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Abstract. Symmetry is an important feature of many constraint pro-
grams. We show that any problem symmetry acting on a set of sym-
metry breaking constraints can be used to break symmetry. Different
symmetries pick out different solutions in each symmetry class. This
simple but powerful idea can be used in a number of different ways.
We describe one application within model restarts, a search technique
designed to reduce the conflict between symmetry breaking and the
branching heuristic. In model restarts, we restart search periodically
with a random symmetry of the symmetry breaking constraints. Ex-
perimental results show that this symmetry breaking technique is ef-
fective in practice on some standard benchmark problems.

1 INTRODUCTION

Symmetry occurs in many real world problems. For instance, cer-
tain machines in a scheduling problem might be identical. If we have
a valid schedule, we can permute these machines and still have a
valid schedule. We typically need to factor such symmetry out of
the search space to be able to find solutions efficiently. One popu-
lar way to deal with symmetry is to add constraints which eliminate
symmetric solutions (see, for instance, [15, 18, 4, 14, 19, 21]). Such
symmetry breaking is usually simple to implement [5, 6] and is of-
ten highly efficient and effective in practice. Even for problems with
many symmetries, a small number of symmetry breaking constraints
can often eliminate much or all of the symmetry. But where do such
symmetry breaking constraints come from? We show here that we
can apply symmetry to symmetry breaking constraints themselves to
generate potentially new symmetry breaking constraints.

There are a number of applications of this simple but powerful
idea. We give one application in the area of restart based methods.
Restarting has proven a powerful technique to deal with branching
mistakes in backtracking search [9]. One problem with posting sym-
metry breaking constraints is that they pick out particular solutions in
each symmetry class, and branching heuristics may conflict with this
choice. Model restarts is a technique to deal with this conflict [10].
We periodically restart search with a new model containing differ-
ent symmetry breaking constraints. Our idea of applying symmetry
to symmetry breaking constraints provides a systematic method to
generate different symmetry breaking constraints to be used within
model restarts. Different symmetries pick out different solutions in
each symmetry class. Restarting search with a different symmetry of
the symmetry breaking constraints may therefore permit symmetry
breaking constraints to be posted that do not conflict with the branch-
ing heuristic. Our experimental results show that model restarts is in-
deed effective at reducing the conflict between branching heuristics
and symmetry breaking.
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2 SYMMETRY

We consider two common types of symmetry (see [1] for more dis-
cussion). A variable symmetry is a permutation of the variables that
preserves solutions. Formally, a variable symmetry is a bijection σ
on the indices of variables such that if X1 = d1, . . . , Xn = dn is a
solution then Xσ(1) = d1, . . . , Xσ(n) = dn is also. A value symme-
try is a permutation of the values that preserves solutions. Formally,
a value symmetry is a bijection θ on the values such that if X1 =
d1, . . . , Xn = dn is a solution then X1 = θ(d1), . . . , Xn = θ(dn)
is also. In [17], these are called global value symmetries as their ac-
tion on values is the same for all variables. Symmetries can more
generally act on both variables and values. Our results apply also to
such symmetries. As the inverse of a symmetry and the identity are
symmetries, the set of symmetries forms a group under composition.

We will use a simple running example which has a small number
of symmetries. This example will demonstrate that we can use sym-
metry itself to pick out different solutions in each symmetry class.

Running Example. A magic square is a labelling of a n by n square
with the numbers 1 to n2 so that the sums of each row, column and
diagonal are equal (prob019 in CSPLib [8]). The most-perfect magic
square problem is to find a magic square in which every 2 by 2 square
has the same sum, and in which all pairs of integers n/2 apart on
either diagonal have the same sum. We model this as a CSP with
Xi,j = k iff the square (i, j) contains k. One solution for n = 4 is:

14 11 5 4
1 8 10 15
12 13 3 6
7 2 16 9

(1)

This is one of the oldest known most-perfect magic squares, dating
from a 10th century temple engraving in Khajuraho, India.

