
A NEATWay for Evolving Echo State Networks

Kyriakos C. Chatzidimitriou1 and Pericles A. Mitkas2

Abstract. The Reinforcement Learning (RL) paradigm is an ap-

propriate formulation for agent, goal-directed, sequential decision

making. In order though for RL methods to perform well in diffi-

cult, complex, real-world tasks, the choice and the architecture of

an appropriate function approximator is of crucial importance. This

work presents a method of automatically discovering such function

approximators, based on a synergy of ideas and techniques that are

proven to be working on their own. Using Echo State Networks

(ESNs) as our function approximators of choice, we try to adapt

them, by combining evolution and learning, for developing the ap-

propriate ad-hoc architectures to solve the problem at hand. The

choice of ESNs was made for their ability to handle both non-linear

and non-Markovian tasks, while also being capable of learning on-

line, through simple gradient descent temporal difference learning.

For creating networks that enable efficient learning, a neuroevolu-

tion procedure was applied. Appropriate topologies and weights were

acquired by applying the NeuroEvolution of Augmented Topolo-

gies (NEAT) method as a meta-search algorithm and by adapting

ideas like historical markings, complexification and speciation, to the

specifics of ESNs. Our methodology is tested on both supervised and

reinforcement learning testbeds with promising results.

1 INTRODUCTION

Modeling the mechanisms of learning and decision making of au-

tonomous agents as Reinforcement Learning (RL) problems is an

appropriate match [13]. An autonomous agent following the RL

paradigmwill work towards maximizing the total amount of reward it

receives over time, by making changes in its policy (i.e. the mapping

of state to actions) based on feedback returned by interacting with

its environment. For complex, real-world tasks though, with large,

continuous state and action spaces, there is a need for a Function Ap-

proximator (FA) to take the role of modeling the policy and provide

generalization capabilities to the RL algorithm [14].

In order to automate the task of finding efficient FAs per problem,

the area of adaptive function approximation was developed [13]. The

goal of the area is to adapt, with little or no human input, the pa-

rameters of the FA to the problem at hand, through the synthesis of

learning and evolution. Evolution (global search) is applied in order

to find FAs that are better able to learn (local search), through Tem-

poral Difference (TD) learning in the RL case [17].

Towards this direction, we present a methodology that synthesizes

ideas, proved to work on their own, into a single bundle and in a

novel fashion. Our methodology comprises three components: i) a

FA, ii) the coupling of learning and evolution and iii) a NeuroEvolu-

1 Aristotle University of Thessaloniki / Centre for Research and Technology
Hellas, Greece, email: kyrcha@issel.ee.auth.gr

2 Aristotle University of Thessaloniki / Centre for Research and Technology
Hellas, Greece, email: mitkas@eng.auth.gr

tion (NE) method. For the first component, our FA of choice is Echo

State Networks (ESNs) [5, 6], from the realm of Reservoir Com-

puting (RC). Since we require the FA to be able to a) capture any

existing non-linear dynamics of the environment and b) model any

existing non-Markovian state signals, ESNs seem like an appropriate

solution, due to their properties inherited from their Recurrent Neural

Network (RNN) profile. Adding the fact that learning can be applied

in an on-line fashion, using linear learning rules to the output layer of

the network, ESNs make for a very powerful FA and an appropriate

candidate for a dual adaptation through both learning and evolution,

the second component of our methodology.

Finally, as the third component, we chose NeuroEvolution of Aug-

mented Topologies (NEAT) [11, 12], a state-of-the-art NE method

that is capable of Topology and Weight Evolving of Artificial Neural

Networks (TWEANN). NEAT is used in the form of a meta-search

evolutionary algorithm to evolve ESNs that will efficiently learn to

solve the given task. In particular, we transformed the major ideas be-

hind the NEAT method: a) use crossover with the help of historical

markings, b) perform speciation to protect innovation and c) apply

complexification by starting minimally and augmenting topologies

in order to quickly develop parsimonious networks, to the specifics

of ESN computing.

The paper continuous as follows: Section 2 summarizes the back-

ground behind the components involved. Section 3 provides a short

survey of recent relevant work. Section 4 describes the methodology,

while Section 5 presents the experiments, exhibits the obtained out-

comes and comments on the results. Finally, Section 6 summarizes

the paper with the conclusions and discussion on future improve-

ments.

