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Adaptive Markov Logic Networks: Learning Statistical
Relational Models with Dynamic Parameters

Dominik Jain and Andreas Barthels and Michael Beetz!

Abstract. Statistical relational models, such as Markov logic net-
works, seek to compactly describe properties of relational domains
by representing general principles about objects belonging to partic-
ular classes. Models are intended to be independent of the set of ob-
jects to which these principles can be applied, and it is assumed that
the principles will soundly generalize across arbitrary sets of objects.
In this paper, we point out limitations of models that seek to represent
the corresponding principles with a fixed set of parameters and dis-
cuss the conditions under which the soundness of fixed parameters
is indeed questionable. We propose a novel representation formal-
ism called adaptive Markov logic networks to allow more flexible
representations of relational domains, which involve parameters that
are dynamically adjusted to fit the properties of an instantiation by
phrasing the model’s parameters as functions over attributes of the
instantiation at hand. We empirically demonstrate the value of our
learning and representation system on a simple but well-motivated
example domain.

1 INTRODUCTION

The field of statistical relational learning (SRL), which has been
gaining more and more attention in recent years, deals with the learn-
ing of generalized probability distributions over object attributes and
relations between objects. The key assumption is that one can extract
general principles about objects having similar properties (e.g. about
objects belonging to the same class) from data, represent these prin-
ciples declaratively in a statistical relational model and consequently
apply them to new domains of discourse (i.e. collections of objects
belonging to the classes under consideration) in order to obtain a con-
crete model of a probability distribution that should be sound with re-
spect to the dependencies being represented — both qualitatively and
quantitatively. This is often referred to as shallow transfer.
Representation formalisms underlie the assumption that the pa-
rameters that were once learned with a (sufficiently large) training
database hold for every other domain, regardless of its size (or other
properties). Unfortunately, this assumption does not always hold.
One particularly common trait of relational domains that typically
results in a violation of the assumption is the presence of cardinality
restrictions, i.e. restrictions that constrain the number of relational
partners of an entity. Such restrictions are inherent properties of re-
lational domains (as is evident from their abundance in e.g. entity-
relationship models [1]) and therefore need to be integrated into any
statistical model that seeks to capture relational properties accurately.
While, in principle, the cardinality constraints themselves can be in-
tegrated into some of the more expressive statistical relational models
(including Markov logic networks), their complex interactions with
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probabilities pertaining to the constrained relations are largely ne-
glected, severely limiting the models’ capability of performing link
prediction — one of the key tasks in SRL — within reasonable bounds
of accuracy as domain size varies.

We demonstrate these problems using a very simple scenario, in
which we consider students taking courses at a university. We dif-
ferentiate students enrolled in the Bachelor’s program and the Mas-
ter’s program, as well as beginner-level courses and advanced-level
courses. Assuming that students of any program can pick courses
of either level while, however, being inclined to pick courses that
are appropriate with respect to their level of advancement, the prob-
ability of a student taking a course will depend on the type of the
student and the course. Assuming that every student is required to
take a particular number of courses, one can typically observe that
if a statistical relational model is trained on a single database with a
particular number of courses and students, the probabilities indicated
for the relation linking students to the courses they take are specific
to the cardinalities that were present in the training data. Therefore,
link prediction tends to yield unsatisfactory results when the learned
model is applied to domains that differ (in terms of size) from the
training database.

In this work, we seek to solve the corresponding problems. Our
contributions are along two dimensions: First, we provide a discus-
sion of the way in which generalization in statistical relational mod-
els is to be viewed, creating an awareness for possible limitations of
current approaches based on static parameters. Second, we introduce
a novel representation formalism that addresses the issues that we
identified, which we base upon one of the most expressive formal-
ism to have been proposed thus far, Markov logic networks (MLNs).
As secondary contributions, we address general issues pertaining to
the learning of MLN parameters that will generalize across domains
of variable size and the representation and handling of cardinality
restrictions.