This problem has several symmetries. First, there are the 8 symme-
tries of the square: the identity mapping, the rotations 90◦ clockwise,
180◦ and 270◦, and the reflections in the vertical, horizontal and di-
agonal axes. For example, applying the symmetry σv that reflects the
square in its vertical axis to (1) gives a symmetric solution:

4 5 11 14
15 10 8 1
6 3 13 12
9 16 2 7

(2)

The problem also has a value symmetry θinv that inverts values,
mapping i onto n2 + 1 − i. For instance, applying θinv to (1), gen-
erates another symmetric solution:

3 6 12 13
16 9 7 2
5 4 14 11
10 15 1 8

(3)
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We can also combine the value and variable symmetries. For ex-
ample, if we apply the composition of the last two symmetries (that
is, θinv ◦ σv) to (1), we reflect the solution in the vertical axis and
invert all values giving another symmetric solution:

13 12 6 3
2 7 9 16

11 14 4 5
8 1 15 10

(4)

Note that (4) is itself the reflection of (3) in the vertical axis. The
problem thus has 16 symmetries in total. ♣

3 SYMMETRY BREAKING

One common way to deal with symmetry is to add constraints to
eliminate symmetric solutions [15]. We shall show that we can in
fact break symmetry by posting a symmetry of any such symmetry
breaking constraints.

Running Example. Consider again the most-perfect magic square
problem. To eliminate the symmetries of the square, we can post the
constraints:

X1,1 < min(X1,n, Xn,1, Xn,n), X1,n < Xn,1 (5)

These ensure that the smallest corner is top left, and the bottom left
corner is smaller than the top right. This eliminates all degrees of
freedom to rotate and reflect the square. Note that (5) eliminates so-
lutions (1) and (4) but leaves their reflections (2) and (3).

To eliminate the value symmetry θinv and any rotations or reflec-
tions of it, we can post:

X1,1 < n2 + 1− max(X1,1, X1,n, Xn,1, Xn,n) (6)

This ensures that the smallest corner in the magic square is smaller
than the smallest corner in any rotation or reflection of the inversion
of the solution. Note that the smallest corner cannot equal the inver-
sion of any corner since the problem constraints of a most-perfect
magic square ensure that the inversion of any corner lies inside the
square (in fact, on the diagonal). This symmetry breaking constraint
eliminates (2) but leaves (3). Thus, of the four symmetric solutions
given earlier, only (3) satisfies (5) and (6). ♣

One of our main observations is that any symmetry acting on a
set of symmetry breaking constraints will itself break the symme-
try in a problem. Different symmetries pick out different solutions in
each symmetry class. To show this, we need to consider the action
of a symmetry on a set of symmetry breaking constraints. Symmetry
is often defined as acting on assignments, mapping solutions to so-
lutions. We need to lift this definition to constraints. The action of a
variable symmetry on a constraint changes the variables on which the
constraint acts. More precisely, a variable symmetry σ applied to the
constraint C(Xj , . . . , Xk) gives C(Xσ(j), . . . , Xσ(k)). The action
of a value symmetry is also easy to compute. A value symmetry θ ap-
plied to the constraint C(Xj , . . . , Xk) gives C(θ(Xj), . . . , θ(Xk)).

Running Example. To illustrate how we can break symmetry with
the symmetry of a set of symmetry breaking constraints, we shall con-
struct symmetries of (5) and (6).

Consider the symmetry σv that reflects the square in the vertical
axis mapping X1,1 onto Xn,1 (and vice versa), and X1,n onto Xn,n

(and vice versa). If we apply σv to (5) we get:

Xn,1 < min(Xn,n, X1,1, X1,n), Xn,n < X1,1 (7)

These new symmetry breaking constraints ensure that the smallest
corner is now top right, and the bottom right corner is smaller than
the top left. This again eliminates all degrees of freedom to rotate and
reflect the square. Note that (7) eliminates solutions (2) and (3) but
leaves (1) and (4). This is the opposite of posting (5) which would
leave (2) and (3), but eliminate (1) and (4).

If we apply σv to (6), we again get a constraint that breaks the
value symmetry θinv and any rotations or reflections of it:

Xn,1 < n2 + 1− max(Xn,1, Xn,n, X1,1, X1,n) (8)

This again ensures that the smallest corner in the magic square is
smaller than the smallest corner in any rotation or reflection of the
inversion of the solution. This eliminates (1) but leaves (4). Thus,
of the four symmetric solutions given earlier, only (4) satisfies the
symmetry σv of (5) and (6).