2 BACKGROUND

2.1 Echo State Networks

In this section we provide a brief overview of the ESN approach, fo-

cusing on certain aspects useful to the rest of the paper. More detailed

analysis and examples can be found in [5, 6], while for an overview

of the RC area the reader could refer to [8].

The idea behind RC and ESNs, is that a random RNN, created un-

der certain algebraic constraints, could be driven by an input signal

to create a rich set of dynamics in its reservoir of neurons, forming

non-linear response signals. These signals, along with the input sig-

nals, could be combined to form the so-called read-out function, a

linear combination of features, y = wT · φ(x), which constitutes

the prediction of the desired output signal, given that the weights,

w, are trained accordingly. The recurrences, present in the reservoir

in the form of cycles in the connection topology, enable the ESN

to maintain a dynamic memory and process temporal information.

Even though other read-out functions, like feedforward neural net-

works, can be connected to the reservoir, a linear function is enough

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-909

909

to achieve excellent performance in practical applications.

A basic form of an ESN is presented in Figure 1. The reservoir

consists of a layer of K input units, connected to N reservoir units

through aN ×K weighted connection matrixW in. The connection

matrix of the reservoir, W , is a N × N matrix. Optionally a back-

projection matrix W back could be present, with dimensions N × L,

whereL is the number of output units, connecting the outputs back to

the reservoir neurons. The weights from input units (linear features)

and reservoir units (non-linear features) to the output are collected

into a L× (K +N) matrix,W out. For this work, the reservoir units

use f(x) = tanh(x) as an activation function, while the output units
use either g(x) = tanh(x) or the identity function, g(x) = x.

Win W Wback

Wout

Input
Units

Output
Units

Reservoir Units

Figure 1. A basic form of an ESN. Solid arrows represent fixed weights
and dashed arrows adaptable weights.

Best practices for generating ESNs, i.e. procedures for generating

the random connection matrices W in,W and W back, can be found

in [6, 8]. Briefly, these are: (i)W should be sparse, (ii) the mean value

of weights should be around zero, (iii) N should be large enough to

introduce more features for better prediction performance, (iv) the

spectral radius, ρ, of W should be less than 1 to practically (and not

theoretically) ensure that the network will be able to function as an

ESN. Finally, a weak uniform white noise term can be added to the

features for stability reasons.

In this work, we consider discrete time models and ESNs without

backprojection connections. As a first step, we scale and shift the

input signal, u ∈ R
K , depending on whether we want the network to

work in the linear on the non-linear part of the sigmoid function. The

reservoir feature vector, x ∈ R
N , is given by Equation 1:

x(t+ 1) = f(Win
u(t+ 1) +Wx(t) + v(t+ 1)) (1)

where f is the element-wise application of the reservoir activation

function and v is a uniform white noise vector. The output, y ∈ R
L,

is then given by Equation 2:

y(t+ 1) = g(Wout[u(t+ 1)|x(t+ 1)]) (2)

with g, the element-wise application of the output activation function.

For supervised learning tasks, the problem can be formulated as a

linear regression problem and the output weights can be determined

using a variety of numerical linear algebra algorithms [8]. For RL

tasks with K continuous states and L discrete actions, we can use

an ESN to model a Q-value function, where each network output

unit l, can be mapped to an action al, l = 1 . . . L, with the network

output value yl denoting the long-term discounted value, Q(s, al) of
performing action al, when the agent is at state s. Given g(x) = x,

this Q-value can be represented by an ESN as:

yl = Q(s, al) =
K∑
i=1

w
out
li si+

K+N∑
i=K+1

w
out
li xi−K , l = 1, . . . , L (3)

while actions can be chosen under the ε-greedy policy [14].

Linear Gradient Descent (GD) SARSA TD-learning can be used

to adapt weights [14, 15], where the update equations take the form

of:

δ = r + γQ(s, a′)−Q(s, al) (4)

w
out
l

′

= w
out
l + αδ[s|x] (5)

with a′ the next action to be selected and α the learning rate.

