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Abstract. This paper introduces new solving strategies for the res-
olution of Pseudo-Boolean Modularity (PBMod) constraints. In par-
ticular, we deal with modular arithmetic constraints on Boolean vari-
ables. On the one hand, we analyze translations to Pseudo-Boolean
(PB) constraints and apply PB solvers. We also look at those PB
solvers that have shown that a transformation to the SAT problem can
be an effective solving strategy for PB problems. Among the existing
translation techniques we focus on the encoding based on a network
of sorters. We extend this encoding technique to generate directly a
SAT formula from the PBMod constraints. We compare our approach
to other standard techniques such as Satisfiability Modulo Theories
(SMT) solvers with support for the Quantifier Free Linear Integer
Arithmetic (QF LIA) theory and the GLPK package for Mixed Inte-
ger Programming. In order to conduct our experimental investigation
we present a generator of random PBMod constraints and study the
impact of the several parameters on the hardness of the instances.

1 Introduction

Modular arithmetic appears in many fields such as number theory,
group theory, ring theory, abstract algebra, cryptography and com-
puter science. In computer science, modular arithmetic is applied
for several purposes such as; bit-wise operations and other opera-
tions involving fixed-width, cyclic data structures, systems with par-
ity constraints, resolution of Diophantine equations, etc. Linear mod-
ular arithmetic equations are used in several applications. To men-
tion some examples: in [11] the addition of modularity constraints
is used to get bounds on the number of solution in CSP problems;
in [10] linear modular arithmetic constraints are used to prune the
search space in an algorithm for optimally solving bin packing prob-
lems; and in some frequency assignment problems, like in [7, 14],
frequency domains for sites are organized in groups that are congru-
ence equivalence classes, so that adjacency constraints between pairs
of frequencies can be defined with modular arithmetic.

In this work we focus our study on modularity constraints of the
following form:

P
i ci · li ≡ r (mod m) where ci, r and m are

positive integers and li is a literal of Boolean variables. We will refer
to this constraint as a pseudo-Boolean Modular (PBMod) constraint.
In particular, in our work we are interested in solving efficiently for-
mulas which are conjunctions of PBMod constraints. The ultimate
goal is its integration into a more general purpose framework such as
Satisfiability Modulo Theories (SMT) [15].

A straightforward method to deal with PBMod Constraints is
through their translation to PB constraints of the form:

P
i ci · li � k

where k, ci are integer positive constants, li is a literal of Boolean
variables and � is one of the operators of {=, <,≤, >,≥}. Then,
it is possible to use a PB solver with an empty objective function

1 Department of Computer Science, University of Lleida, C/ Jaume II 69,
Lleida 25001, Spain

to solve the problem. Some PB solvers also employ, as their solving
strategy, the translation to the SAT problem and the usage of SAT
solvers. There are several works on the translation of PB constraints
to SAT [9, 5, 16, 4] and cardinality constraints (PB constraints where
all coefficients are equal to 1) to SAT [3, 18, 2].

In [9] several encoding schemes into the SAT problem are an-
alyzed: network of adders, Binary Decision Diagrams (BDD), and
network of sorters. As we show in the experimental analysis that we
have carried out, for the problem we address in this work, the encod-
ings based on a network of sorters are the best performing ones. It
is well known that an eager transformation may lose some desirable
properties/information from the original model. Therefore, we intro-
duce in this work a specialized translation for the PBMod constraints
into the SAT problem extending the encoding based on networks of
sorters.

We have also compared this approach with other standard solving
techniques. On the one hand, we have analyzed the performance of
SMT Solvers. SMT solvers rely on a tight integration of two compo-
nents: a theory solver that can handle conjunctive constraints, and a
DPLL-based SAT engine that does the search without knowing the
semantics of the literals. We have focused on those solvers that were
the best performing ones for the Quantifier Free formulae over In-
teger Linear Arithmetic theory (QF LIA) of the SMT competition
2009: Sateen(v3.5) 2 and Yices (v2.0). We have also used the soft-
ware package GLPK (GNU Linear Programming Kit) for solving our
Integer Linear Programming (ILP) formulations of the problem.