We can also break symmetry with any other symmetry of the sym-
metry breaking constraints. For instance, if we apply θinv ◦σv to (5)
we get the constraints:

n2 + 1−Xn,1 < min(n2 + 1−Xn,n, n
2 + 1−X1,1, n

2 + 1−X1,n)

n2 + 1−Xn,n < n2 + 1−X1,1

These simplify to:

Xn,1 > max(Xn,n, X1,1, X1,n)

Xn,n > X1,1

Similarly, if we apply θinv ◦ σv to (6) we get the constraint:

Xn,1 > n2 + 1− min(Xn,1, Xn,n, X1,1, X1,n)

The three constraints ensure that the largest corner is top right, the
bottom right is larger than the top left, and the largest corner is
larger than the largest corner in any rotation or reflection of the in-
version of the solution. This again prevents us from rotating, reflect-
ing or inverting any solution. Of the four symmetric solutions given
earlier, only (2) satisfies θinv ◦ σv of (5) and (6). We see therefore
that different symmetries of the symmetry breaking constraints pick
out different solutions in each symmetry class. ♣

4 THEORETICAL RESULTS

The running example illustrates that we can break symmetry with a
symmetry of a set of symmetry breaking constraints. We will prove
that this holds in general. Our aim is to show:

Any symmetry acting on a set of symmetry breaking constraints
itself breaks symmetry. Different symmetries pick out different
solutions in each symmetry class.

We will consider the action of a symmetry on the solutions and sym-
metries of a set of symmetry breaking constraints. We will also study
the action of a symmetry on the soundness and completeness of a set
of symmetry breaking constraints, the representative solutions picked
out by the symmetry breaking constraints and the symmetries that are
eliminated. Finally we will consider what symmetries can be found
within a set of symmetry breaking constraints.

4.1 Symmetry and satisfiability

We start with the action of a symmetry on the satisfiability of a set
of constraints. This simple result is used in some of the later proofs.
We write σ(C) for the result of applying the symmetry σ to the set
of constraints C.
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Proposition 1. For any symmetry σ, a set of constraints C is satisfi-
able iff σ(C) is satisfiable.

Proof: Suppose C is satisfiable. Then there exists a satisfying as-
signment A of C. By considering the action of a symmetry on a set
of constraints, we can see that σ(A) satisfies σ(C). Thus σ(C) is
satisfiable. The proof reverses easily. �

4.2 Symmetry and solutions

We next consider the action of a symmetry on the solutions of a set of
(possibly symmetry breaking) constraints. We write sol(C) for the
set of solutions to the set of constraints C.

Proposition 2. For any symmetry σ and set of constraints C:

sol(σ(C)) = σ(sol(C))

Proof: Consider any solution A ∈ sol(σ(C)). We view a solution as
a set of assignments. Then σ(C)∪A is satisfiable. As σ is a bijection,
there exists a unique B such that A = σ(B). Thus σ(C) ∪ σ(B) is
satisfiable. Hence σ(C ∪ B) is satisfiable. By Proposition 1, C ∪ B
is satisfiable. That is, B ∈ sol(C). Thus σ(B) ∈ σ(sol(C)). Hence
A ∈ σ(sol(C)). The proof reverses directly. �

On the other hand, if we apply a symmetry to a set of constraints
with that same symmetry, we do not change the set of solutions.

Proposition 3. If σ is a symmetry of a set of constraints C then

sol(C) = σ(sol(C))

Proof: Consider any A ∈ σ(sol(C)). Then there exists B ∈ sol(C)
such that A = σ(B). Since σ is a symmetry of C, σ(B) ∈ sol(C).
That is A ∈ sol(C). The proof reverses directly. �

4.3 Symmetries under symmetry

The action of a symmetry on a set of constraints also does not change
the symmetries of those constraints.

Proposition 4. If Σ is a symmetry group of a set of constraints C
then Σ is also a symmetry group of σ(C) for any σ ∈ Σ.