2.2 NEAT

NEAT [11, 12] is a TWEANN algorithm, constructed on four prin-

ciples that made it a reference algorithm in the area of NE. First of

all, the network, i.e. the phenotype, is encoded as a linear genome

(genotype), making it memory efficient with respect to algorithms

that work with full weight connection matrices. Secondly, using the

notion of historical markings, newly created connections are anno-

tated with innovation numbers. NEAT during crossover aligns par-

ent genomes by matching the innovation numbers and performs

crossover on these matching genes (connections). Due to the com-

peting conventions problem [9], crossover is usually not applied in

NE, but historical markings have made crossover practically appli-

cable. Under the NEAT method, it has been proved experimentally

that crossover could do more good than harm. The third principle

is to protect innovation through speciation, by clustering organisms

into species in order for them to have time to optimize by competing

only in their own niche. Last but not least, NEAT starts with minimal

networks, that is networks with no hidden units, in order (a) to ini-

tially start with a minimal search space and (b) to justify every com-

plexification made in terms of fitness. NEAT complexifies networks

through the application of structural mutations, by adding nodes and

connections, and further adapts the networks through weight muta-

tion by perturbing or restarting weight values. The above successful

ideas could be used in other NE settings in the form of a meta-search

evolutionary procedure. In our case, we follow these ideas to achieve

an efficient search in the space of ESNs. A brief description of the

NEAT procedure can be found in Section 4.

3 RELATED WORK

ESNs have been used before as FAs for RL tasks in [15], but in their

basic, non-optimized form. In the same paper the authors show that

ESNs using the SARSA(λ) algorithm have the same convergence be-

havior as a linear FA with SARSA(λ), with the extra value of hold-

ing for k-order Markov Decision Processes (MDPs) as well, making

ESNs more theoretically desirable.

When it became evident that better results could be obtained by

optimizing the reservoir, instead of randomly generating it, many

methods came up that do exactly that. In [1], next ascent local search

is used to find better connection topologies of W . In [4], the authors

move away from performing a TWEANN method for evolving the

network, but rather focus on evolving the parameters, N , ρ and D,

the connection density of W , to find a good set of values. They then

refine the fittest ESN produced by applying a second evolutionary

method directly on its weight genome, constructed by vectorizing

K.C. Chatzidimitriou and P.A. Mitkas / A NEAT Way for Evolving Echo State Networks910

the weight matrices of the ESN. In two more recent approaches [7]

applies the CMA-ES algorithm to optimize the macroscopic param-

eter triplet: N , ρ and D, while [2] evolves output weights (matrix

W out) using evolutionary strategies.

The closest matches to our method can be found in [17, 10].

In [17], NEAT is used, as is, to develop ad-hoc Neural Networks

(NNs) without recurrent connections so that TD-learning could be

applied using standard error backpropagation updates to further

adapt weights towards a solution. In [10] the authors use their own

evolutionary TWEANN method to develop ESNs with competitive

results in time-series prediction problems.

Our method differs from the aforementioned approaches in sev-

eral aspects. First of all we are trying to optimize all parameters of

the reservoir, i.e. the connection topology, the weights, N , ρ, D, us-

ing NE and TD-learning. This differentiates our focus from any work

that optimizes only macroscopic reservoir parameters. The difference

from [17], apart from the obvious use of ESNs versus ad-hoc NNs, is

that a) we have the additional property of ESNs to maintain a mem-

ory and thus solve tasks with non-Markovian state signals, and b)

the network is trained using simple linear TD-learning instead of er-

ror backpropagation. Finally, this work differs from [10] in that a) it

uses an established NE method as a meta-search algorithm, b) it ap-

plies different operators and techniques (no crossover operator exists

and no speciation is performed in [10]), and c) our focus is mainly on

RL tasks rather than time-series prediction tasks. So, at least to the

best of our knowledge, such a synergy has not been tried before.

Following [17], we too apply and test both Lamarckian and Dar-

winian evolution philosophies. In the first case, the adaptable part,

W out, is transferred from generation to generation after evolutionary

operators are applied to it, while in the second case, it is re-initialized

in every generation.

4 METHODOLOGY

Each genome, G, in our methodology consists of the following

genes: W in ∈ R
NK , W ∈ R

N2

, W out ∈ R
N(K+L), D ∈ R

and ρ ∈ R.

The initial reservoir has one neuron, N = 1, in order to capture

the minimum non-linearity (solve the XOR problem). One can also

jumpstart the reservoir using more neurons, if necessary. The weights

inW in are randomly initialized in [−1, 1], while allW out elements

are set to 0. D, is randomly initialized in [Dmin, Dmax] and defines

the percentage of the active, non-zero, connections in the reservoir,

while ρ, is randomly initialized in [ρmin, ρmax]. Connections in W

are randomly initialized in [−1, 1] based on probability D. A regis-

ter that keeps a running tally, r =
∑N

i

∑N

j wij , of the sum of the

reservoir connection weights, helps keep the mean value of weights

around 0, during mutation operations. We assume that all reservoir

connections exist, but only the non-zero ones are enabled.