The next section begins by motivating the need for adaptive mod-
els. In Section 3, we briefly review the fundamentals of MLNs, which
we proceed to extend to adaptive MLNs in Section 4 in order to re-
move the limitations imposed by fixed-parameter models. In Sec-
tion 5, we provide an empirical evaluation. We mention related work
in Section 6 before concluding with Section 7.

2 LIMITS OF SHALLOW TRANSFER

For a model to accurately represent any particular domain of dis-
course (instance of a scenario), it is a prime requirement that all the
principles which are being represented in the model are in fact inde-
pendent of properties of the domain — in particular, its size. As soon
as this is not truly the case, any model is bound to represent probabil-
ity distributions that may diverge arbitrarily from the true distribution
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as we apply it to domains that differ from the domain it was trained
with (in terms of size or otherwise).

A statistical relational (meta-)model is applied by instantiating it
for a particular domain of discourse, i.e. in the case of a typed logic, a
set of (non-empty) sets of constants referring to entities in the world,
one set for each class. The instantiation typically involves a mere re-
production of substructures that appear in the meta-model, i.e., more
precisely, the repeated application of templates in order to obtain an
actual ground model of a probability distribution that is specific to the
domain of discourse. This probability distribution is typically repre-
sented as a probabilistic graphical model, e.g. a Bayesian network or,
as in the case of MLNs, a Markov random field.

We can view any statistical relational model as a representation
of a stochastic process that embodies some well-defined character-
istics about a particular scenario. Whether or not the application of
rigid templates containing a fixed set of parameters can be consid-
ered sound regardless of the nature of the stochastic process that is
to be represented is highly dependent on the way in which we in-
terpret the domains to which we apply the model. Since one gener-
ally seeks to minimize statistical errors that result from small sample
sizes, models are typically trained using large training databases. If
we now instantiate a trained model for a smaller set of objects, the
probability distribution indicated by the ground model can certainly
be considered sound (even if it contains parameters that are in fact
specific to the training data), if we view that set of objects as a subset
of the set of objects in the training database, i.e. if we implicitly as-
sume that the instantiation contains additional objects so as to reach
the number of objects present in the training database. In this mode
of application, the training database must be viewed as the single do-
main of discourse in its entirety: Any smaller instantiation is merely
an excerpt of it, and larger instantiations should be considered as
invalid. In some cases, this may indeed be sensible, yet clearly, it
ultimately defeats the very purpose of statistical relational models
to describe general principles that should be applicable to arbitrary
instantiations, since what is really being captured is but a (proposi-
tional) model that describes the training database, and any relational
aspects are reduced to mere syntactic sugar.

If, however, the training database is not to be viewed as the sole
universe of objects, then the nature of the stochastic process that we
seek to model may dictate that parameters must indeed change with
domain size. A straightforward example of such a case is a process
that contains relations that are subject to cardinality restrictions and
where any world that is generated by it should be considered as self-
contained. In other words, consider a process that demands that the
number of objects to which particular objects are to be related is
fixed or otherwise constrained, and, for each object, all the relational
partners are always part of the universe of objects being generated.
As we will see, this rather simple condition is sufficient for a model
with fixed parameters to fail to generalize as expected.

The presence of cardinality restrictions in a self-contained domain
implies that if the set of potential relational partners changes, then
so must the probability of there being a relation. For instance, if we
consider the relation isParentOf(x, y), which holds if = is a parent
of y, then, provided that every child’s parents are in fact part of the
instantiation, the probability of there being a relation between an ar-
bitrary child-parent pair decreases as the number of parents in the
domain increases (it is 2/n if n is the number of potential parents).
Of course, without further restrictions, an explicit representation of
the cardinality constraint that limits the number of parents to 2 is suf-
ficient in order to correct the marginal probability of the isParentOf
relation. Since Markov logic subsumes first-order logic, cardinality

restrictions can easily be formulated: For an arbitrary binary relation
rel(x,y), we could state that for each z there should be exactly ¢
objects to which z is to be related as follows:

(&
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While such constraints succeed at correcting marginal probabilities
of constrained relations, they do not suffice in cases where the re-
lation is in fact dependent on, for example, attributes of the related
objects (a quite common case, as we usually imagine stochastic pro-
cesses to first generate objects and then establish relations between
them based on their properties). The reason is that the introduction
of such dependencies requires that, for each configuration of the at-
tributes the relation depends on, we are required to capture the proper
ratio between the case where the relation occurs and where it does
not occur. Modelling only the ratios between cases where the rela-
tion is to hold, which are indeed size-invariant, is, unfortunately, not
sufficient.

