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Abstract. This article addresses collaborative concept learning in
a MAS. In a concept learning problem an agent incrementally re-
vises a hypothetical representation of some target concept to keep it
consistent with the whole set of examples that it receives from the
environment or from other agents. In the program SMILE, this no-
tion of consistency was extended to a group of agents. A surprising
experimental result of that work was that a group of agents learns bet-
ter the difficult boolean problems, than a unique agent receiving the
same examples. The first purpose of the present paper is to propose
some explanation about such unexpected superiority of collaborative
learning. Furthermore, when considering large societies of agents,
using pure sequential protocols is unrrealistic. The second and main
purpose of this paper is thus to propose and experiment broadcast
protocols for collaborative learning.

1 INTRODUCTION

This article deals with the problem of collaborative learning [9] in a
multi-agent system (MAS). More precisely, we are concerned with
the extension of incremental (i.e. online) concept learning from ex-
amples, a simple model of supervised learning that outputs a hypoth-
esis that covers positive examples and rejects negative examples of
some target concept, to a collaborative setting. A motivation for col-
laborative concept learning was reported in a work concerning sin-
gle agent learning in an intentional MAS using a BDI formalism
[7]. In that work, agents shared plans, each of them being associ-
ated with a context defining the conditions in which the plan can be
triggered. Then, the agents had to revise the triggering context of
their plans depending on the failure or success of their execution and
were equipped for that purpose with communication and hypothesis
revision capabilities. A collaborative concept learning protocol has
been further proposed and investigated resulting in the SMILE im-
plementation [1]. In SMILE, autonomous agents are organized in a
fully connected MAS, and each agent stores information, i.e. non-
revisable factual knowledge received from the environment or from
other agents. Each agent also stores and shares with the other agents,
a set of common and revisable beliefs, forming the current theory
in the MAS. When an agent receives some contradictory informa-
tion, it has to revise the current theory in order to keep it consistent
with its own information memory. However, as it has also to keep
the hypothesis consistent with the whole information in the MAS
(mas-consistency), a set of interactions with the other agents is nec-
essary. During these interactions, the revising agent plays the role of
the learner while the other agents act as critics. However agents can
in turn be learners or critics, none of them being kept to a specific
role. A very surprising result of the experiments on boolean learning
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presented in [1], is an unexpected increase in the accuracy, measured
by predicting the function value on test examples, when comparing
the results of a n-agents MAS with those of a single agent equipped
with the same learning mechanism.

The revision protocol in SMILE, as presented in [1], is purely
sequential i.e. when an agent acts as a learner, it sends the revised
hypothesis to one critic and waits for the end of interaction (during
which the hypothesis has possibly been again revised) before propos-
ing it to another critic. The main purpose of this paper is to propose
a broadcast variant of this protocol and experiment it with small to
large number of agents. There are several motivations for that:

• Broadcast protocols should allow a quicker, and more flexible, re-
vision process, as all critics can analyze and criticize a revised hy-
pothesis in parallel. In large societies of agents, time constraints
can make sequential protocols inefficient or even inapplicable.
More precisely, the consistency maintenance process in SMILE
relies on a slow learning assumption: in the experiments, exam-
ples are sent sequentially to random agents in such a way that
a whole revision process can be achieved before a new exam-
ple arrives. Broadcast protocol respects the SMILE’s slow learn-
ing assumption with much more frequent example arrivals. Fur-
thermore, broadcasting revised knowledge in a large group seems
more realistic and desirable than a sequential propagation.

• Between broadcast and sequential protocols, there is room for a
range of collective behaviors, either depending on some structured
organization of agents or selective gossip-based propagation. A
variant of SMILE has been recently introduced to cope with MAS
organized in a network. In that case, each agent only communi-
cates with a set of direct neighbors [2], and the proposed protocols
for propagating the revisions are sequential. In this paper, we pro-
pose to investigate a broadcast protocol in a fully connected MAS
as a first step towards more sophisticated protocols for collective
knowledge revision and propagation in networks of agents.