After the initialization procedure, each of the organisms in the

population passes to the evaluation phase, where learning is enabled

and the optimal policy is estimated using the update Equation 5. Dur-

ing this learning-evaluation phase, the performance of each individ-

ual is recorded as fitness until the NEAT evolution step takes place

(Algorithm 1). First of all, stagnated species, i.e. species that did not

improve their fitness on the recent past, are removed. Population is

clustered into old or newly created species based on their distance

from the species representative and a certain threshold. Species with

no attained organisms are removed. Fitness is calculated for both

genomes and species and according to that, a proportional number of

offsprings is assigned to each of the species for reproduction. During

the reproduction phase, for each species, the champion gene is kept

as is. The remaining spots are filled by applying mutation, crossover

or both, to selected parents that pass a predefined survival threshold,

Sthres. Interspecies mating is also possible under certain probability,

pi. More details can be found in [11, 12].

Algorithm 1 NEAT evolution step

remove-stagnated-species

cluster-population

remove-empty-species

calculate-adjusted-gene-fitness

calculate-species-fitness

calculate-offsprings-per-species

remove-non-assigned-species

for all species do

keep-champion-gene

while offsprings-remain do

x ← select-parent(Sthres)

if mutate then

offspring← mutate(x)

else

y ← select-parent(Sthres)

if random < pi then

y ← interspecies-selection(Sthres)

end if

if mate then

offspring← xover(x,y)

else

offspring← mutate(xover(x,y))

end if

end if

add-offspring(offspring)

end while

end for

4.1 Mutation

The mutation operator pertains to both topology, (adding a node or

a connection), and weights (restarting or perturbing weight values).

More specifically:

• mutate-D and mutate-ρ: Given probabilities, pD and pρ, the

connection densityD and spectral radius ρ are either perturbed, in

bounds, by at most 5% at a time, or for a small probability (0.05),
restarted.

• mutate-weights: Given a probability pw, each weight inW
in

andW is mutated, either by perturbing its valuew′ = w−sgn(r)·
p · wpow, or by restarting it completely with equal probability,

w′ = −sgn(r) · p · wpow, with wpow being the weight muta-

tion power. For weights in W , r is the running tally and p a ran-

dom number in [0, 1], while for weights in W in, r = −1 and p a

random number in [−1, 1]. During Lamarckian evolution, output

weights are also mutated like W in. Only enabled connections of

W are mutated.

• add-node: Given a probability pn, a node is added into the

reservoir and all its connections, in and out of this node, are ini-

tially disabled by setting them to 0. The weight connection matri-

ces change as follows: W in′

∈ R
(N+1)K , W ′ ∈ R

(N+1)2 and

W out′ ∈ R
L(K+N+1), withwin′

ij = (2 ·p−1) ·wpow, i > N and

w′

ij = 0, i, j > N , wout′

ij = 0, j > N . For the reservoir, the in

K.C. Chatzidimitriou and P.A. Mitkas / A NEAT Way for Evolving Echo State Networks 911

and out connection weights of the new node can be found in row

N + 1 and column N + 1 of W .

• add-connection: Given a probability pc, a connection is en-

abled and a weight is initialized in the reservoir with respect to the

running tally kept by the genome: w′

ij = wij − sgn(r) · p ·wpow .

4.2 Mating

Following the historical markings technique, every time a new node

is added, it is assigned an innovation number equal to its position in

the diagonal ofW , representing the relative time-step the neuron was

added in the history of the specific genome. Then during crossover

W ,W in, and if Lamarckian evolution is enabled,W out, are aligned

based on these numbers. For matrix W there is an example in Fig-

ure 2.

Figure 2. The alignment of two reservoirs of different sizes. The circles
virtually represent the nodes, annotated by their innovation numbers at the

top right part of each circle.

As a first step, the size of the offspring’s reservoir must be deter-

mined. There are two alternatives: (i) to continue complexifying the

network and choose the largest of the two and (ii) choose the size of

the fittest parent. We adopted both approaches by adding a parameter

to choose between the two.