Proof: Consider any solution A of σ(C) and any τ ∈ Σ. Since
σ ∈ Σ, by Proposition 3, sol(σ(C)) = sol(C). Thus A ∈ sol(C).
As τ ∈ Σ, τ(A) ∈ sol(C). Hence τ(A) ∈ sol(σ(C)). It follows
that τ is a symmetry of σ(C). �

4.4 Symmetry and soundness

An important property of a set of symmetry breaking constraints is
its soundness. For a problem with symmetries Σ, a set of symmetry
breaking constraints is sound iff it leaves at least one solution in each
symmetry class. All the symmetry breaking constraints used in our
running example are sound. The action of a symmetry on a set of
symmetry breaking constraints leaves their soundness unchanged.

Proposition 5 (Soundness). Given a set of symmetries Σ of C, if S
is a sound set of symmetry breaking constraints for Σ then σ(S) for
any σ ∈ Σ is also a sound set of symmetry breaking constraints for
Σ.

Proof: Consider any A ∈ sol(C ∪ S) and any σ ∈ Σ. Now
A ∈ sol(C) and A ∈ sol(S). But as σ is a symmetry of C,
σ(A) ∈ sol(C). Since A ∈ sol(S), it follows from Proposition 2
that σ(A) ∈ sol(σ(S)). Thus, σ(A) ∈ sol(C ∪σ(S)). Hence, there
is at least one solution left by Σ(S) in every symmetry class of C.
That is, σ(S) is a sound set of symmetry breaking constraints for Σ.
�

4.5 Symmetry and completeness

A set of symmetry breaking constraints may also be complete. For a
problem with symmetries Σ, a set of symmetry breaking constraints
is complete iff it leaves at most one solution in each symmetry class.
The action of a symmetry on a set of symmetry breaking constraints
leaves their completeness unchanged.

Proposition 6 (Completeness). Given a set of symmetries Σ of C,
if S is a complete set of symmetry breaking constraints for Σ then
σ(S) for any σ ∈ Σ is also a complete set of symmetry breaking
constraints for Σ.

Proof: Consider any σ ∈ Σ and A ∈ sol(C ∪ σ(S)). Now A ∈
sol(C) and A ∈ sol(σ(S)). But as σ is a symmetry of C, so is σ−1.
Hence σ−1(A) ∈ sol(C). Since A ∈ sol(σ(S)), it follows from
Proposition 2 that σ−1(A) ∈ sol(S). Thus σ−1(A) ∈ sol(C ∪ S).
Hence, there is at most one solution left by σ(S) in every symmetry
class of C). That is, σ(S) is a complete set of symmetry breaking
constraints for Σ. �

4.6 Representative solutions

Different symmetries of the symmetry breaking constraints pick out
different solutions in each symmetry class. In fact, we can pick out
any solution we like by choosing the appropriate symmetry of a set
of symmetry breaking constraints.

Proposition 7. Given a symmetry group Σ of a set of constraints C,
a sound set S of symmetry breaking constraints, and any solution A
of C, then there is a symmetry σ ∈ Σ such that A ∈ sol(C ∪ σ(S)).

Proof: Since the set of symmetry breaking constraints S is sound, it
leaves at least one solution (call it B) in the same symmetry class as
A. That is, B ∈ sol(C∪S). Hence B ∈ sol(C) and B ∈ sol(S). As
A and B are in the same symmetry class, there exists a symmetry σ
in Σ with A = σ(B). Since B ∈ sol(S), it follows from Proposition
2 that σ(B) ∈ sol(σ(S)). That is, A ∈ sol(σ(S)). As B ∈ sol(C)
and σ ∈ Σ, it follows that σ(B) ∈ sol(C). That is, A ∈ sol(C).
Hence A ∈ sol(C ∪ σ(S)). �

We will use this result in the second half of the paper where we
consider the conflict between symmetry breaking constraints and
branching heuristics. We will exploit the fact that whatever solution
the branching heuristic is going towards, there exists a symmetry of
the symmetry breaking constraints which does not conflict with this.

4.7 Symmetries eliminated

In certain cases, a set of symmetry breaking constraints completely
eliminates a symmetry. We say that a set of symmetry breaking con-
straints S breaks a symmetry σ of a problem C iff there exists a
solution A of C ∪ S such that σ(A) is not a solution of C ∪ S, and
eliminates a symmetry σ iff for each solution A of C ∪ S, σ(A) is
not a solution of C ∪ S. Similarly, S breaks (eliminates) a set of
symmetries Σ iff S breaks (eliminates) each σ ∈ Σ.