To illustrate this, consider the simplest of cases, where we have
two types of entities, children and parents, that (with probability 1/2)
have some boolean property which influences the likelihood of there
being a relation. We know that each child must be related to exactly
two parents. We could reasonably represent this scenario using the
marginal distribution of the property for parents and children, the
conditional distribution of the relation given the properties of both
entities, plus the cardinality restriction. Assume that the probabil-
ity p1 with which a child is related to a parent given that both have
the property or both do not is four times as high as the probability p>
where one has the property and the other does not. Given a stochastic
process that generates data reflecting the above, we can train models
on databases of variable size and then instantiate the obtained mod-
els for a particular set of objects we are interested in. Exemplarily,
assume that there is a particular child C' and a parent P who both
have the property as well as another child and three further parents
about whom we do not know anything. We ask for the probability
q of C being related to P in comparison to C' being related to one
of the three other parents (¢'). Table 1 summarizes results we ob-
tained for such an experiment. Note that even though we explicitly
represented the cardinality constraint (which implies ¢ + 3¢" = 2)
and the ratio p; : p2 is indeed 4 : 1 in each case, the probability ¢
varies depending on the training database and, most importantly, di-
verges considerably from the true result — simply because the ratios
p1: (1 —p1) and p2 : (1 — p2) can be regarded as arbitrary with
respect to the instantiation that we considered.

Table 1: Parameters obtained from training databases of various sizes
and corresponding inference results, where My indicates a model
derived from a database with /V children and 2N parents.

Mo Mioo Mosoo | Correct/Extrapolation
p1 | 0.1600 0.0160 0.0080 | 0.8000
p2 | 0.0400 0.0040 0.0020 | 0.2000
q 0.6237 0.6044 0.6034 | 0.8290
q' | 0.4588 0.4652 0.4655 | 0.3903
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3 MARKOV LOGIC NETWORKS

Markov logic networks combine first-order logic with uncertainty

[9]. An MLN L is given by a set of pairs (F;, w;), where F; is a

formula in first-order logic and w; is a real number, the weight of

formula F;. For each finite domain of discourse D (set of constants),
an MLN L defines a ground Markov random field M7, p as follows:

1. My, p’s set of variables X contains one boolean variable for each
possible grounding of each predicate appearing in L.

2. My, p contains one feature for each possible grounding of each
formula F; in L. The value of this feature is 1 if the ground for-
mula is true, and O otherwise. The weight of the feature is w;.

M7, p specifies a probability distribution over the set of possible

worlds, i.e. the set of possible assignments of truth values to each

of the ground atoms in X, as follows,

Py(X =)= 5 exp (Zl wml(m)) ?2)

where n;(z) denotes the number of true groundings of F; in z and
Z is a normalization constant.

The parameters of an MLN (the weights w;) are usually learned
using MAP estimation or maximum likelihood. In the latter case,
one simply maximizes the (pseudo-)likelihood of a training database
x (i.e. a possible world that defines, for some domain D, the truth
values of all the ground atoms in the set X specific to D).