Based on the size of the reservoir, excess weights are either com-

pletely adopted or completely discarded. For matching and disjoint

connections, we follow the rules of Equation 6:

w
′

ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1

ij+w2

ij

2
if w1

ij , w
2
ij �= 0 and p < 0.5

w1
ij if w1

ij , w
2
ij �= 0 and 0.5 ≤ p < 0.75

w2
ij if w1

ij , w
2
ij �= 0 and 0.75 ≤ p < 1.0

w1
ij if w2

ij = 0 and w1
ij �= 0

w2
ij if w1

ij = 0 and w2
ij �= 0

(6)

where p is a random number between 0 and 1.
As for the input and output weights, the excess weights depend on

the final value of N , while the rest are either averaged or chosen by

either parent with equal probability. D and ρ are inherited from the

fittest parent.

4.3 Speciation

For clustering genomes and since W could be quite sparse, it makes

little sense to focus on the structural similarities like NEAT does

(similarity measure based on matching, disjoint and excess genes),

so we implemented a distance measure based on macroscopic fea-

tures of reservoirs (Equation 7):

δ =
cα|ρ− ρr|

ρr
+

cβ |D −Dr|

Dr

+
cγ |N −Nr|

Nr

(7)

where the r subscript corresponds to the representative of the species

and the coefficients cα, cβ and cγ are predefined parameters. If δ <

T , a prespecified threshold, then the genome is added to the species.

4.4 Remarks and Parameters

Each offspring is verified, before being given for evaluation, so that

D is the same as its actual connection density, D̃, after crossover and

mutation operators are applied. Given the difference between D and

D̃, a probability is calculated as to how many connections should be

stochastically added or removed so that D ≈ D̃.

We should also note that the genome maintains the matrix W be-

fore it is scaled to ρ. This is performed in the procedure of converting

the genotype to its phenotype.

A final remark we would like to make with respect to our method

and ESNs is that since for several problems K,L << N , the big

memory expense is on storing W , consuming memory of O(n2),
n being the number of nodes in the network graph. If one enforces

reservoirs to be sparse, then matrix W could be stored as a sparse

matrix rather than as a full matrix, forming a linear genome and sav-

ing computer memory. In that case, the largest eigenvalue used for

scaling to ρ could be calculated by the power iteration method. For

the present work, since we want to test our methodology in testbeds

that do not require extreme memory needs, the O(n2) approach is

implemented.

All the parameters of our method can be found in Table 1, along

with their corresponding default values. If not stated explicitly, these

are the values used in the experiments.

Table 1. Indicatory values of the parameters in our methodology.

Param. Value Param. Value Param. Value

noise 10−7 pρ 0.05 pw 0.8
cα 0.5 pD 0.05 pn 0.05
cβ 1.0 pmate 0.33 pc 0.1
cγ 1.0 pmutate 0.33 T 1.0
ρmax 0.99 Dmax 0.99 wpow 0.25
ρmin 0.66 Dmin 0.01 Sthres 0.3
pi 0.001 Generations 100 Population 100

5 EXPERIMENTAL RESULTS

5.1 Supervised Learning

To evaluate the performance of our methodology, we tested it on a

standard time-series benchmark that of predicting the state of the

Mackey-Glass (MG) system. From the values found in Table 1, we

increased the pn to 0.5, for the network to complexify faster and

reach the appropriate number of features needed for predicting ac-

curately the MG series. Additionally, during crossover, the N value

of the largest individual was chosen, instead of the fittest one. We

observed that the later approach stuck to initial local minima, not en-

abling the network to quickly complexify to appropriate sizes. Input

and teacher signals were shifted by −1 with no scaling, while the

K.C. Chatzidimitriou and P.A. Mitkas / A NEAT Way for Evolving Echo State Networks912

bias was scaled by 0.2 with no shifting. The tanh sigmoid function

was used for the output neurons.

Following the setup in [10], a sequence U of 3000 time-steps

was supplied for training with the first 100 time-steps being a wash-

out sequence, used to eliminate initial transient effects, and the rest

2900 time-steps used for off-line training. Test and validation Nor-

malized Root Mean Square Errors (NRMSEs) are reported. For the

NRMSEtest, after the network is trained, U is divided into 20 chunks

of 150 time steps. The first 100 time-steps were used as wash-out,

while for the second 50 time-steps, on-line prediction was made by

connecting the output to the input. The 20 NRMSEtest formed a mea-

sure of the fitness: f = 20∑
20

i=1
NRMSEtest

i

. NRMSEvalid is the er-

ror on the prediction of an additional 84 time-steps of the sequence,

again by connecting the output to the input after feeding in U .