It is not hard to see that a sound and complete set of symmetry
breaking constraints eliminates every non-identity symmetry. How-
ever, there are symmetry breaking constraints which break a particu-
lar symmetry but do not eliminate it.

Running Example. Consider again one of the symmetry breaking
constraints in (7):

X1,n < Xn,1 (9)
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This eliminates the symmetry that reflects the magic square in its
trailing diagonal. If we take any solution which satisfies (9), then any
reflection of this solution in the trailing diagonal is removed by (9).
Note that (9) also breaks the symmetry σ90 (90◦ clockwise rotation)
since (2) satisfies (9) but σ90 of (2) does not. However, (9) does not
eliminate σ90. For example, both σ270 of (2) and σ90 of this solution
satisfy (9). ♣

Applying a symmetry to a set of symmetry breaking constraints
changes the solutions in each symmetry class accepted by the sym-
metry breaking constraints. However, it does not change the symme-
tries broken or eliminated by the symmetry breaking constraints.

Proposition 8. Given a problem C with a symmetry group Σ, if S
breaks (eliminates) Σ then σ(S) breaks (eliminates) Σ for any σ ∈
Σ.

Proof: Suppose S breaks Σ. Consider any symmetry τ ∈ Σ. Then
there exists a solution A of C ∪ S such that τ(A) is not a solu-
tion of C ∪ S. As A is a solution of C and τ ∈ Σ, τ(A) is a so-
lution of C. Hence τ(A) is not a solution of S. By Proposition 2,
σ(τ(A)) is not a solution of σ(S). Since Σ is a group, it is closed
under composition. Thus τ ◦ σ ◦ τ−1 ∈ Σ. Hence, as A ∈ sol(C),
τ−1(σ(τ(A))) ∈ sol(C). Thus there is a solution of C, namely
τ−1(σ(τ(A))) ∈ sol(C) such that the symmetry τ of this (which
equals σ(τ(A))) is not a solution of σ(S). Hence, σ(S) breaks τ .
The proof for when S eliminates Σ follows similar lines. �

4.8 Symmetries of symmetry breaking constraints

We have discussed the action of a symmetry on a set of symmetry
breaking constraints. But what can we say about the symmetries of a
set of symmetry breaking constraints?

Proposition 9. If the symmetry breaking constraints S break the
symmetries Σ in the set of constraints C then S does not have any
symmetry in Σ.

Proof: Consider any symmetry σ ∈ Σ. Suppose S has this symme-
try. Since S breaks σ there exists a solution A of C ∪ S such that
σ(A) is not a solution of S. Hence, A is a solution of S but σ(A) is
not. Thus, S does not have any symmetry in Σ. �

The reverse does not necessarily hold. There exist constraints
which lack a symmetry which it is sound to post but which do not
break that symmetry.

Running Example. Consider again the most-perfect magic squares
problem. Consider the following constraint:

X1,1 +Xn,n = n2 + 1 → X1,1 < Xn,n

This does not have any variable symmetry since we cannot inter-
change the two variables. However, this constraint does not break
any variable symmetry since X1,1 +Xn,n �= n2 + 1 in every most-
perfect magic square. ♣

5 MODEL RESTARTS

The idea that the symmetries of symmetry breaking constraints can
themselves be used to break symmetry can be used in several differ-
ent ways. We consider here an application of this idea for tackling the
conflict between branching heuristics and symmetry breaking con-
straints. Symmetry breaking picks out particular solutions in each

symmetry class and these may not be the same solutions towards
which branching heuristics are directing search. Heller et al. pro-
pose using model restarts [10] to tackle this conflict. Backtracking
search is restarted periodically, using a new model which contains
different symmetry breaking constraints. By posting different sym-
metry breaking constraints, we hope at some point for the branching
heuristic and symmetry breaking not to conflict. Heller et al. do not,
however, provide a general method to generate different symmetry
breaking constraints after each restart.