4 ADAPTIVE MARKOV LOGIC NETWORKS

We now introduce a generalization of Markov logic networks that
addresses the issues described in Section 2. Since we want model pa-
rameters to be dependent on attributes of an instantiation, we need to
formalize these attributes: Let { A1, ..., Ax} be the set of attributes
that we consider. A := dom(A;) X - - - x dom(Ay) is thus the set of
possible attribute configurations. We define an adaptive Markov logic
network (AMLN) as a set £ of pairs (F;, W;), where F; is a formula
in first-order logic and W; : A — R is a function that maps from the
vector of attributes of the instantiation to the parameter domain. An
AMLN can therefore be regarded as a template for the construction
of an MLN: For any domain D with attribute vector ap € A, we
obtain a Markov logic network L. p = {(F;, W;(ap))} specific to
D, which we can then apply in order to perform inference.

In the remainder of this work, the attributes A; we consider are
strictly cardinalities of sets of objects as they appear in the instantia-
tion, i.e. dom(A;) = N, but it is conceivable that parameters could
be dependent on other attributes. For instance, parameters could de-
pend on the point in time for which we instantiate the model: We
could learn from several historical records of, say, a social network,
learn how dependencies changed over time and then instantiate the
adaptive model for a point in time for which we do not (yet) have any
data.

4.1 PARAMETER LEARNING

The key to the learning of AMLNs that will indeed generalize across
domains with varying attribute configurations is to adjust the learn-
ing algorithms to learn the weight functions that we introduced above
rather than scalar values. This naturally requires us to learn from mul-
tiple training databases; the combination of several training databases
into a single, very large training database of i.i.d. data is clearly not
adequate. We need to explicitly consider the effects of changing the
domain of discourse.

4.1.1 Constrained Learning from Individual Databases

First of all, however, we need to take into consideration the fact that
parameter learning in MLNSs is, in general, an ill-posed problem [5].

Consider the MLN structure shown in Table 2. (We use a notation
in which functional relations are declared by suffixing functionally
determined arguments of a relation with an exclamation mark.) The
predicates sT and c¢T stand for student type and course type respec-
tively. The MLN that is shown is thus a basic model of our example
scenario where the relation takes depends on the attributes of the re-
lated objects. The ill-posedness of parameter learning stems from the
underdeterminism that allows us to obtain, for particular cardinalities
of the sets of students and courses, precisely the same probability dis-
tribution using an infinite number of (non-equivalent) weight vectors,
as the choice of ¢ in Table 2 is arbitrary. For any real ¢, the MLNs
with weight vector w and w’ are equivalent. The effect of modifying
the weight of the unit clause sT(s, BSc) can be cancelled out by ap-
plying the inverse modification to a set M of mutually exclusive and
exhaustive formulas within which that unit clause appears — scaled,
however, using the ratio between the number of groundings of the
unit clause and the number of groundings of each of the formulas in
M. With N, and N, as the number of courses and the number of stu-
dents in the domain respectively, the ratio is Ns/(Ns - No) = 1/No.
It should be clear, however, that, for 6 # 0, if N. changes as we
move to another domain of discourse, so does the implied probabil-
ity distribution.

If unit clauses such as sT(s, BSc) are, as suggested in [9], in-
deed to be used to capture marginal probabilities, we must there-
fore ensure that, for a group of mutually exclusive and exhaustive
unit clauses (such as formulas 1 and 2 in Table 2), the ratio between
any two exponentiated formula weights within the group matches the
empirical relative frequencies in the training database. For instance,
if the fraction of Bachelor students is 2/3, we should require that

exp(w1)/ exp(w2) = (2/3)/(1/3) = 2.

Table 2: MLN structure exhibiting underdeterminism

predicate declarations domain definitions

sT(student, studentType!) studentType = {BSc, MSc}
cT(course, courseType!) courseType = {Beg, Adv}
takes(student, course)

formula w w’

sT(s, BSc) w1 w1 + 90
sT(s, MSc) wa wo

cT(c, Beg) w3 w3

sT(c, Adv) wy wy
takes(s, c) A sT(s, BSc) A ¢T(c, Adv) ws ws —8/Ne
—takes(s, ¢) A sT(s, BSc) A cT(c, Adv) we we —0&/Ne
takes(s, c) A sT(s, BSc) A cT(c, Beg) wy w7 —8/Nc
—takes(s, ¢) A sT(s, BSc) A cT(c, Beg) ws wg —0/Ne
takes(s, c) A sT(s, MSc) A c¢T(c, Adv) wg wg
—takes(s, ¢) A sT(s, MSc) A cT(c, Adv) w1o w1o
takes(s, ¢) A sT(s, MSc) A c¢T(c, Beg) w11 w11
—takes(s, c) A sT(s, MSc) A cT(c, Beg) w12 w12