The median errors of the champion organisms of the 30 runs,

were NRMSEtest = 6.29 · 10−3 and NRMSEvalid = 1.969 · 10−3.

Macroscopic properties of these best performing individuals can be

found in Table 3. For comparison, randomly instantiating, training

and testing 100 plain ESNs, without the optimization procedure and

with N = 42 (Table 3), for 30 runs, yielded median NRMSEtest =

2.84 · 10−2 and median NRMSEvalid = 2.08 · 10−2. Our test and val-

idation errors reported are better by an order of magnitude than the

ones in [10] and from the ones with non-optimized ESNs. Similar

behavior to [10] is observed with respect to the macroscopic prop-

erties of the reservoirs. A N value of around 40 is enough to get

tolerable errors,D is in the high limit, while ρ is close to 1. Also the
generalization capabilities of the method are very good, since we get

better validation error performance than test error performance.

5.2 Reinforcement Learning

All RL experiments were developed on the RL-Glue platform [16].

The reservoir units continued to have tanh as their activation func-

tion, while the output units used the identity function. Moreover, the

reservoir size, N , of the fittest parent was maintained in mating, un-

less for the non-Markovian tasks where the largestN was kept. There

was no scaling and shifting of the input and output signals.

5.2.1 Mountain Car

For the Mountain Car (MC) task, we used the setup in [17]. Each of

the state components, position x and velocity v, was divided into 10

regions (for a total of 21 inputs, adding a bias). An input of 1 was fed
to the corresponding input unit, when the agent fell into a region, 0
otherwise. Each individual in the population was evaluated and im-

proved its policy for 100 episodes (random initial states), with each

episode lasting at most 2500 time step, before passing to the evolu-

tion stage. The learning rate, α, was set to 0.1 and left to decay to 0

at the end of the 100th episode, ε was set to 0.05 and γ to 1. The me-

dians for each of the 106 episodes of the 25 runs, were averaged into

bins of 1000 episodes, for a total of 1000 bins. Figure 3 depicts the

performance of our method for both Darwinian (MC-D) and Lamar-

ckian (MC-L) evolution. In addition, the champion of each run was

evaluated for an additional 1000 episodes, starting again from ran-

dom initial states, with a median average performance of −57.65
time steps for Darwinian and−57.44 for Lamarckian evolution. The

statistics of the macroscopic properties of the champion networks are

found in Table 3.

Similar performance was achieved to that of NEAT+Q in [17]. The

fitness champion of each run gave an average generalization perfor-

mance of around −57 versus −52 of NEAT+Q, while there was al-

0 200 400 600 800 1000

−
5

0
0

−
4

0
0

−
3

0
0

−
2

0
0

−
1

0
0

Bins (x1000 episodes)

R
e
w

a
rd

Lamarckian

Darwinian

Figure 3. The performance of our methodology for both Darwinian and
Lamarckian evolution.

ways a generation champion in each run that gave a performance of

−48. The asymptotic behavior of Figure 3 was again similar as that

of simple NEAT+Q, that is without the use of on-line evolutionary

computation.

5.2.2 Single and Double Pole Balancing

For this experiment we considered the four setups found in [3]. These

are: (a) balancing one pole with complete (SPB-M) and (b) incom-

plete state information (SPB-NM) and (c) balancing two poles with

complete (DPB-M) and (d) incomplete state information (DPB-NM).

By incomplete state information, we mean that the state signal is

missing the cart and angular velocities of the pole(s), thus the agent

needs to maintain a memory of previous states in order to implicitly

calculate them. The task is considered solved if the pole or poles are

balanced for 100, 000 time-steps, equal to over 30 minutes of simu-

lated time. The learning rate, α, started at 10−6 and the exploration,

ε, started at 0.01 and decayed to 0 at the end of the 100th episode

for each organism, while γ was set to 1.0. Inputs were normalized

between −1 and 1. In Tables 2 and 3 we find the results of our ex-

periments.