In order to conduct our experimental investigation we have devel-
oped a generator of random PBMod constraints. As in many prob-
lems we indeed observe the existence of a phase transition region,
i.e. a region where there is an abrupt descent on the ratio of satis-
fiable instances. We have also studied how the different generator
parameters such as: the values of the remainder, the modulo, the co-
efficients of the variables, and the length of the modular constraints
impact on the hardness of the instances and the performance of the
different solving strategies. Such study allows to select the appropri-
ate solving technique depending on the structure of the problem.

The remainder of the paper is structured as follows. Section 2 in-
troduces a set of basic definitions. It is followed by the description
of the PBMod constraints, its translation to PB constraints in sec-
tion 3. Section 4 shows the encoding strategy based on a network of
sorters to translate PBMod constraints into SAT formulas. Section 5,
introduces a generator of random PBMod constraints and the solv-
ing strategies through SMT solvers and the usage of GLPK. We also
report our experimental results for the different solving techniques.
Finally, section 6 concludes the paper.

2 The SMT solver Sateen (v.3.5) was the winner at the SMT Competition
2009 for the QF LIA category, however we do not include yet the results
since we have found some buggy answers.
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2 Preliminaries

Boolean variables bi can only take two values: false (0) and true (1).
A literal li is either a variable bi or its negation ¬bi. A clause is a dis-
junction of literals, l1 ∨ l2 · · · ∨ ln. A SAT formula is a conjunction
of clauses. An assignment is a mapping of Boolean variables to their
value (true or false). A literal of the form bi (¬bi) is satisfied by an
assignment if bi is mapped to value true (false). A clause is satis-
fied by an assignment if at least one of its literals is satisfied. A SAT
formula is satisfied by an assignment if all its clauses are satisfied.
The SAT problem of a formula Γ consists in determining whether
there exists an assignment to the Boolean variables of Γ that satisfies
the formula.

A linear pseudo-Boolean constraint (PB constraint) over Boolean
variables is defined by

P
i ci · li � k where ci, the coefficients, and

k, are integer constants, li are literals and � is one of the opera-
tors of {=, <,≤, >,≥}. The left-hand side will be abbreviated by
LHS, and the right-hand constant k referred to as RHS. Without loss
of generality, these constraints can be rewritten to use the ≥ opera-
tor and positive coefficients (notice that −ci · bi can be rewritten as
ci · ¬bi − ci). A coefficient ci is said to be activated under a partial
assignment if its corresponding literal li is assigned to true. Assum-
ing that � is the ≥ operator, a pseudo-Boolean constraint is said to
be satisfied under an assignment to its Boolean variables if the sum
of its activated coefficients exceeds or is equal to k.

3 Modularity constraints as pseudo-Boolean
constraints

A modularity constraint on Boolean variables, that we will call it
pseudo-Boolean modularity constraint, is defined by:

X
i

ci · li ≡ r (mod m) (1)

where the coefficients ci and the remainder r are integer constants,
the modulo m is a positive integer constant, and the li symbols are
literals on Boolean variables.
Without loss of generality, this constraint can be rewritten to use just
positive integer constants through its normalization. This is achieved
by replacing the coefficients and the remainder by their remainder
modulo m.

Now, we can naturally translate Eq. 1 to a linear integer arithmetic
constraint as follows: X

i

ci · li − k · m = r (2)

where k is a positive integer variable. We will refer to the translation
model of Eq. 2 as ModLIA.

Notice that k is actually bounded, i.e., k ≤ ¨
C
m

˝
, where C =P

i ci. As we will see in section 5, in order to solve a problem in-
volving linear integer arithmetic constraints we can use, among sev-
eral approaches, a SMT solver with support for the Quantifier Free
Linear Integer Arithmetic (QF LIA) theory or a package like GLPK
for Mixed Integer Programming. However, since our modularity con-
straint is defined on Boolean variables, we may rather be interested
on translating Eq. 2 into PB constraints. In particular, we just need
to express k · m as an arithmetic expression involving only Boolean
variables as follows:X

i

ci · li −
X

j

kj · m = r (3)

where kj are Boolean variables and j ∈ {1, . . . ,
¨

C
m

˝}.