It raises several questions. The first one is regarding the cost of
the parallelism. The sequential protocol in SMILE was supposed to
minimize the information storage by ensuring that only useful in-
formation, i.e. the information that enforces revision, was communi-
cated. Obviously, broadcast cannot ensure such a property. So, an ex-
tra communication and storage cost could be expected, and it should
be experimented. The second question is related to the accuracy im-
provement noticed in SMILE w.r.t. the single agent learning: where
does this improvement come from? is it related only to the sequential
propagation or is it preserved when broadcasting the information?

The paper is organized as follows. Section 2 recalls sequential col-
laborative concept learning as experimented in SMILE and summa-
rizes the results. Section 3 experiments two variants of the sequential
protocol in order to investigate the reasons of the accuracy improve-
ment. In section 4 we present our broadcast protocol together with a
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new behavior of agents, suggested by the results of the above anal-
ysis and denoted as Forgetness. In section 5 we discuss how Broad-
cast and Forgetness affect the collaborative learning. Finally, section
6 presents some related work and concludes.

2 COLLABORATIVE LEARNING IN SMILE

2.1 Summary

In SMILE, a MAS with n agents, denoted n-MAS, is represented as
a set of agents r1, ..., rn. Each agent ri has a belief set Bi consist-
ing of all the revisable knowledge it has. A common part BC of its
knowledge is shared with other agents. If an agent ri revises its belief
set Bi to B′

i, changing in the process BC into B′
C , all other agents

rk must then revise their belief set Bk to B′
k = (Bk − BC) ∪ B′

C .
Moreover, each agent ri owns some information Ki representing the
observed facts, taken as being true, and which can possibly contra-
dict Bi. Some consistency property Cons(Bi, Ki) is supposed to be
maintained by the agent. We have then the following definition:

Definition 1 An agent ri is a-consistent iff Cons(Bi, Ki) is true.
An agent ri is mas-consistent iff Cons(Bi, K) is true, where K =
∪j∈{1,..,n}Kj is the information stored in the n-MAS. A n-MAS is
consistent iff all its agents ri are mas-consistent.

Consistency of the agents is supposed to be additive, meaning that
whenever Cons(Bi, K1) and Cons(Bi, K2) hold, Cons(Bi, K1 ∪
K2) also holds. Furthermore, BC is assumed to be independent from
the remainder of Bi : Cons(Bi, Ki) iff Cons(Bi − BC , Ki) and
Cons(BC , Ki).

M denotes an internal revision mechanism that is applied when-
ever the agent ri receives a contradictory piece of information k4. It
changes Bi into a new belief set B′

i = M(Bi) that is consistent with
its new knowledge, thus maintaining the a-consistency of the agent.
In the same way, the mas-consistency of a revision mechanism Ms

requires that the agent stays consistent with the whole information
stored in the MAS. Finally Ms is strongly mas-consistent iff, when-
ever Ms is applied by an agent, the whole MAS is made consistent.

A strongly mas-consistent revision mechanism Ms is consti-
tuted of reiterated applications by the learner agent ri of its internal
a-consistent revision mechanism M , followed by some interactions
between ri and the other agents, until ri regains its mas-consistency.
The mechanism is triggered by an agent ri that, upon receipt of a
contradictory piece of information k, revises BC to B′

C . An inter-
action I(ri, rj) between the learner agent ri and another agent rj ,
acting as critic is as follows:

1. Agent ri sends the revision B′
C to rj .

2. Agent rj checks the revision B′
C . If this modification preserves its

a-consistency, rj sends an acceptance of B′
C to ri, else it sends a

contradictory piece of information k′ : Cons(B′
j , k

′) is false.