Therefore, in order to eliminate the underdeterminism, we propose
a controllable preprocessing stage during parameter learning. A
straightforward choice of weights that guarantees the required ratios
is to set the weight of a unit clause to the logarithm of its relative
frequency in the data. Of course, only the weights of unit clauses
pertaining to a priori independent variables should be fixed in this
way. In our example, we assume that takes is not subject to a fixed
marginal distribution and therefore we would not — even if a corre-
sponding unit clause had been included in our model — have wanted
its weight to be determined by the preprocessing stage. We therefore
use explicit declarations in the model structure to determine the set
of formulas that the preprocessing stage is to be applied to.
Following the preprocessing stage, which reduces the dimension
of the learning problem to the respective projection of the weight
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vector, standard parameter learning is performed in order to learn the
remaining weights. We use BFGS to optimize the pseudo-likelihood
of the possible world embodied by the training database.

4.1.2 Learning from Multiple Databases

We now address the issue of learning dependencies of parame-
ters on attributes of the instantiation from multiple databases, us-
ing the learning procedure outlined above as a subroutine. Let
{D1,...,Dy} be the set of training databases. The first step is to
apply, to each training database D, the learning procedure described
in the previous section. This yields a vector of weights w; for each
formula appearing in the AMLN structure,

wi = ((wi), (1)) 3

Since we consider models where the objects are typed, each train-
ing database contains a set of objects for each of the types (object
classes). Let (D;); be the set of objects belonging to the I-th type in
the j-th training database. We call (D;); a subdomain of Dj.

Reducing the set of domain attributes to cardinalities of subdo-
mains, we consider the weight function W; of the i-th formula to be
a function of sizes of subdomains referenced in F}, i.e. its signature
is given by W; : N% — R, where s; is the number of subdomains
referenced in F;. We express each weight function as a linear combi-
nation of a set of basis functions. First, we give a brief motivation on
how to reasonably choose these basis functions. Observe that Equa-
tion (2), which describes the probability of a possible world given a
ground Markov random field, can be rewritten as

Py(X =z) = 4 exp (Zl wmz(x)) =z IL wi"i(z) 4)

with w; = exp(w;). To capture the dependency on subdomain sizes,
we view w; as a function over some size m (i.e. m = |(D;);| for
some 7, [). If we want the above product to be capable of representing
a factorization that includes relative frequencies a/m (e.g. 6 out of
24), our basis functions need to be capable of describing w;(m) :=
am™'. By choosing as basis functions

¢1(m) :=log(m),  ¢2(m):=m (5

we are capable of learning any monomial or exponential w;:

(12)1;)2

e W;(m) =log(w;i(m)) = log(am®) =loga + clogm (6)
e Wi(m) = log(wi(m)) = log(ac™) =loga + mloge (7)

Similarly, should a formula depend on more than one subdomain,
frequencies over products of subdomain sizes can be handled as fol-
lows:

Wi(ma, m2) log(wi(m1,m2)) = log(ami*m5?)

= loga+ ci1logmi + c2logme 8)

Learning faster-growing classes of functions is unlikely to be advan-
tageous. One might add more slow-growing basis functions, but the
gain is questionable, especially since adding too many basis func-
tions is likely to result in overfitting.