We will refer to the translation model of Eq. 3 as ModPB-A.
We can still consider a slight variation that can potentially reduce

the search space, by reducing the natural symmetry in Eq. 3. No-
tice that the sum of the kj variables can be the same under different
assignments. We can avoid this problem as follows:X

i

ci · li −
X

j

kj · j · m = r ∧
X

j

kj ≤ 1 (4)

We will refer to the translation model of Eq. 4 as ModPB-B.
As we can see, any consistent assignment to the kj variables will

set at most one variable to true.
Another alterative, which uses fewer auxiliary variables, is to use

a binary encoding:

X
i

ci · li −
X
j′

kj′ · 2j′ · m = r ∧
X
j′

kj′ ≤
—

C

m

�
(5)

where j′ ∈ {0, . . . , �log2

¨
C
m

˝	}
We will refer to the translation model of Eq. 5 as ModPB-Bin. The

term on the right is mandatory if
¨

C
m

˝
is not a power of 2.

For Eq. 3, Eq. 4 and Eq. 5 we can now apply a PB solver.

4 Modularity Constraints as SAT formulas

For the sake of clarity during this section we will work on the fol-
lowing PBMod constraint which is already normalized:

3 · b1 + 2 · b2 + 5 · b3 + 3 · b4 = 1 (mod 6) (6)

As we can observe, C =
P

i ci = 13 and
¨

C
m

˝
=

¨
13
6

˝
= 2.

Then, taking into account the different translation models de-
scribed in the previous section, we obtain the following PB con-
straints:

• ModPB-A:

3 · b1 + 2 · b2 + 5 · b3 + 3 · b4 − (k1 · 6 + k2 · 6) = 1

• ModPB-B:

3·b1+2·b2+5·b3+3·b4−(k1 ·6+k2 ·12) = 1 ∧ (k1+k2 ≤ 1)

• ModPB-Bin:

3·b1+2·b2+5·b3+3·b4−(6·20·ko+6·21·k1)∧ (20·ko+21·k1) ≤ 2

As we can observe, with the ModPB-A model there are two possi-
ble ways to sum up to 6 with the k variables, while for the ModPB-B
there is only one. In general, for n k-variables, the ModPB-A model
considers 2n consistent assignments while ModPB-B just considers
n, thanks to the at most one constraint on the k-variables. ModPB-
Bin also uses 2 auxiliary variables for this example, however, in gen-
eral, the number is logarithmic in

¨
C
m

˝
.

These PB constraints can now be solved with a PB solver. From
the different solving techniques of the state-of-the-art solvers, now,
we focus on the one that consists in translating the PB constraints to
a SAT formula [9]. There exist several translation techniques [9, 5,
16, 4]. Whether a translation is suitable or not depends both on the
size of the encoding and the level of consistency that can be achieved
under a partial assignment to the Boolean variables. In particular,
in [9] three main approaches to how a SAT formula con be generated
from a PB-constraint are studied. Parameter n is the total number of
digits in all the coefficients.
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• Translate the PB constraint into a BDD, which can be treated as a
circuit of ITEs (if-then-else gates) and translated into clauses by
the Tseitin transformation [19]. This approach guarantees that the
resulting encoding is arc-consistent but its size is exponential in
the worst case.

• Translate the PB constraint into a network of adders. The approach
used in [9] is similar to the what is used for Data Multipliers to
sum up the partial products [8]. The size of the translation is O(n),
however the resulting encoding is not Arc-consistent.

