1 and R2.

Proposition 2 states that encoding interventions using Jeffrey’s rule
fully satisfies the constraints R1 and R2 in the min-based framework.

3.4 Existence/uniqueness of the solution of
Jeffrey’s rule for encoding interventions

In Proposition 1, we pointed out that there exist situations where
Jeffrey’s rule of Equation 4 does not guarantee the existence of a
solution satisfying both Condition 1 and Condition 2. Now, in the
contexts of handling interventions, the revised distribution π′ fully
satisfies the constraints R1 and R2 and it is the unique one when the
inputs represent interventions according to Proposition 2. This result
is formalized in the following proposition:

Proposition 3 Let π be a joint possibility distribution and do(a∗
i ) be

an intervention forcing the variable Ai to take the value a∗
i . Let π′

be possibility distribution obtained using Equation 4 to encode the
intervention do(a∗

i ) according to Proposition 2. Then π′ satisfies
the two constraints R1 and R2 and π′ is unique.

The proof of Proposition 3 is straightforward since the revision using
Jeffrey’s rule of Equation 4 always satisfies Condition 1 (hence, the
constraint R1 is satisfied) and one can easily check that the beliefs on
parents of Ai are not altered in π′ if the inputs are encoded according
to Proposition 2. Moreover, since Proposition 3 entirely defines π′,
then π′ is unique. Clearly, interventions provide a natural interpreta-
tion for Jeffrey’s rule.
Let us now show that handling an intervention using the possibilis-
tic counterpart of Jeffrey’s rule of conditioning is equivalent to its
handling by the graph mutilation method proposed in the context of
causal graphical models [16][4]. Recall that in causal graphs, an in-
tervention on a variable Ai, denoted do(a∗

i ), ensures that our beliefs
on Ui (the set of parents of Ai) should not be affected. This can be
achieved by deleting all the arcs from each variable composing Ui

to Ai while maintaining the rest of the graph unmodified [16]. The
obtained graph is called the mutilated graph and denoted Gm such
that πG(ω|do(a∗

i ))=πGm(ω|a∗
i ), where πGm (resp. πG) is the pos-

sibility distribution associated with the mutilated graph Gm (resp.
G). Now, in order to determine the effect of the intervention do(a∗

i )

on the rest of the initial graph G, one can apply the standard condi-
tioning on the mutilated graph Gm after having observed the event
Ai=a∗

i . Hence, the effect of this intervention on the joint possibil-
ity distribution is given by ∀ω, πG(ω|do(a∗

i ))=πGm(ω|a∗
i ). Using

Jeffrey’s rule to encode the intervention do(a∗
i ) according to Propo-

sition 2, the obtained a posteriori distribution π′
G is equivalent to

πGm(.|Ai = a∗
i ) (namely, πGm conditioned with Ai=a∗

i ) as formal-
ized in the following proposition:

Proposition 4 Let G be a possibilistic network and πG the joint dis-
tribution encoded by G. Let Gm be the mutilated graph obtained
after handling an intervention and πGm the joint distribution en-
coded by Gm. Let π′

G be the possibility distribution obtained by
revising πG using the Equation 4 where the inputs encode the in-
tervention do(a∗

i ) using Proposition 2. Then

∀ω∈Ω, πGm(w|a∗
i )=π′

G(w).

Proposition 4 states that handling an intervention using Jeffrey’s rule
of conditioning induces the same possibility distribution as handling
this intervention using the graph mutilation method. In the following,
we propose an efficient method for handling sets of observations in
qualitative causal possibilistic graphs.

4 HANDLING OBSERVATIONS IN
QUALITATIVE POSSIBILISTIC NETWORKS

While handling interventions is straightforward and efficient in
causal networks by mutilating the graph (or equivalently by aug-
menting the graph [16]), handling sets of observations using the stan-
dard conditioning is not efficient. Indeed, if πG is the joint possibil-
ity distribution encoded by the possibilistic network G and Ai=ai