An iteration of Ms is then composed of an internal revision per-
formed by the learner agent ri, followed by a sequence of inter-
actions I(ri, rj). If a counter example k′ is transmitted to ri, this
triggers a new iteration, starting with a new revision of the learner to
reestablish its consistency. Otherwise, when all the critics have sent
an acceptance of the proposed hypothesis B′

C , ri has restored its
mas-consistency. It then notifies the other agents, who adopt the new

4 so turning Ki into K′
i = Ki ∪ k such that Cons(Bi, K

′) is false.

hypothesis B′
C . This ensures that, at the end of the revision process,

all the agents share the same hypothesis B′
C .

In [1], the revision mechanism Ms described above was proved as
strongly mas-consistent when Cons is additive.

Incremental collaborative concept learning

Single agent learning. The mechanism mentioned above was applied
to incremental MAS concept learning. In this context a hypothesis is
a monotone DNF, i.e. a disjunction of terms, each represented as a
conjunction of positive literals from a set of atoms A. An example is
an interpretation together with a label + or −. A hypothesis H cov-
ers an example e whenever e satisfies (is a model of) H5. Given a
set of positive and negative examples E = E+∪E−, a hypothesis is
complete when it covers all the positive examples in E+, and is co-
herent when it covers no negative examples in E−. To learn Boolean
formulae, negative literals are represented by additional atoms, like
not − a6. Given a current hypothesis H , a memory E = E+ ∪ E−

filled with the examples previously received by the agent, and a new
example e that falsifies either completeness or coherence of H (i.e.
e contradicts H), an internal revision mechanism M produces a re-
vised hypothesis H ′ that is complete and coherent with respect to the
new memory state E ∪ e.

The internal revision mechanism M implemented in SMILE per-
forms a minimal revision of H as follows: if H does not cover
e = e+ (e+ is a positive counter example), H is revised either by
minimally generalizing some term or by adding e+ as a new term. If
H covers e = e− (e− is a negative counter example), each term h
covering e− is discarded from H and replaced by a set of new terms
{h′

1, ...., h
′
n}. Terms of the resulting hypothesis that are less general

than the others are discarded.
Collaborative learning. If H is the current hypothesis, Ei the current
example memory of agent ri and E the set of all the examples in
the system, the notation of section 2.1 becomes Bi = BC = H ,
Ki = Ei and K = E. Cons(H, Ei) states that H is complete
and coherent with Ei. The piece of information k received by agent
ri is an example e. As the revision mechanism M we have de-
scribed, is a-consistent, Ms as described in Section 2.1 is strongly
mas-consistent: upon reception of a new example in the MAS by an
agent r, a set of interactions between r and the other agents results
in a new hypothesis, shared by all the agents, which is complete and
coherent with the set E of all the examples in the MAS.

2.2 Experiments

We briefly describe here the results of the experiments performed on
collaborative concept learning. An experiment is typically composed
of 30 to 50 trials. Each trial corresponds to a sequence of m exam-
ples that are incrementally learned by a n-MAS. During these runs,
measurements are taken, each time a given number of examples are
received by the system. A trial begins by sending an example to a
random agent who restores the MAS consistency. Another example
is then sent to the MAS and again mas-consistency is restored and so
on. Experiments were performed both on a set of boolean problems
including Multiplexer-11 (M11) and a xor function (Xor3 25), and
on various real-world problems from the UCI database [4].

5 e is a model of H whenever there is a term t in H more general than e, i.e.
such that t is included in e.

6 A target formula as for instance f =(a∧b)∨(b∧¬c) would be represented
as (a∧ b)∨ (b∧ not− c). The positive example {not− a, b, not− c}
is a model of f .
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Execution time and Example Redundancy. The execution time rep-
resents the whole computation and communication activity in the
MAS. The results showed that it linearly depends on the number
of agents. Redundancy depends on ne, the total number of exam-
ples received from the environment in the MAS, and is written as
RS = nS/ne, where nS is the sum of the sizes of the agents’ exam-
ple memories Ei. Redundancy reaches a peak when learning is most
active, and then slowly decreases towards its minimal value 1.
A n-MAS selects a simpler and more accurate solution than a single
agent. This improvement of accuracy (i.e. the ratio of correct classi-
fication of a set of test examples) was not expected, because whether
there are one or n agents in the MAS, when ne examples are given
to the MAS, it has access to the same amount of information and
maintains only one ongoing hypothesis. The improvement, which is
impressive on some difficult boolean functions, is however only ob-
served in a few cases in ML database problems. As we will see in the
next sections, this improvement is mainly due to a better exploration
of the search space, while in many UCI noisy problems, enhancing
the exploration does not help.