• Translate the PB constraint into a network of sorters. A sorter is
a circuit of n input gates and n output gates where the k lowest
output gates are set to true and the rest to false if there are exactly
k input gates set to true. The size of the translation used in [9] is
O(n · log2 n), and although it is not yet arc-consistent it is closer
than the translation through Adders.

We have used the minisat+ [9] solver to convert the PB con-
straints, representing modularity constraints expressed with ModPB-
A and ModPB-B, to SAT formulas using the three different trans-
lation techniques provided by minisat+: networks of adders, BDDs,
and networks of sorters. For the size of problems that will be con-
sidered in our experimental evaluation, translation through networks
of adders has shown poor performance (some orders of magnitude
worse), BDDs do better but neither is as good as networks of sorters.
This last translation technique together with ModPB-B is the best
performing approach so far, consequently, in our experimental eval-
uation the other two translation techniques, adders and BDDs will
not be shown.

Therefore, we have decided to explore whether we can achieve
a better encoding if we translate directly the PBMod constraint to
a SAT formula based on a network of sorters, instead of having an
intermediate state where the PBMod constraint is translated to a PB
constraint. In our translation we used the OddEvenMerge sorters [6].
For a more detailed explanation for OddEven mergesort see [12]. In
our work the function compare(i1,i2) on two input gates (Boolean
variables) is translated to a SAT formula, with two new auxiliary
Boolean variables o1, o2 (the output gates), representing (o2 ↔ (i1∧
i2)) ∧ (o1 ↔ (i1 ∨ i2)) with the following clauses:

(o2 ∨ ¬i1 ∨ ¬i2) (¬o1 ∨ i1 ∨ i2)
(¬o2 ∨ i1) (o1 ∨ ¬i1)
(¬o2 ∨ i2) (o1 ∨ ¬i2)

A straightforward approach to convert a PBMod constraint into a
SAT formula consists in flattening the LHS and using a sorter with as
many inputs as the sum of the coefficients. Taking into account our
example, once flattened,

3·b1z }| {
b1 + b1 + b1 +

2·b2z }| {
b2 + b2 +

5·b3z }| {
b3 + b3 + b3 + b3 + b3 +

3·b4z }| {
b4 + b4 + b4 = 1 (mod 6)

the sorter would have 13 inputs and we should add the circuit to
check if the last output gate activated represents a number congru-
ent to 1 modulo 6. Obviously, this approach is not good in terms
of the size of the resulting encoding. So, a better approach consists
in connecting several sorters, i.e., creating a network of sorters. We
will refer to this encoding as ModCS. In order to apply the encoding
based on sorters the numbers must be represented in unary instead
of binary. The sorters play then the role of adders of unary numbers.
Notice that the unary representation allows the use of any base for the

coefficients. The first phase of the encoding process is to find a base
such that the sum of all the digits of the coefficients written in that
base, is as small as possible, since we want to minimize the entries to
the sorters to get the lowest possible size of the encoding. Since, this
is already a hard optimization problem, we use a brute-force search
trying all primer numbers less than 20, as it is done in minisat+.

In our working example the base we use is < 1, 3 >. The coeffi-
cients in this base are represented as follows:

2 = (2, 0)<1,3> = 2 · 1 + 0 · 3
3 = (1, 3)<1,3> = 1 · 1 + 3 · 3
5 = (2, 1)<1,3> = 2 · 1 + 1 · 3

As we can see in Fig. 1, in our example we use two sorters. One for
the contribution of every coefficient to the 1-bits weight and another
for the 3-bits weight. Notice that one of the input gates of the 3-bits
sorter is connected to the third output gate of the 1-bits sorter. This
is the way we represent the carry between sorters. Then, taking into
account that the network of the sorters represents the sum of the LHS,
we just need to add the additional circuitry, i.e. the comparator, that
checks whether LHS ∈ {1, 7, 13}, the possible numbers congruent
to 1 mod 6. For example, in order to assure that LHS = 1 we just
need to check if the first output gate of the sorter 1-bits is true, the
second is false and if the first output gate of the sorter 3-bits is also
false. Notice that if the kth output gate of a sorter is false then the
rest of the upper gates must also be false. This circuitry can now be
reused to test the conditions LHS = 7 and LHS = 13.