To learn the actual weight function W;, we need to find coeffi-
cients oa(f) such that the combined basis functions approximate the
learned weights (u%)y as well as possible. For each formula F; and
training database D, we have

2
(:); = o + > > en((Di))af’, +(er);

I€T; k=1

where Z; is the set of indices of domains appearing in formula F; and
(ei); is an error term. The overall goal is to minimize the quadratic
norm of the vector of errors £; = ((e) ;). Equation (9) is a system of

linear equations. Let x; be the vector of coefficients, i.e. x; = (a.(f.)),
and let A; be the matrix of basis functions evaluated at the relevant
subdomain sizes, sequentially taken from all training databases. As-
suming canonical ordering of entries in the matrix and vector, we
can rewrite equation (9) as A;x; ~ w; and use standard linear curve
fitting methods to obtain an optimal approximation vector x; that pa-
rameterizes our weight function W;.

4.2 EXPLICIT CARDINALITY CONSTRAINTS

In the examples that we consider further on, relations are subject
to cardinality restrictions. Since the use of existential quantification
to express cardinality restrictions as in Equation (1) is usually pro-
hibitively expensive in practice — owing to the conjunctive normal
form (CNF) conversion, which, unfortunately, results in an exponen-
tial blow-up of the representation® — we extended our implementation
of AMLNSs with a language construct that represents such restrictions
explicitly,
count(rel(z1,...,xn) | Tiy, ..., xi,,) €S (10)
where m < n and S C N, the semantics being that if the parame-
ters that are given by the index set {i1,...,%m } are bound to some
fixed vector of constants, the number of bindings for the remaining
parameters for which the relation holds true is required to be in S.

In the context of MLNs, a (weighted) count constraint defines,
for each possible grounding of the fixed parameters, a feature in a
ground Markov random field that corresponds to the clique connect-
ing the variables (ground atoms) that one obtains by grounding the
remaining parameters of the relation predicate; this is analogous to
the clique implied by Equation (1).

In our experiments, we use the inference algorithm MC-SAT [8],
as it proved to be most robust. Fortunately, the algorithm is easily ex-
tended to support our notion of explicit cardinality constraints. MC-
SAT is a slice sampler that uses one auxiliary variable per constraint.
The initial state (assignment of truth values to each of the ground
atoms) must be one that satisfies all hard constraints. Then, in each
step, the auxiliary variables are resampled given the current state.
Every setting of the auxiliary variables implies a subset M of the
ground model’s constraints that must be satisfied and, in particular,
a uniform distribution over the subset of possible worlds in which
these constraints are satisfied. Therefore, the next state is chosen by
uniformly sampling from the subset of possible worlds where the
constraints in M are satisfied. For this purpose, MC-SAT uses the
SampleSAT algorithm [10], which extends the WalkSAT algorithm
by injecting randomness via simulated annealing-type moves, allow-
ing near-uniform samples to be obtained.

With respect to MC-SAT, a count constraint can be treated just like
any regular logical constraint; it has a regular weight and we can eas-
ily check whether a given state satisfies it. Since MC-SAT requires
weights to be positive, we may need to negate count constraints be-
forehand. (Note that in an MLN, a formula F' with weight w has
precisely the same as effect as —=F with weight —w.) To negate a
count constraint, we simply need to invert the set of counts S, i.e. we
use as the new set of counts the complement N \ S.

2 Although a CNF conversion is not an unavoidable precondition for an im-
plementation of Markov logic networks, it is generally necessary to support
inference methods such as MC-SAT.
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Furthermore, we need to make changes to the SampleSAT algo-
rithm in order to enable it to find assignments that satisfy count con-
straints. Simulated annealing moves are largely unaffected by the in-
troduction of count constraints; we only need to incorporate into the
delta cost of the random move (which is used to probabilistically
decide whether the move is actually taken) the number of count con-
straints that would become unsatisfied or satisfied as a result of the
move. For WalkSAT moves, we pick one of the yet unsatisfied con-
straints and then flip the truth values of one or more ground atoms
that will satisfy the constraint and cause as few other constraints in
M to be unsatisfied as possible. For an unsatisfied count constraint,
the current state will either satisfy too few atoms from the set Y of
ground atoms appearing in the ground count constraint or too many,
i.e. we must set one or more ground atoms that are currently false
to true or vice versa. In either case, we greedily choose the ground
atom(s) with the most favourable delta cost of newly satisfied minus
newly unsatisfied constraints and flip their truth values. If the current
number of true ground atoms from Y is between two values from the
constraint’s set of counts .S, we consider the cost of both variants and
choose the direction in which to move accordingly.