3 WHY DO AGENTS LEARN BETTER THAN
ONE?

In the following, we discuss experiments on two boolean formu-
las that are a difficult test for learning methods (see [5]). The
multiplexer-11 (M11) formula, built on 11 Boolean attributes, has
8 conjunctive 4-length terms. The Xor3 25 problem is a member of
the Xorp m family : there must be an odd number of value 1 in the
first p attributes of the p + m-size instance, for it to be positive.

Regarding the reasons why n agents learn better than one, first
consider that each learner agent revises the current hypothesis using
the examples stored in its own memory i.e. the examples it received
from the environment and the selected examples it received from crit-
ics. To evaluate the related selection effect, we have implemented a
first variant of SMILE, denoted as SmileV . Secondly, during a revi-
sion each learner will have to produce possibly many hypotheses in
order to maintain the MAS consistency. The overall effect is an exten-
sive exploration of the search space. Also, remember that the current
hypothesis is, in a sense minimal, as it contains no such term which
subsumes another of its terms. This means that simpler hypotheses
are favored, and are more likely to be encountered during an exten-
sive exploration. In order to evaluate the overall effect of selection
plus extensive exploration of the search space, we have implemented
a second variant denoted as SmileO similar to SMILE, except that
the examples are not randomly distributed to agents.

1. SmileV : n− 1 examples are sequentially sent to the agent r1. The
agent r2 is then added to form the MAS {r1, r2}. As the last ex-
ample is sent to r2, r2 starts from the null hypothesis and applies
Ms. This program allows us to test separately the effect of selec-
tion of counter examples by a critic on the learning process.

2. SmileO: n examples are sequentially sent to the n agents r1 . . . rn

of a MAS, i.e. agent ri receives only example ei from the environ-
ment, and applies Ms to the current hypothesis previously adopted
from agent ri−1. In this program the extensive exploration effect
is added to the mere selection effect of SmileV .

Hereunder we give the accuracy results for these experiments,
compared with those of the original SMILE (with n agents MAS) and
with Smile-1 (the single agent learner receiving the n examples). In
these results, n is set to 200 for M11 and to 100 for Xor3 25. These

values correspond to the maximal increase in accuracy obtained by a
MAS with respect to a single agent.

Measure Smile-1 SmileV SmileO SMILE
Accuracy (M11) 0.874 0.902 0.948 0.950

Accuracy (Xor3 25) 0.63 0.76 0.919 0.952

The standard deviation on accuracy ranges from 0.04 to 0.06 (M11,
decreasing from left to right) and from 0.08 to 0.14 (Xor3 25). It ap-
pears that:
Part of the accuracy improvement with respect to Smile-1 is due to the
selection effect. When applying SmileV to M11, the learner agent r2

receives about 70 counter examples and the resulting hypothesis out-
performs Smile-1 by � 0.028. Regarding Xor3 25, selection alone
increases the accuracy by � 0.13,
A larger part of the accuracy increase is due to the extensive explo-
ration effect. SmileO outperforms SmileV by � 0.046 on M11 and
by � 0.16 on Xor3 25.

So, neglecting the residual effect of randomness (which causes
SMILE to slightly outperform SmileO on Xor3 25 problem), we ar-
gue that the accuracy increase regarding the (hard) Boolean prob-
lems, is mainly due to the selection of counter examples by critics,
and because of the larger exploration of the search space.