2

3

1

2

Carry

3

4

Sorter
1-bits

1

3

4

1

2

3

4

Sorter
3-bits

LHS = 1 = (1, 0)<1,3>

LHS = 7 = (1, 2)<1,3>

LHS = 13 = (1, 4)<1,3>

LHS ≡ 1 (mod 6)

Figure 1. Schema for the ModCS encoding applied to example of Eq. 6

The motivation of this approach is to reduce the size of the encod-
ing as much as possible both in terms of clauses and variables while
preserving the good propagation properties. The PB solver minisat+
uses, in its translation of the PB constraints to a CNF formula, an
intermediate circuit representation where any two syntactically iden-
tical nodes are merged by the so-called structural hashing. This re-
duces effectively the size of the encoding; however our approach
still generates smaller formulas. Table 1 compares for two sets of
the experimental results the size of our encoding approach, ModCS,
to the conversion through minisat+ with the sorter option on model
ModPB-B.
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Table 1. Comparison of the encoding size for models ModPB-B (minisat+
with option sorters) and ModCS

(v,n,M,f) Variables Clauses Vars. × Clauses

100,10,5,56
ModPB-B 9,089 25,414 2.3 · 108

ModCS 7,203 18,258 1.31 · 108

Ratio 1.75
100,50,5,22

ModPB-B 60,988 179,466 1.09 · 1010

ModCS 33,249 89,880 2.98 · 109

Ratio 3.66

5 Experimental Analysis

In order to conduct our experimental investigation we have devel-
oped a generator of random pseudo-Boolean Modularity constraints,
randPBMod(v,n,M ,f ). The generator creates a formula consisting
on f PBMod constraints, each one with n Boolean variables out of a
total of v Boolean variables. The constraints are already normalized
according to their respective modulo. For each PBMod constraint,
the modulo m, the remainder r, the coefficients ci and the variables
bi are selected from a uniform random distribution in the intervals
m ∈ [2, M ], r ∈ [0, M − 1], ci ∈ [1, M − 1] and bi ∈ [1, v]. The
variables are selected with no repetition for every PBMod constraint.

We have used several solving techniques for the experimental
analysis:

• SAT solver: Precosat (v.236). Winner at the SAT Competition
2009 for the application category.

• PB solver: Bsolo (v.3.1). Winner at the Pseudo-Boolean Evalua-
tion 2009 for the category ”no optimization, small integers, linear
constraints” in sat+unsat answers.

• SMT solver: Yices (v.2). Second winner at the SMT Competition
2009 for the Quantifier Free Linear Integer Arithmetic (QF LIA)
category.

• GLPK 3 advanced ILP solver with cutting planes. We have used
the advanced branch and bound GLPK ILP solver, that prepro-
cesses the input ILP problem for obtaining a simplified version
of it, and we have also used the option of adding cover, clique
and Gomory cutting planes, to further improve the pruning of the
search space. For a general introduction to cutting planes, see for
example [13].

In this section we show results for each of these solvers (labeled as
psat, bsolo, yices and gplk) using each one at least one of the
following encodings: ModPB-A, ModPB-B, ModPB-Bbin, ModCS,
and ModLIA (§ Section 4). Take into account that the encodings
ModPB-A, ModPB-B, and ModPB-Bbin, in order to be used by a
SAT solver, should be first translated to SAT with minisat+ solver
using the sorting networks option.

Our experiments have been run on machines with the follow-
ing specs: Rocks Cluster 5.2 Linux 2.6.18 Operating System, AMD
Opteron 248 Processor clocked at 1.6 GHz, 1.0GB Memory, and
GCC 4.1.2 Compiler.