S EVALUATION

In the following, we demonstrate the problems pertaining to shallow
transfer that we described above, illustrating how our methodology
solves them. To understand the gravity of these problems, it is suf-
ficient to look at the very simple example scenario that we previ-
ously introduced: Consider the stochastic process characterized by
Table 3 for this scenario. By clearly defining the properties of the
stochastic process, we can easily evaluate any model’s ability to re-
flect these properties — once it has been appropriately trained on train-
ing databases generated by the process.

Table 3: Properties of the stochastic process

cardinalities:

count(cT(c, Beg)) = 6 course participation
count(cT(c, Adv)) = |course| — 6 preferences of a
count(takes(s,c)|s) =6 BSc MSc
formula p Beg | 4/5 1/3
sT(s, BSc) 273 Adv | 1/5 2/3
sT(s, MSc) 1/3

The process states that the program that any given student is en-
rolled in is Bernoulli-distributed; with probability 2/3, a student is
enrolled in the BSc program. Furthermore, every student is required
to take exactly six courses out of the ones on offer: There are al-
ways six beginner-level courses; all other courses are advanced-level
courses. The choice of courses taken by a student depends on both
the student’s status and the courses’ levels. For example, if a course
is taken by an MSc, it is four times as likely to be an advanced
course than a beginner-level course. Since all students take exactly
six courses, the probability of a course being taken by some student
varies with domain size. It is important to note that the right part of
Table 3 is not a conditional distribution that could simply be included
in a directed model, because the probability of a course having a par-
ticular type is affected by all the students’ relations to the course. In
the following, the goal is to learn and represent the properties of this
stochastic process in such a way that the effects resulting from an
application of the model to instantiations of variable size are taken
into account.

As our MLN model structure, we used the structure shown in Ta-
ble 2, extended only with the following hard cardinality constraints,

which correspond directly to the properties of the process:

count(takes(s, c) | s) € {6}. "

count(cT(c, Beg)) € {6}. an
Note that the structure in Table 2 on its own would be ideal for a
process where there is no cardinality restriction on the relation takes,
for it is capable of representing precisely a direct factorization of
the full-joint probability distribution as it would appear in a model
derived via knowledge-based model construction (KBMC).

We generated a series of training databases with a varying number

of courses (it ranged from 12 to 36), while the number of students
was fixed at 45.

5.1 PARAMETER LEARNING

To evaluate the learning of weight functions, we trained our AMLN
on a set of databases of five different sizes, using multiple databases
for each size to compensate for the stochasticity of our process
model. In total, our training databases contained data on 3,375 stu-
dents and 1,875 courses.

The appropriateness of the basis functions that we proposed in
Section 4.1.2 is confirmed by the exemplary results shown in Fig-
ure la, which indicates that even for domain sizes we did not explic-
itly train for, the weights are near-optimal. Thus, the dynamics of the
stochastic process appear to be adequately represented in the weight
function that was learned.

5.2 LINK PREDICTION

Having learned an AMLN for our example domain, the next step is
to evaluate it in terms of how well the model reflects the properties
of the process for any given domain size. We compare our results
to standard MLNs trained on a single database exhibiting precisely
the expected values of our stochastic process (we used a determin-
istic generator process to guarantee this), and its size was equivalent
to that of the unification of all training databases that were used to
induce the AMLN. All models used the same structure including car-
dinality constraints.