is an observation, then handling this observation requires computing
the revised distribution πG(.|Ai=ai). Clearly, revising the beliefs en-
coded by a possibilistic network G by revising the joint possibility
distribution πG encoded by G each time an observation is obtained
is untractable. The solution proposed in [2] for handling observa-
tions in possibilistic graphs only deals with product-based networks
(which are very similar to probabilistic networks). In the following,
we show that in spite of the significant differences with respect to
the product-based possibilistic setting especially regarding the con-
ditioning and normalization operations, this solution can be adapted
to efficiently handle sets of observations in qualitative possibilistic
graphs. The main benefits of this approach is that unlike the stan-
dard conditioning which handles an observation by manipulating the
whole joint distribution, the proposed solution performs this opera-
tion by altering only the necessary parts of the graph. The handling
of an observation requires two steps: the first one allows to insert
the new observation in the graph while the second step allows to re-
normalize the graph obtained after the first step.
Belief revision with observations3 is traditionally done by a simple
conditioning. Namely, if πG is the joint possibility distribution en-
coded by the possibilistic network G and Ai=a∗

i is an observation,
then the revised beliefs are π′

G=πG(.|Ai=a∗
i ). Our goal is to propose

a graphical counterpart for the the min-based conditioning operation.
This graphical counterpart views conditioning as i) a combination
operation followed by ii) a normalization operation. The combina-
tion operation combines the original possibility distribution with the
one associated with the observation Ai=a∗

i while the normalization
operation re-normalizes the possibility distribution obtained after the
combination step in case where this latter becomes sub-normalized.
Let G be the causal possibilistic network encoding the initial beliefs

3 In this paper, for each observation Ai=ai and for each intervention
Do(Ai=ai), we assume that Ai=ai is somewhat possible (namely,
Π(Ai=ai)>0). See Section 4.2 for a brief discussion on belief change with
impossible events.
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and πG be the possibility distribution encoded by G (πG is obtained
form G using the chain rule of Equation 3). In order to perform the
combination operation, let us define the possibility distribution en-
coding the observation Ai=ai as follows:

∀ω ∈ Ω, πAi=a∗
i
(ω) =

{
1 if w[Ai] = a∗

i

0 otherwise
(5)

Clearly, in πAi=ai only the observed value a∗
i is totally possible

while all the remaining ones are completely impossible which fully
corresponds to the definition of an observation. Now, the combina-
tion of the initial beliefs with observation (namely, combining the
possibility distribution πG with πAi=a∗

i
) can be defined as follows:

∀ω ∈ Ω, πG2(ω) = min(πG(ω), πAi=a∗
i
(ω)). (6)

In Equation 6, the possibility distribution πG2 is obtained from
πG by considering as completely impossible every interpretation
ω where the value of Ai is different from a∗

i (namely, ∀ω∈Ω,
πG2(ω)=0 if ω[Ai] �=a∗

i ), and preserving unchanged the possibility
degrees of all interpretations ω where the value of Ai is a∗

i . After
the combination step, the possibility distribution πG2 may be sub-
normalized. Let us define the normalization operation as follows:

πG3(ω) =
{

1 if πG2(ω) = ΠG2(a
∗
i )

πG2(ω) otherwise
(7)

The normalization operation of Equation 7 upgrades the greatest
possibility degree obtained after the combination operation such that
the most plausible interpretation in πG2 becomes totally possible.
Hence, using the combination (Equation 6) and normalization for-
mulas (Equation 7), the min-based conditioning given by Equation
(1) can be redefined as follows:

∀ω ∈ Ω, πG(ω|Ai = a∗
i ) = πG3(ω). (8)

The following two subsections propose the graphical counterparts
for the combination and normalization operations. For lack of space,
we restrict ourself to possibilistic graphs where DAG’s are trees
(where a node has at most one parent).

4.1 Inserting the observation in the graph

Handling an observation Ai=a∗
i in a causal possibilistic graph G1

requires that in the obtained network G2 the value a∗
i is associated

with a possibility degree ΠG2(a
∗
i )=1 and ∀ai∈DAi such that ai �=a∗

i ,
ΠG2(ai)=0. Moreover, an observation regarding the variable Ai al-
ters the beliefs on Ai’s parent denoted Ui. Let us use G2 to denote
the result of inserting the new observation Ai=a∗

i in the network G1.
The network G2 is specified as follows:

Definition 1 The possibilistic network G2 resulting from inserting
the observation Ai=a∗

i in the network G1 is defined as follows:

• the structure of G2 is obtained from the DAG of G1 by deleting
the arc from the parent variable Ui to Ai.