In order to evaluate the different encodings performance we have
run our experiments for a wide range of parameters. The number of
PBMod constraints in a formula (f ) determines its satisfiability. As
plotted on Fig. 2, the probability of having an unsatisfiable problem
grows with f , as it becomes more constrained. In this case, when

3 http://www.gnu.org/software/glpk/glpk.html

problems have v � n, the satisfiability transition occurs at low val-
ues of f and there seems to be a sharp transition, like the one ob-
served in other NP-complete problems, as SAT [17, 1] or CSP [20].
By relaxing this condition and allowing values of v larger than n, we
can build satisfiable problems for larger values of f .

Figure 2. Percentage of satisfiable instances as as function of f

As a first benchmark, we have designed a set of experiments for
v = 100; n = 10, 20, 50; and M = 5, 10, 20; testing values for
f up to a given time out and solving 100 independent instances per
point. This benchmark shows a first picture about the problem hard-
ness parameter dependency, and proves that the problems become
harder as n, M , and f grow. It also helps to look at the performance
differences of our encodings in distinct benchmark conditions.

Figure 3 shows the ratio of performance, considering solving time
using Precosat, between two of the best performing encodings for
SAT solvers: ModCS and ModPB-B converted to SAT with minisat+
using the sorting networks option. Measures are done for the values
of v, n (legend), and M (y-axis) detailed above. The boxes cover the
region of the number of PBMod constraints (f , x-axis) where both
encodings solve problems in the allotted time (the time out used has
been 30 minutes), and still give significant times, i.e. more than 1
second. Inside each box figures represent the performance ratio of
ModCS over ModPB-B, it is measured as the mean of the perfor-
mance ratios over the considered range of f . As an example, a ratio
of 1.77 means that ModCS is 1.77 times faster than ModPB-B.

A first conclusion from Fig. 3 is that ModCS performs better as
the number of variables per constraint (n) increases. It should be
noted that as n increases, so it does the sum of the coefficients (C),
leading to more distinct interpretations of a congruence for a given
M , and finally, giving more chances of reusing circuitry to ModCS
encoder (as explained in the previous section), reducing the formula
size. Second, as a result of the same effect, one can also observe, for
n = 50, an increase of relative performance for ModCS encoder as
M decreases, due to the larger number of constraints (f ).

To prove the scaling with the number of variables, Table 2 reports
the performance ratios for v = 200, n = 50, and M = 5, 20. The
shown ratio is measured between ModCS and the best performing
between ModPB-B and ModPB-Bbin. As we can see ModPB-Bbin
is not competive with ModCS for large values of v, observe the dif-
ference between v = 100 and v = 200 in tables 2, 4, 5, and 6,
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5

10

20

= 100

0.981.392.88

1.041.482.37

0.971.551.78

= 10

= 20

= 50

Figure 3. Performance ratio between two of the best encodings -ModCS
and ModPB-B-, using Precosat v.236 for v = 100 and distinct values for n

and f

especially for low values of M .

Table 2. Median time for ModCS, ModPB-B and ModPB-Bbin encodings
using Precosat v.236. v = 200, n = 50 and their relative performance (–

means median time larger than 30’)

f ModCS ModPB-B ModPB-Bbin Ratio
M = 5 36 912 1193 – 1.31

34 158 297 765 1.88
32 33 82 169 2.48
30 8.2 32 63 3.90
28 3.6 16 14 3.89
26 1.9 9.3 6.1 3.21
24 1.6 4.8 2.5 1.56

Mean Ratio 2.17

M = 20 22 307 371 442 1.21
20 19 45 32 1.68
18 3 16 5.3 1.77
16 2 7.4 2.3 1.15
14 1.6 4.6 1.7 1.06

Mean Ratio 1.37

Table 3. Median solving time / % of solved instances within alloted time
for v,n and M=20 (– means median time larger than 30’)

f

6 7 8 9 10

bsolo/ModPB-A –/26 –/8 –/3 –/0 –/1
bsolo/ModPB-B 647/53 –/18 –/9 –/3 –/3
psat/ModPB-B 4.1/100 12/100 13/100 12/100 12/100
psat/ModCS 4.3/100 14/100 16/100 16/100 17/100
glpk/ModPB-A –/3 –/1 –/0 –/0 –/0
glpk/ModPB-B 55/97 130/96 245/95 354/97 373/95
glpk/ModLIA 12/97 25/97 28/95 25/97 24/97
yices/ModLIA 18/1 53/1 61/1 62/1 51/1

Tables 3, 4, 5, and 6 show the median time to solve all the instances
and the percentage of solved instances for a time out of 30 minutes,
and a wide range of parameter values. Left column denotes the em-
ployed combination solver/encoding as mentioned at the beginning
of the current section.