4 BROADCAST AND FORGETNESS

If time is crucial, then the sequential nature of SMILE is a big flaw. It
does not take advantage from the possible simultaneous actions of the
agents. In what follows, we propose a protocol in which the learner
agent broadcasts the revised hypothesis to critics, so speeding-up the
revision process. Note that whereas the sequential protocol ensures
that each counter example sent by a critic provokes a new revision,
this is not the case with broadcast protocols, thus suggesting a higher
redundancy. As experiments suggested that high redundancy reduces
the accuracy gain, it would be important to avoid the duplicating ex-
amples as much as possible. Forgetness will provide a way to ensure
that redundancy is at most local and temporary.

Broadcast Broadcasting is obtained by replacing the bilateral 1−1
interactions of the sequential revision process by 1 − n interactions.
Each time it modifies its hypothesis, the learner agent broadcasts it to
all other agents, and gets answers from each of them: either accept or
all the counter examples of the hypothesis it possesses. The learner
then uses all the received counter examples at once for revising its
hypothesis. As a new hypothesis is produced, the process iterates,
until all the critics reply with an accept. Such a broadcast protocol
reduces the number of internal revisions (while extending their mag-
nitude). Here is a small example which illustrates broadcast revision.

Example 1 There are three agents in the MAS. A positive example
e+
10 is collected by agent r1, and e+

10 is not covered by the current
hypothesis H0. The revision H1 is then proposed to agents r2 and r3.
r3 then answers by the negative counter example e−3 (e−3 is covered
by H1) while r2 accepts the revised hypothesis. r1 then revises H1,
and so H2 is proposed to r2 and r3. r2 accepts H2 but r3 sends e+

9

and e−7 as counter examples to r1. r1 then revises H2 and proposes
H3 to r2 and r3 who both accept it. Now H3 has been accepted by
the two critics, so r1 notifies mas-consistency of H3 to r2 and r3

who then both adopt H3 as their new current hypothesis. r1, r2 and
r3 are now all mas-consistent and so the whole MAS is consistent.
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Forgetness Both the sequential and the broadcast protocols can be
modified to ensure that there is no redundant example in the system
after a revision. All examples received from other agents during the
revision (given as counter examples of the proposed hypothesis) are
only stored in a temporary memory and forgotten at the end of the
revision. Each agent thus only retains in its memory, the examples it
received from the environment.

Protocols summary We denote sequential protocols by ’S’,
broadcast ones by ’B’, and add ’f’ when Forgetness is used. When
referring to a protocol in a society of n agents, we will add ’-n’ to
its name. We shall thus discuss four protocols, which are all strongly
mas-consistent (proof similar to that in [1]):
Sequential (S), the sequential protocol (SMILE)
Forgetness (Sf), the sequential protocol with Forgetness
Broadcast (B), the broadcast protocol
Broadcast+Forgetness (Bf), the broadcast protocol with Forgetness

Using the same method and conditions as in 2.2, we tested these
protocols with societies of 10, 20, 50 100 and 200 agents on several
problems: the boolean ones such as Multiplexer-11, its variant with 9
irrelevant attributes (M11, M11-9), and different Xorp m problems
(Xor3-25, Xor5-5 and Xor5-15) as well as 5 UCI problems (heart-
statlog, kr-vs-kp, breast-w, tic-tac-toe, voteMp).

Redundancy Protocols with Forgetness ensure that redundancy
equals 1 after each revision. So here, we only consider the two proto-
cols without Forgetness. Figure 1 depicts a normalized redundancy,
i.e. the ratio of redundancy to the number n of agents, when learning
the Xor5-15 problem with various n-MAS.

Note that the broadcast protocol exhibits a slightly inferior highest
redundancy than the sequential variant, but a greater final one. Here,
an important observation is that broadcast does not significantly7 in-
crease redundancy during the most active period of learning.