Our observations that any symmetry acting on a set of symmetry
breaking constraints can be used to break symmetry, and that differ-
ent symmetries pick out different solutions, provide us with precisely
the tool we need to perform model restarts to any domain (and not
just to the domain of interchangeable variables and values studied
in [10]). When we restart search, we simply post a different sym-
metry of the symmetry breaking constraints. We experimented with
several possibilities. The simplest was to choose a symmetry at ran-
dom from the symmetry group. We also tried various heuristics like
using the symmetry most consistent or most inconsistent with pre-
vious choices of the branching heuristic. However, we observed the
best performance of model restarts with a random choice of symme-
try so we only report results here with such a choice. This is also
algorithmically simple since computer algebra packages like GAP
provide efficient algorithms for computing a random element of a
group given a set of generators for the group.

Running Example. We consider the simple problem of finding a
magic square of order 5. The following table gives the amount of
search needed to find such a magic square when posting one of the
rotational symmetries of the symmetry breaking constraints and the
default branching heuristic that labels variables in a fixed order. We
encoded the problem in BProlog running on a Pentium 4 3.2 GHz
processor with 3GB of memory. With magic squares in general, we
cannot guarantee that the inverse of the smallest corner is not itself a
corner value. We therefore relax the strict inequality in (6), replacing
it by a non-strict inequality.

Symmetry posted Backtracks Time to solve/s
of (5) and (6)

σid 658 0.02
σ90 17,143 0.36
σ180 315,267 5.60
σ270 18,808,974 408.85

We see that the different symmetries of the symmetry breaking
constraints interact differently with the branching heuristic. Model
restarts will help overcome this conflict. Suppose we restart search
every 1,000 backtracks and choose to post at random one of these
symmetries of (5) and (6). Let t be the average number of branches
to find a solution. There is 1

4
chance that the first restart will post

σid of (5) and (6). In this situation, we find a solution after 658 back-
tracks. Otherwise we post one of the other symmetries of (5) and (6).
We then explore 1,000 backtracks, reach the cutoff and fail to find a
solution. As each restart is independent, we restart and explore on
average another t more branches. Hence:

t =
1

4
658 +

3

4
(1000 + t)

Solving for t gives t = 3, 658. Thus, using model restarts, we take
just 3,658 backtracks on average to solve the problem. ♣

Note that posting random symmetries of the symmetry breaking
constraints is not equivalent to fixing the symmetry breaking and ran-
domly branching. Different symmetries of the symmetry breaking
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constraints interact in different ways with the problem constraints.
Although the problem constraints are themselves initially symmetri-
cal, branching decisions quickly break the symmetries that they have.

6 EXPERIMENTAL RESULTS

Our experiments are designed to test two hypotheses. The first hy-
pothesis is that model restarts is less sensitive to branching heuristics
than posting static symmetry breaking constraints. We test this hy-
pothesis by using either a lexicographic value ordering (which does
not conflict with the symmetry breaking constraints) or random value
ordering, while using min-domain for variable ordering. We expect
that model restarts will show smaller variation between the two value
ordering heuristics. The second hypothesis is that model restarts will
often explore a smaller search tree than dynamic methods like SBDS
due to propagation of the symmetry breaking constraints. We tested
two domains that exhibit two different kinds of symmetry: partial
variable and value interchangability, and row and column symmetry.

We limit our comparison of dynamic methods to SBDS. Whilst
there is a specialized dynamic symmetry breaking method for inter-
changeable variables and values, experiments in [10] show that this
is several orders of magnitude slower than static methods. We also
do not compare to methods such as GE-trees [17], as this method is
limited to value symmetry and does not deal with the variable/value
symmetries in our domains. Finally, we used SBDS to break just gen-
erators of the symmetry group as breaking the full symmetry group
quickly exhausted available memory. We implemented model restarts
and SBDS as well as all the static symmetry breaking constraints in
Gecode 2.2.0, and ran all experiments on a 4-core Intel Xeon 5130
with 4MB of L2 cache running at 2GHz.