Table 3 shows that ModPB-A is not a good option for any solver.
It also shows that for solvers yices and glpk, none of both PB
models (ModPB-A, ModPB-B) is competitive with ModLIA.

On the one side, it also seems clear that neither the SMT
(yices/ModLIA) nor the LP (gplk/ModLIA) approaches are compet-
itive with the other best combination encoding/solver. Only for high
moduli (M = 20) and a large number of variables (n = 50), the
SMT solver takes advantage of the linear integer arithmetic encod-
ing ModLIA, approaching in time to the best performing approaches.

On the other side, the differences between the SAT and PB solvers
are more subtle. With respect to both encodings used for Precosat
solver, as mentioned above, our improvement of the translation
through network of sorters (ModCS) slightly outperforms the orig-
inal translation (ModPB-B) at most cases, increasing their differ-
ences as the number of variables (n) becomes larger, and particu-
larly for low values of M , that is when the ModCS encoding ame-
liorates its circuit reusing capabilities. According to the PB solver
performance (bsolo/ModPB-B), it does particularly well for under-
constrained problems, i.e. when f is low, but tends to solve less in-
stances than psat/ModCS for higher f . In order to reinforce this last
point, we have conducted additional experiments for v = 200 and
n = 50 as shown at Table 7.

Table 4. Median solving time / % of solved instances within alloted time
for v=100 and n=10 (– means median time larger than 30’)

f

M=5 48 50 52 54 56

bsolo/ModPB-B 1.2/99 11/94 107/71 –/36 –/17
psat/ModPB-B 1.1/100 2.5/100 9/99 42/95 286/50
psat/ModPB-Bbin 1.1/100 3/100 13/99 52/99 298/75
psat/ModCS 0.8/100 3.3/100 8.3/95 53/95 299/75
glpk/ModLIA –/0 –/0 –/0 –/0 –/0
yices/ModLIA –/3 –/0 –/0 –/0 –/0

M=10 38 40 42 44 46

bsolo/ModPB-B 6.8/81 –/47 –/21 –/9 –/2
psat/ModPB-B 2.9/100 13/97 130/88 720/71 1391/55
psat/ModPB-Bbin 2.9/100 14/96 131/90 643/72 1299/54
psat/ModCS 2.3/100 15/98 104/83 748/67 1598/51
glpk/ModLIA –/0 –/0 –/0 –/0 –/0
yices/ModLIA –/0 –/0 –/0 –/0 –/0

M=20 28 30 32 34 36

bsolo/ModPB-B 1.3/92 68/74 371/56 292/51 358/67
psat/ModPB-B 0.8/100 1.9/100 2.9/100 3.1/100 3.1/98
psat/ModPB-Bbin 0.6/100 1.7/100 2.6/100 3.0/100 2.4/100
psat/ModCS 0.7/100 1.8/100 3.0/100 3.5/100 3.0/100
glpk/ModLIA –/0 –/0 –/0 –/0 –/0
yices/ModLIA –/0 –/0 –/0 –/0 –/0