• the local possibility distribution of any variable Ak in G2 dif-
ferent from Ai and its parent Ui is identical to Ak’s local dis-
tribution in G1.

• the new local possibility distributions of variable Ai and its par-
ent denoted Ui, are defined as follows:

– ∀ai∈DAi ,

πG2(ai) =
{

1 if ai = a∗
i

0 otherwise

– Let Aj be the parent of Ai (if any) and Uj the parent of Aj (if
any), then ∀aj∈DAj ∀uj∈DUj ,

πG2(aj | uj) = min(πG1(aj | uj), πG1(a
∗
i | aj))

It is straightforward that in the new local possibility distribution rel-
ative to the variable Ai only the instance a∗

i is completely plausible
and all the other instances are completely impossible. Hence, since
the value of the variable Ai is now fully determined, there is no need
to maintain the arc from the parent node Ui to Ai. Unlike interven-
tions, an observation regarding a variable Ai alters the beliefs on its
parent Ui. Accordingly, the distribution of Ui are altered as formu-
lated in the following proposition:

Proposition 5 Let G2 be the possibilistic network obtained from G1
using Definition 1.
Then ∀ω∈Ω, πG2(ω)=min(πG1(ω), πAi=a∗

i
(ω)).

Let us illustrate the transformation of Definition 1 on our example:

Example (continued)

We continue with the example of Figure 1 but restricted to a tree by
discarding the nodes C, I and O. Figure 2 gives the initial network
G1 and G2 obtained after combining the network G1 with the ob-
servation T=Aching.
As a result of inserting the observation Ai=a∗

i , the new local dis-
tributions of variable Ui (the parent of the observed variable) may
become sub-normalized, the following step deals with this problem.

4.2 Re-normalizing the graph

After inserting an observation, the possibility distribution of the
parent node Aj of the observed one Ai may be sub-normalized.
Namely, it may exists an instance uj of the parent variable of Aj

denoted Uj such that maxaj∈DAj
(πG2(aj |uj))=β with β<1. The

re-normalization step allows computing a new possibilistic network
G3 such that G2 and G3 encode the same joint distribution (namely
∀ω∈Ω, πG2(ω)=πG3(ω)) while all the local distributions in G3 are
normalized. G3 is obtained as follows:

Definition 2 Let G2 be the network obtained using Definition 1
where the observation Ai=a∗

i is inserted in the initial causal graph
G1. Let Aj be the parent of Ai whose possibility distribution is
sub-normalized after Step 1. Let Uj be the parent of Aj . Let also
u∗

j be the instance of Uj such that maxaj∈DAj
(πG2(aj |u∗

j ))=β

with 0<β<1 and let a∗
j =argmaxaj∈DAj

(πG2(aj |u∗
j )). The net-

work G3 is such that it has exactly the same DAG as G2 and
• ∀Ak , Ak �=Aj and Ak �=Ai and Aj �=Uj , πG3(ak | uk)=πG2(ak | uk),

• ∀aj∈DAj
, ∀uj∈DUj

,

πG3(aj |uj) =
{

1 if uj = u∗
j and aj = a∗

j

πG2(aj |uj) otherwise

• Let Uk be the parent node of Uj (if any) in G2. ∀uj∈DUj ,
∀uk∈DUk ,

πG3(uj |uk) =
{

min(πG2(uj |uk), β) if uj = u∗
j

πG2(uj |uk) otherwise

The transformation of Definition 2 ensures that the networks G2 and
G3 encode the same joint possibility distribution (namely, ∀ω∈Ω,
πG2(ω)=πG3(ω)). It alters only the local distributions of Aj and its
patent Uj . More precisely, it first normalizes the local possibility dis-
tribution of Aj then performs the inverse operation of normalization
on the possibility distribution of Uj in order to ensure that the joint
possibility distribution encoded by G2 and G3 remain the same. The
case where Aj is a root node is a special case of Definition 2. In-
deed, if Aj is a root node then the re-normalization is achieved by
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assigning a possibility degree of 1 to the most plausible instance of
Aj in the network G2. As a side effect of re-normalizing Aj’s distri-
bution, its parent’s distribution may become in turn sub-normalized.
Then the re-normalization process should be repeated until reaching
the root node. Let us illustrate the transformations of Definitions 1
and 2 on the example of Figure 2.