Table 2. The average (AVG) and standard deviation (SD) over the 50 runs
of the number of generations, networks and episodes needed to find a

solution.

Task
Generations Networks Episodes
AVG SD AVG SD AVG SD

(×103) (×103)

SPB-M 2.7 0.9 232.3 99.7 17.87 9.78
SPB-NM 46.2 20.5 4666.2 2041.2 456.59 204.15
DPB-M 6 2.1 628.9 211.7 52.89 21.17
DPB-NM 22.4 11.6 2287.9 1171.3 218.79 117.13

Our methodology was able to find solutions to all four tasks, on all

runs. The results are not directly comparable to those in [3], since we

did not perform direct policy search, but have included a learning step

in between. So, as far as the number of networks evaluated (except

the case of SPB-NM) is concerned, our approach is comparable to the

highest performing ones in [3]. On the other hand, even though the

runs ended successfully, the number of evaluation episodes is quite

large. One could say that the number of episodes each individual

K.C. Chatzidimitriou and P.A. Mitkas / A NEAT Way for Evolving Echo State Networks 913

was evaluated was preset to a larger than required number. As an

improvement, a more directed search could be applied, evaluating

the highest performing individuals on more episodes and the lower

level ones on fewer episodes [17]. For the SPB-NM case, the method

found solutions in all runs, but failed to do so in a prompt manner.

This is probably due to fact that no parameter optimization was made

to the values of Table 1. Alternatively, one could initially set N to a

higher value.

Table 3. Statistics of the macroscopic parameters of the best networks for
all testbeds.

Task (runs)
N D ρ

AVG SD AVG SD AVG SD

MG (30) 42.90 10.18 0.86 0.21 0.92 0.06
MC-L (25) 2.08 0.86 0.52 0.28 0.81 0.10
MC-D (25) 2.52 1.08 0.59 0.27 0.79 0.09
SPB-M (50) 1.22 0.41 0.55 0.30 0.80 0.09
SPB-NM (50) 4.24 1.94 0.58 0.26 0.8 0.09
DPB-M (50) 1.98 1.05 0.52 0.27 0.85 0.09
DPB-NM (50) 6.44 2.99 0.67 0.26 0.85 0.07

The number of nodes in the network for RL problems was relevant

to the difficulty of the problem at hand. Reservoir densities had the

tendency of being around values of 0.5 or larger. Based on these ob-

servations one could note that by using an evolutionary search algo-

rithm solutions can be found that contain a small number of neurons

and a large number of reservoir connections, despite the fact that it is

a good practice to have large, sparse, networks.

Three variations of our methodology were also tested: (1) a popu-

lation of non-evolved randomly instantiated ESNs, withN following

the values of Table 3, trained using simple GD, (2) a simple linear

network (no reservoir of neurons), matching a linear approximator

trained using simple GD and weight mutation and (3) the complete

methodology, using only weight mutation and not TD-learning, un-

der Lamarckian evolution.

From the results in Table 4 it is evident an ESN performs better

if its topology and weights are optimized through an evolutionary

procedure. Non-optimized ESNs with simple GD were not capable

of solving any of the pole balancing tasks. On the other hand, a lin-

ear FA with GD and weight mutation performed better than vari-

ant (1), but, as expected, was not able to solve the non-Markovian

tasks. Finally, if GD is substituted with just weight mutation, in some

cases even better performance could be obtained. This is an indica-

tion that our methodology could be further improved by substituting

the simple GD with the more sophisticated evolution strategies or

least squares TD-learning.

Table 4. The performance of three variants in terms of the median
generalization performance of the champion of each run in the MC testbed

and the number of networks evaluated for solving the task in the pole
balancing testbeds. A dash is used when no solutions are found.

Variant MC SPB-M SPB-NM DPB-M DPB-NM

(1) Simple ESN -174.51 - - - -
(2) No reservoir -57.08 339.66 - 561.5 -
(3) No learning -50.84 368.78 7107.66 389.36 1809.84

6 CONCLUSIONS AND FUTUREWORK

In this paper, we presented our work of adapting ESNs through evo-

lution and learning to the task at hand. For our evolutionary proce-

dure, we applied the NEAT method as a meta-search evolutionary

algorithm and created operators adapted to the specifics of ESNs.

The results obtained are promising since the coalition proved highly

robust and efficient in different benchmarks.