The first set of experiments uses random graph coloring problems
generated in the same way as the previous experimental study in [13].
All values in this model are interchangeable. In addition, we intro-
duce variable symmetry by partitioning variables into interchange-
able sets of size at most 8. We randomly connect the vertices within
each partition with either a complete graph or an empty graph, and
choose each option with equal probability. Similarly, between any
two partitions there is equal probability that the partitions are com-
pletely connected or independent. Results for graphs with 40 vertices
are shown in Table 1.

The second set of experiments uses Equidistant Frequency Permu-
tation Array (EFPA) problem [11]. Given the parameters v, q, λ, d,
the objective is to find v codewords of length qλ, such that each word
contains exactly λ occurences of each of q symbols and each pair of
words have Hamming distance d. Our model has both row and col-
umn symmetry. We implement model restarts by randomly choosing
a permutation of the rows and columns and posting lexicographic
ordering constraints on the rows and columns of the resulting matrix.

The results support both our hypotheses. Although the model
restarts method is not necessarily the best method for any given in-
stance, its performance is most robust. The variability of the run-
times between the lex value ordering and random value ordering is
much smaller for model restarts, as well as for SBDS. This suggests
that in domains where the branching heuristic interacts more strongly
with the problem constraints, model restarts will be more robust than
static symmetry breaking constraints. Our second hypothesis, that
model restarting tends to explore a smaller search tree than SBDS
is also supported by the graph coloring results. SBDS was unable to
prove optimality in all but one instance in graph coloring. These re-
sults confirm the findings of [10]. In EFPA on the other hand, there
are enough solutions in these instances that applying little symmetry

breaking with a random value ordering seems to be the best strat-
egy. However, on the harder instances such as 4-6-4-5, using model
restarts resolves the conflict between the branching heuristic and the
symmetry breaking constraints and achieves parity with SBDS.

7 OTHER RELATED WORK

Crawford et al. proposed a general method to break symmetry stati-
cally using lex-leader constraints [2]. Like other static methods, the
posted constraints pick out in advance a particular solution in each
symmetry class. Unfortunately, this may conflict with the solution
sought by the branching heuristic. There are a number of symme-
try breaking methods proposed to deal with this conflict. For exam-
ple, dynamic symmetry breaking methods like SBDS posts symme-
try breaking constraints dynamically during search [7]. Another dy-
namic method for breaking symmetry is SBDD [3]. This checks if
a node of the search tree is symmetric to some previously explored
node. A weakness of such dynamic methods is that we get little or no
propagation on the symmetry breaking constraints. It has been shown
that propagation between the problem constraints and the static sym-
metry breaking constraints can reduce search exponentially [20].

Jefferson et al, have proposed GAPLex, a hybrid method that com-
bines together static and dynamic symmetry breaking [12]. However,
GAPLex is limited to dynamically posting lexicographical ordering
constraints, and to searching with a fixed variable ordering. Puget has
proposed “Dynamic Lex”, a hybrid method that dynamically posts
static symmetry breaking constraints during search which works with
dynamic variable ordering heuristics [16]. This method adds symme-
try breaking constraints dynamically during search that are compat-
ible with the current partial assignment. In this way, the first solu-
tion found during tree search is not removed by symmetry breaking.
Dynamic Lex needs to compute the stabilizers of the current partial
assignment. This requires a graph isomorphism problem to be solved
at each node of the search tree. Whilst Dynamic Lex works with dy-
namic variable ordering heuristics, it assumes that values are tried
in order. Finally Dynamic Lex is limited to posting lexicographical
ordering constraints. A comparison with Dynamic Lex is interest-
ing but challenging. For instance, Heller et al. [10] did not compare
model restarts with Dynamic Lex, arguing:

“It is not clear how this method [Dynamic Lex] can be gener-
alized, though, and for the case of piecewise variable and value
symmetry, no method with similar properties is known yet.”