Example (continued)

Here, the initial network G1 is a part of the network of Figure 1
limited to variables T , C and O only for simplicity’s sake. Figure 2
shows that the local distribution relative to the non root node C of
network G2 (obtained after inserting the observation T=Aching in
the network G1 using Definition 1) is sub-normalized. The normal-
ization of this distribution according to Definition 2 gives the net-
work G3 of Figure 2. Now the normalization of C renders O sub-
normalized. This latter is normalized also using Definition 2 giving
the network G3′.

C

T

O

C O π(C|O)
Yes Good .6
No Good 1
Yes Bad 1
No Bad .6

O π(O)
Good 1
Bad .8

G1

T C π(T|C)
Aching Yes 1
NotAching Yes .6
Aching No .4
NoTAchingNo 1

C

T

O

C O π(C|O)
Yes Good .6
No Good .4
Yes Bad 1
No Bad .4

O π(O)
Good 1
Bad .8

G2

T π(T)
Aching 1
NotAching 0

C

T

O
O π(O)
Good .6
Bad .8

G3

T π(T)
Aching 1
NotAching 0

C O π(C|O)
Yes Good 1
No Good .4
Yes Bad 1
No Bad .4

C

T

O
O π(O)
Good .6
Bad 1

T π(T)
Aching 1
NotAching 0

C O π(C|O)
Yes Good 1
No Good .4
Yes Bad 1
No Bad .4

G3’

Figure 2. The initial network G1 and G2 (resp. G3 and G3′)
obtained after applying Definition 1 (resp. Definition 2)

One can easily check that the joint distribution encoded by network
G3′ is exactly the same as the one encoded by G2 while G3′ is com-
pletely normalized. Regarding the computational complexity of our
two-steps procedure for handling observations in min-based causal
possibilistic graphs, we argue that it is in linear time with respect
to the initial network’s parameters (number of local and conditional
possibility degrees in the network) for tree structures.
In the previous section, we assumed that the events should be some-
what possible in the initial beliefs. This fully makes sense in case of
observations since we are in presence of static world. However, the
situation is different when one deals with interventions. For instance,
assume that we have a causal network where there is a variable C
(color of the fence) which is set with a full certainty to the value blue.
Now, assume that we have an intervention that forces the color of the
fence to the value red. Clearly, there is absolutely no contradiction in
the presence of this intervention. However, this can be hardly man-
aged if one directly achieves this change on possibility distributions
using the possibilistic conditioning. Now, in the causal possibilistic
network, this can be easily achieved by simply changing the prior
possibility distribution of the color node C. Again, the structure of
the causal network is crucial for handling belief change by impossi-
ble events in presence of interventions. Finally, it is worth pointing
out that unlike handling sets of only observations (resp. interven-
tions) where the order of observations (resp. interventions) does not
matter, the situation is different when handling sequences involving
both observations and interventions. This issue is not surprising since
in the context of belief revision, it is well-known that Jeffrey’s rule
is not commutative. This problem also occurs in the min-based pos-
sibilistic framework where given a qualitative possibilistic network
encoding the initial beliefs, there might exist situations where the

revised beliefs after having an observation followed by an interven-
tion will not give the same results as if we have first the intervention
then the observation. Note lastly that handling observations using the
method proposed in Section 4 and the graph mutilation (or augmen-
tation) method [16] for handling interventions takes into account the
order of arrival of observations and interventions.

5 CONCLUSIONS

This paper dealt with two important issues regarding the handling
of uncertain and causal information in qualitative causal possibilistic
networks. In particular, we addressed an issue that has not been in-
vestigated before regarding the existence and uniqueness of the well-
known Jeffrey’s rule in a qualitative possibilistic framework. We pro-
vided the exact conditions where a solution exists. We also showed
that the strong kinematics constraints underlying this rule provide a
natural way for encoding interventions and we argue that when used
for this purpose, Jeffrey’s rule provides always a unique solution.
The second important issue addressed in this paper is related to the
handling of sets of observations and interventions. We proposed an
efficient method for handling sets of observations which first inte-
grates the new observation in the causal graph then proceeds to the
re-normalization of sub-normalized distributions if any. Future direc-
tions will consist in comparing Jeffrey’s rule with Pearl’s method of
virtual evidence [15] in a qualitative possibilistic framework.
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