This work is our first step into developing a robust and automated

way for adapting ESNs for RL problems in an ad-hoc manner. We

look forward into adopting evolution strategies for evolving specific

parameters like theD and ρ. Additionally, operator application prob-

abilities could become adaptable and intrinsic plasticity could be in-

troduced like in [10]. Finally, we plan to test our methodology into

more exciting testbeds, like for trading and game playing agents.

REFERENCES

[1] Keith Bush and Batsukh Tsendjav, ‘Improving the richness of echo state
features using next ascent local search’, in Proceedings of the Artificial
Neural Networks in Engineering Conference, pp. 227–232, St. Louis,
MO, (2005).

[2] Alexandre Devert, Nicolas Bredeche, and Marc Schoenauer, ‘Unsuper-
vised learning of echo state netowrks: a case study in artificial embryo-
geny’, in Proceedings of the 8th International Conference on Artificial

Evolution, volume 4926 of LNCS, pp. 278–290. Springer, (2008).
[3] Faustino Gomez, Jürgen Schmidhuber, and Risto Miikkulainen, ‘Ef-

ficient non-linear control through neuroevolution’, in Proceedings of

the European Conference on Machine Learning (ECML 2006), vol-
ume 4212/2006 of Lecture Notes in Computer Science, pp. 654–662.
Springer Berlin / Heidelberg, (2006).

[4] Kazuo Ishii, Tijn van der Zant, Vlatko Bec̆anović, and Paul Plöger,
‘Identification of motion with echo state network’, in Proceedings of

the OCEANS 2004 MTS/IEEE - TECHNO-OCEAN 2004 Conference,
volume 3, pp. 1205–1210, (2004).

[5] Herbert Jaeger, ‘The ‘‘echo state’’ approach to analysing and training
recurrent neural networks - with an erratum note’, Technical Report
GMD Report 148, German National Research Center for Information
Technology, (2001).

[6] Herbert Jaeger, ‘Tutorial on training recurrent neural networks, cover-
ing BPTT, RTRL, EKF and the ‘‘echo state network’’ approach’, Tech-
nical Report GMD Report 159, German National Research Center for
Information Technology, (2002).

[7] Fei Jiang, Hugues Berry, and Marc Schoenauer, ‘Supervised and evolu-
tionary learning of echo state networks’, in Proceedings of 10th Inter-

national Conference on Parallel Problem Solving from Nature, PPSN

2008, volume 5199 of LNCS, pp. 215–224. Springer-Verlag, (2008).
[8] Mantas Lukosevicius and Herbert Jaeger, ‘Reservoir computing ap-

proaches to recurrent neural network training’, Computer Science Re-

view, 3, 127–149, (2009).
[9] N. J. Radcliffe, ‘Genetic set recombination and its application to neural

network topology optimization’, Neural computing and applications,
1(1), 67–90, (1993).

[10] Benjamin Roeschies and Christian Igel, ‘Structure optimization of
reservoir networks’, Logic Journal of IGPL, (2009).

[11] Kenneth O. Stanley, Efficient Evolution of Neural Networks, Ph.D. dis-
sertation, University of Texas at Austin, 2004.

[12] Kenneth O. Stanley and Risto Miikkulainen, ‘Evolving neural networks
through augmenting topologies’, Evolutionary Computation, 10(2), 99–
127, (2002).

[13] Peter Stone, ‘Learning and multiagent reasoning for autonomous
agents’, in Proceedings of the 20th International Joint Conference on

Artificial Intelligence, pp. 13–30, (January 2007).
[14] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An

Introduction, MIT Press, Cambridge, MA, 1998.
[15] István Szita, Viktor Gyenes, and András Lőrincz, ‘Reinforcement learn-

ing with echo state networks’, in Artificial Neural Networks ICANN

2006, volume 4131/2006 of Lecture Notes in Computer Science, pp.
830–839. Springer Berlin / Heidelberg, (2006).

[16] Brian Tanner and Adam White, ‘Rl-glue: Language-independent soft-
ware for reinforcement-learning experiments’, Journal of Machine

Learning Research, 10, 2133–2136, (2009).
[17] Shimon Whiteson and Peter Stone, ‘Evolutionary function approxi-

mation for reinforcement learning’, Journal of Machine Learning Re-

search, 7, 877–917, (May 2006).

K.C. Chatzidimitriou and P.A. Mitkas / A NEAT Way for Evolving Echo State Networks914