6 Conclusions

We have studied how to solve efficiently PBMod Modularity con-
straints. Although these constraints are naturally expressed as Lin-
ear Integer Arithmetic constraints, we have shown that is not the
best approach at least when the LHS term of the PBMod involves
only Boolean variables. We have proposed two possible alternative
approaches: (i) a translation to PB constraints (models ModPB-A,
ModPB-B and ModPB-Bin) and the usage of pure PB solver or a PB
solver based on a translation to SAT, and (ii) a direct translation to a
SAT formula based on a network of sorters (model ModCS) and the
usage of a SAT solver. For the first approach we have introduced two
encodings ModPB-B and ModPB-Bbin which are more competitive
than the naive conversion to PB constraints, ModPB-A. However, the
second approach, ModCS, is even more competitive since it allows to
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Table 5. Median solving time / % of solved instances within alloted time
for v=100 and n=20 (– means median time larger than 30’)

f

M=5 32 34 36 38 40

bsolo/ModPB-B 2.0/100 16/91 128/69 –/31 –/6
psat/ModPB-B 4.8/100 13/100 62/99 340/87 1550/53
psat/ModPB-Bbin 5.9/100 14/100 73/100 393/86 –/45
psat/ModCS 3.1/100 11/100 38/100 312/89 1064/60
glpk/ModLIA –/0 –/0 –/0 –/0 –/0
yices/ModLIA –/14 –/0 –/0 –/0 –/0

M=10 24 26 28 30 32

bsolo/ModPB-B 0.5/100 8.3/95 –/48 –/12 –/5
psat/ModPB-B 2.7/100 11/99 99/92 1427/53 –/20
psat/ModPB-Bbin 1.9/100 11/99 80/96 885/61 –/20
psat/ModCS 1.1/100 9.5/100 85/87 1239/56 –/21
glpk/ModLIA –/0 –/0 –/0 –/0 –/0
yices/ModLIA –/12 –/2 –/0 –/0 –/0

M=20 18 20 22 24 26

bsolo/ModPB-B 0.1/100 1.4/95 1175/47 –/15 –/8
psat/ModPB-B 1.4/100 5.0/100 50/96 1423/55 –/10
psat/ModPB-bin 0.8/100 3.1/100 32/94 1033/55 –/13
psat/ModCS 0.7/100 2.9/100 35/95 1262/58 –/12
glpk/ModLIA –/0 –/0 –/0 –/0 –/0
yices/ModLIA –/3 –/0 –/0 –/0 –/0

Table 6. Median solving time / % of solved instances within alloted time
for v=100 and n=50 (– means median time larger than 30’)

f

M=5 16 18 20 22

bsolo/ModPB-B 0.7/100 5.8/99 92/86 –/44
psat/ModPB-B 10/100 27/100 100/100 542/80
psat/ModPB-Bbin 5.9/100 27/100 112/98 723/73
psat/ModCS 1.9/100 10/100 49/100 363/93
glpk/ModLIA 1493/53 –/15 –/3 –/0
yices/ModLIA 49/96 709/57 –/23 –/6

M=10 12 14 16

bsolo/ModPB-B 0.4/100 8.1/89 –/46
psat/ModPB-B 8.7/100 40/98 379/83
psat/ModPB-Bbin 3/100 31/100 323/85
psat/ModCS 2.1/100 24/100 272/83
glpk/ModLIA –/13 –/2 –/0
yices/ModLIA 81/87 –/45 –/11

M=20 8 10 12

bsolo/ModPB-B 0.1/100 0.5/97 1559/50
psat/ModPB-B 2.5/100 12/100 94/98
psat/ModPB-Bbin 1.1/93 6.3/98 165/97
psat/ModCS 1/100 3.5/100 96/97
glpk/ModLIA 1341/57 –/3 –/0
yices/ModLIA 5/95 714/60 –/13

Table 7. Median solving time / % of solved instances within alloted time
for v=200 and n=50

f

M=5 30 32 34 36

bsolo/ModPB-B 2.9/100 16/98 131/91 1562/52
psat/ModCS 8.2/100 33/100 158/91 912/69

M=20 18 20 22

bsolo/ModPB-B 0.3/100 3.4/98 189/63
psat/ModCS 3/100 19/100 307/82

better exploit the expressiveness of the original model by producing
smaller encodings while preserving the propagation properties.
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