8 CONCLUSIONS

We have considered the action of symmetry on symmetry breaking
constraints. We proved that any symmetry applied to a set of sym-
metry breaking constraints gives a (possibly new) set of symmetry
breaking constraints that break the same symmetries. In addition, we
proved that different symmetries of the set of symmetry breaking
constraints will pick out different solutions in each symmetry class.
We used these observations to help tackle the conflict between sym-
metry breaking and branching heuristics. In particular, we applied
these ideas to model restarts [10]. In this search technique, we pe-
riodically restart search with a new model which contains a random
symmetry of the symmetry breaking constraints. Experimental re-
sults show that this helps keep many of the benefits of posting static
symmetry breaking constraints whilst reducing the conflict between
symmetry breaking and the branching heuristic. There are other po-
tential applications of these ideas. For example, we are currently de-
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Static posting Model restarts SBDS
Lex Random Lex Random Lex Random

opt t/b opt t/b opt t/b opt t/b opt t/b opt t/b
1 13 0.11 13 114.99 13 1.13 13 4.99 13 * 0 14 * 270.42

387 424 K 2087 13 K 3639 K 4309 K
2 10 0.03 10 354.72 10 2.67 - - 10 0.04 10 0.77

31 1364 K 6503 - 229 4539
3 12 * 0.02 - - 12 3.44 12 137.55 12 * 0 12 * 0.02

2052 K - 7958 386 K 3178 K 2744 K
4 14 6.12 14 15.91 14 5.14 14 22.7 14 * 0 20 * 0.01

25 K 76 K 13 K 54 K 3040 K 3188 K
5 16 0.3 - - 16 26.16 16 6.06 16 * 0 16 * 0.01

730 - 38 K 12 K 3193 K 3083 K
6 13 247.85 - - 13 115.41 13 203.25 14 * 0 15 * 90.27

1001 K - 410 K 693 K 3313 K 3676 K
7 8 0.03 - - 8 0.72 8 0.75 8 0.02 8 0.12

60 - 1980 1794 119 684
8 17 0.1 - - 17 20.35 17 97.9 17 * 0 17 * 0.01

170 - 59 K 284 K 2820 K 2634 K
9 20 0.22 20 0.48 20 111.06 20 10.56 20 * 0.01 20 * 0.01

387 1103 172 K 15 K 3490 K 3442 K
10 8 * 0.01 8 * 25.29 8 * 1.78 8 * 5.46 8 * 0 8 * 0.02

4003 K 4612 K 3460 K 3510 K 3135 K 4309 K

Table 1. Static symmetry breaking constraints vs Model restarts and SBDS on Graph Coloring problems. “opt” is the quality of the solution found (*
indicates optimality was not proved), “t” is the runtime in seconds, “b” is the number of backtracks. The best method for a problem instance is in bold font.

Instance Static constraints Model Restarts SBDS
Lex Random Lex Random Lex Random

t b t b t b t b t b t b
3-3-4-5 0.01 176 0.01 246 0.02 271 0.2 3504 0.06 2060 0.01 318
3-4-6-5 0.02 599 0.04 726 0.04 703 0.59 7340 0.03 855 0.01 465
4-3-3-3 0 34 0.01 141 0.12 1570 0.08 1013 0.01 51 0 57
4-3-4-5 0.02 326 0.14 2392 0.28 3821 0.14 1629 0.16 4177 0.01 42
4-3-5-4 0 91 0.06 1204 0.12 1497 0.23 4055 0 52 0 51
4-4-4-5 0.07 1350 0.03 314 1.77 17 K 6.88 98 K 0 41 0.04 930
4-4-5-4 0.02 504 0.27 3956 1.01 8941 1.03 10 K 0.01 208 0.04 790
4-6-4-5 45.43 763 K - - 0.27 2612 0.67 5104 6.59 111 K 0.04 629
5-3-3-4 0.01 190 0.06 937 6.64 75 K 3.6 63 K 0.14 3113 0.02 382
5-3-4-5 0.03 527 1.51 21 K 4.34 45 K 1.32 13 K 1.16 26 K 0.12 2109
6-3-4-5 0.25 4538 2.84 40 K 3.9 44 K 9.06 106 K 5.92 114 K 0.06 1380

Table 2. Static symmetry breaking constraints vs Model restarts and SBDS on EFPA problems. “t” is the runtime in seconds, “b” is the number of backtracks.
The best method for a problem instance is in bold font.

veloping methods for dynamically posting a symmetry of the sym-
metry breaking constraints which does not conflict with the branch-
ing heuristic. In the longer term, we would like to exploit symmetries
of the nogoods learnt during search. Nogoods are themselves just
constraints. We can therefore consider symmetries acting on them.
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