Figure 1. Comparison of normalized redundancies when learning with
broadcast and sequential protocols

Computations In order to roughly estimate the level of explo-
ration of the search space, we compare the four protocols on the basis

7 even in the case where there a statistically relevant difference (unpaired t-
test), the ratio is less than 1.33 in all problems except breast-w and voteMp.

of the total number of internal revisions that have been produced by
the MAS during learning, as shown in Figure 2(top) . We can see
that, on one hand, Forgetness increases the number of internal revi-
sions quite drastically, whereas on the other hand, broadcast reduces
it in important proportions. When both are combined,it seems that the
factorization operated by Broadcast balances the increase of internal
revisions caused by the rediscovery of forgotten counter examples.
Hence, the combination of Broadcast with Forgetness leads to a low
number of internal revisions.

Figure 2. Comparison of the four protocols: total number of internal
revisions (top) and computational cost (bottom)

Now, we consider as computational cost, the total number of basic
subsumption operations made in the MAS, resulting from both inter-
nal revisions and criticisms. Figure 2(bottom) shows the results for
three boolean problems and two UCI ones, for each protocol, with
50 agents. It appears that Broadcast+Forgetness does significantly
less overall computations than the other three. This observation may
be explained as follows. Even though the broadcast protocol B does
not make a lot of internal revisions, it tests each hypothesis against
the example memory of each critic (this memory fills quickly dur-
ing the active part of the training), a costly process. It is thus one of
the most expensive protocols. However note that a large part of these
computations, namely those resulting from criticisms, are performed
in parallel. Sequential protocols S and Sf solicit agents as critics one
by one, so resulting in a smaller total number of criticisms because
a hypothesis stops being criticized as soon as a counter example is
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found, but they perform much more internal revisions, and as a result
have also rather bad performance. As it has no redundancy, Broad-
cast+Forgetness avoids the very high cost of criticisms of protocol B,
and given its small number of internal revisions, is clearly the most
computationally efficient protocol. Here again some of these compu-
tations are performed in parallel.

Communications Regarding communications, we measure both
the total number of messages that are sent and, since in broadcast
variants a single message can contain several counter examples, the
total size of data that is exchanged between agents. Figure 3 shows
the results on total size of data exchanged for each protocol with 10,
50 and 200 agents MAS on the Multiplexer-11 problem (200 exam-
ples are sent to the MAS). Only the results on the number of mes-
sages are discussed. Overall, Forgetness increases the communica-

Figure 3. Communication Cost

tion cost for both measures: as counter examples are forgotten, they
might have to be communicated again. The communication cost of
Sf soon becomes prohibitive as the number of agents increases. The
Bf protocol suffers much less than Sf from the increase in communi-
cation cost since Broadcast greatly reduces the number of produced
hypothesis, and its overall cost is only marginally higher than that
of the sequential protocol. Furthermore, as it factorizes the messages
by transmitting several counter examples at once, it is even better
regarding the number of messages.

Accuracy Regarding accuracy, we present here the main obser-
vations resulting from the experiments. They are verified on most
boolean problems.Tentative explanations are presented in the next
section. We made four main observations:
Broadcast protocol (B) accuracy increases with the number of agents
(O1), as illustrated by Figure 4(top). It is significantly lower than
SMILE with 10 or 20 agents, but becomes one of the most accurate
protocols for high number of agents (see Figure 5(bottom)).
Sequential protocol with Forgetness (Sf) has an accuracy that de-
creases with the number of agents (O2), (see Figure 4(bottom)).
While very good with 10 agents (see Figure 5(top)), the accuracy
quickly deteriorates though still better than that of a single agent.
Protocols with Forgetness (Sf, Bf) usually performs very well with
few agents (O3). They outperform the protocols without Forgetness
when the number of agents is small(see Figure 5(top)).

Figure 4. Accuracy : Broadcast protocol B (top) and
Sequential+Forgetness Sf (bottom)

Broadcast protocols (B, Bf) usually perform very well when the num-
ber of agents is very high (O4), as seen on Figure 5(bottom). Es-
pecially, the broadcast protocol with Forgetness benefits from both
mechanisms, and performs consistently well on all problems.