Since the task of link prediction is most critical within the context
of self-contained worlds and constrained relations, we inferred the
probability of a student taking a particular course given the attributes
of both the course and the student — for domains containing a variable
number of additional courses (about which we do not provide further
evidence). The results are summarized in Figure 1b. The AMLN ac-
curately represents the process property which demands that as the
number of courses increases, the probability of an MSc student tak-
ing any given advanced-level course decreases appropriately (it is
2.6/(Ne — 6) if N is the number of courses in the domain). The
standard MLN, on the other hand, does not capture this fundamental
process property. Given what we have learned thus far, this was to be
expected (since it was trained on a database containing a number of
courses that is far greater than the number for which the model was
instantiated), yet the degree to which the predictions diverge from the
desired results is notable (the relative error exceeds 90%).

It is interesting to note that our AMLN learning approach is capa-
ble of capturing properties of the underlying stochastic process even
if the model structure is incomplete. In particular, if we remove all
cardinality constraints from the model, the AMLN still correctly es-
timates at least the expected values that these cardinality constraints
imply: Applying link prediction to evidence databases containing ten
students and a varying number of courses, providing information on
all attribute values as they were generated by the stochastic process
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Figure 1: (a) weight curve of takes(s, ¢) A sT(s, MSc) A ¢T(c, Adv); (b) probability of a particular Master student taking a particular advanced
course given only the existence of further courses; (c) expected number of courses taken by a student depending on the number courses offered

model, we observe that the expected number of courses taken by a
student is predicted at almost exactly six by the AMLN for all domain
sizes, as shown in Figure 1c. A standard MLN, which was induced
using a (perfect) training database containing 24 students, predicts
the desired outcome only for the domain size it was trained for.

5.3 CLASSIFICATION

Apart from probabilities pertaining to links, we can (as long as the
entire relational skeleton is given) expect standard MLNs to accu-
rately capture dependencies between class attributes and any predic-
tor attributes. Therefore, the classification performance of MLNs and
AMLNSs (with known relations) is equivalent. As soon as, however,
even a few links are left unknown, classification results are greatly
affected. We empirically confirmed this in our experiments, but for
reasons of brevity, we do not report the results.

6 RELATED WORK

Cardinality restrictions have found their way into most areas of com-
puter science that deal with (natural) relations in one way or another,
be it the modelling of entity relationships for database design [1]
or the logical modelling of real-world concepts and relations in de-
scription logics [2]. Soft constraints on cardinalities, i.e. distributions
over counts, can, for instance, explicitly be expressed in the proba-
bilistic description logic PClassic [6] and were also considered in [7].
Cardinality-based features of graphical models were previously de-
fined in [4] in order to reduce the complexity of inference, albeit in an
entirely different context. Advances in non-parametric models (e.g.
[3]), though concerned with issues pertaining to cardinalities, also
have a different focus. The impact of cardinality restrictions on the
generalization of statistical relational models across domains of vari-
able size has, to the best of our knowledge, so far not been addressed.
Dynamic parameter adjustments in probabilistic logical models were
previously proposed in [5] in order to model size-invariant domain
properties — in particular, marginal probabilities that must not change
with domain size. With AMLNs, we address the inverse problem of
modelling precisely how probabilities must change with domain size
(or other attributes of an instantiation).

7 CONCLUSION

In this paper, we introduced statistical relational models with dy-
namic parameters: adaptive Markov logic networks (AMLNs).? The

3 Source code is freely available from http://ias.cs.tum.edu/research/probcog

dynamic adjustment of parameters is, as indicated by our experi-
ments, an important concept in order to enable models to generalize
across domains with varying attributes (in particular, attributes per-
taining to the number of objects under consideration). As we have
shown, statistical models with a fixed vector of parameters do not in
general succeed in capturing the general principles that in fact apply
to even conceptually simple relational domains, producing arbitrar-
ily large errors in link prediction tasks. In contrast, the representation
that we proposed and the learning mechanism that we devised are
capable of handling the stochastic effects that result from varying at-
tributes of the domain of discourse and thus enable a far greater class
of stochastic processes to be accurately represented.

While our current approach is based on Markov logic networks,
our methodology can be straightforwardly adapted to other for-
malisms that have been devised in the field of statistical relational
learning.
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