5 HOW DO FORGETNESS AND BROADCAST
AFFECT LEARNING?

In this section, we discuss how the Broadcast and Forgetness affect
the learning process. Forgetness obviously affects the number of ex-
amples present in the memory of each agent. Broadcast deeply af-
fects the next internal revision to be performed, as before each in-
ternal revision, all counter examples of the current hypothesis are
gathered.

In section 3 we have related the observed accuracy improvement
while learning together, to both the intensive exploration of the
search space and a selection effect. Here we argue that, more pre-
cisely, the improvement is due to a better exploration of the search
space both quantitatively (through many internal revisions) and qual-
itatively (through focussing on interesting hypotheses). For the in-
creased computational resources to be efficient, internal revisions
should, as much as possible, explore new areas of the search space
rather than going over and over on the same trajectories. It is impor-
tant to both (i) take benefit from previous exploration (stability) and
(ii) allow enough variations to explore new trajectories (variability).
There must be a good balance between stability and variability as too
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Figure 5. Accuracy : comparison of the four protocols with 10 agents (top)
and 200 agents (bottom)

much variations might fully cancel the benefit of previous hypotheses
(reducing the accuracy increase simply to a selection effect), while
not enough variations might prevent the discovery of better hypothe-
ses.

Then, we can interpret the results by considering each example
as a constraint reducing the space of possible solutions. When the
learner has only few examples, as it happens when redundancy is
low, its internal revisions are less constrained, and the variability
is high. Likewise, when it gathers counter examples one by one,
it makes more internal revisions with only one more constraint be-
tween each revision (increased variability), whereas if it gets a batch
of counter examples, it makes less revisions, each of them being more
constrained (increased stability). To summarize, using Forgetness or
increasing the number of agents increases variability, whereas using
Broadcast or decreasing the number of agents increases stability.

It explains O1, as Broadcast without Forgetness with few agents
has an excess of stability, which is compensated when a greater num-
ber of agents increases variability. Likewise, with fewer number of
agents (high stability), Forgetness is useful to add more variability
(O3). Reversely, excess of variability causes the sequential protocol
with Forgetness to give bad results if the number of agents is high
(O2). The increased stability of the broadcast protocol is thus useful
to counteract the variability caused by the large societies of agents
(O4). Using both Broadcast and Forgetness is thus a very good op-
tion as it introduces a good balance between stability and variability
of the hypotheses regardless of the number of agents.

6 CONCLUSION

This article adresses the problem of collaborative learning in a MAS
using interactions between agents [8], and more precisely it adresses
collaborative concept learning[10, 3]. It builds up on some existing
work that demonstrated an improvement of the accuracy with mul-
tiple agents in the case of sequential learning process [1]. Our work
goes ahead and proposes to take full advantage of multi agency by
considering our agents as autonomous interacting entities perform-
ing parallel actions while organised (or distributed) over a network.
Thus, this paper introduces Broadcast and Forgetness mechanisms to
add parallelism while keeping a low redundancy. It appeared that us-
ing the two mechanisms simultaneously (protocol Bf) provides an
efficient process, minimizing the overall number of computations
without using much more communications than SMILE (as a result,
learning time is reduced even without considering the effect of paral-
lelization). It can thus be used in larger societies of agents. Moreover,
our Bf protocol fully preserves the accuracy improvement, and even
improves it further on some difficult problems.

We have considered here the broadcast revision in a fully con-
nected network. Previously, collaborative MAS learning has been
extended to cope with situations in which agents only communi-
cate with their neighbors [2], but only in a sequential way. A major
perspective is then to extend the broadcast protocols to much more
realistic networks (e.g. sensor networks). Note that in this case the
broadcast protocol will result in having various current hypotheses
propagating in the network and an agent will need to have some way
to rank or merge the hypotheses, and so the interactions will have to
be much more sophisticated. Finally, from a computational learning
theory perspective, collaborative concept learning as proposed here
has some links with the theory revision with queries[6]: the critics
defined here may be seen as the incomplete oracles answering the
equivalence queries. A deeper comparison should be conducted in
this perspective.
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