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Abstract. Consider the classification task of assigning a test in-
stance to one of two or more possible classes. An intuitive way to
proceed is to assign the instance to that class, to which the distance
is minimal. If one considers the distance to the convex hull of a class
as a distance measure, then the resulting classification method is the
Nearest Convex Hull (NCH) classifier. There are two key issues with
this method per se that severely restrict its applicability, which we
solve in this paper: first, how to handle class overlap, and second,
how to provide (nonlinear) solutions with better generalization abil-
ity. The first problem is handled via using so-called kernel functions
and slack variables. The second problem is dealt with using a penal-
ization term that suppresses too complex solutions. We call the re-
sulting method the soft-NCH classifier. In spirit and computationally
the method is close to the popular Support Vector Machine (SVM)
classifier and can be viewed as an instance-based large-margin clas-
sification technique. Advantages of the soft-NCH classifier include
its robustness to outliers, good generalization ability and naturally
easy handling of multi-class problems. We compare the performance
of soft-NCH against state-of-art techniques and report promising re-
sults.

1 INTRODUCTION
Both instance-based classifiers and large-margin classifiers have re-
cently gained considerable popularity. This paper puts forward a
technique that shares characteristics of these two areas, called the
Soft Nearest Convex Hull (soft-NCH) classifier. As the name sug-
gests, the classification rule of the pure Nearest Convex Hull clas-
sifier is based on the idea to assign a test instance, or point, x to
that class, which convex hull is closest to x. The implementation
of this rather straightforward rule requires solving an optimization
task to find the distance from a point to the convex hull of several
other points. Standard algorithms for this task have long existed (see,
e.g., [1], [4]). One reason why such algorithms have however not
been employed for classification purposes is the problem of assign-
ing a label to x in case it lies inside the convex hulls of two or more
classes. This convex-hull overlap results in zero distances from x to
these convex hulls and that is why the classification label of x can-
not be unequivocally determined. Taking this problem as the point of
departure, the idea behind the soft-NCH classifier is to handle class
overlap by means of using so-called slack distances to convex hulls
and/or mapping of the training points from the original input space
to a sufficiently large higher-dimensional space via so-called kernel
functions. Both of these tools have been borrowed from the popular
Support Vector Machine (SVM) classifier. It is the introduction of
slack distances that gives rise to the soft version of the NCH classi-
fier.
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In order to classify, the NCH classifier computes the distance from
a test point to a convex hull. In this process there is no need to com-
pute explicitly the convex hull of any class. Instead, given that the
test point lies outside the convex hull of a given class, the approach
taken is to compute the maximal distance from the test point to a
hyperplane that separates this point from the convex hull. On the
surface, it might therefore seem that the soft-NCH classifier actually
comprises two SVM classifiers (if there are two classes), applied sep-
arately to each class and a given fixed test point. This is not the case
however due to one crucial difference : the soft-NCH classifier uses
slack variables for the training instances, but not for the test instance
x. In this way it is ensured that it is the slack distance from a fixed test
point to a convex hull that is measured, and not the slack distance be-
tween two classes, one of which consists of the test point only, which
would be the SVM-like solution. We note that the decision surface
produced by the NCH classifier is in general nonlinear in the original
data space, which makes it more “flexible” than the SVM classifier.
This arguably results in a more complex decision surface, but at the
same time a better fit to the data, ceteris paribus. The interplay be-
tween these two effects determines which one of these classifiers will
have a better generalization ability on a particular classification task.

The NCH classifier can also be thought of as a departure from the
1-Nearest Neighbor (1NN) rule. The point of departure here is the
idea to “fill in” the missing points from a given class by (all) points
from its convex hull, which helps circumvent the curse of dimen-
sionality problem from which the 1NN rule may suffer ([3], [10]).
This makes the NCH classifier less flexible than the 1NN rule, in the
sense that it produces more regular decision surfaces. Thus, at least
in terms of flexibility, the NCH classifier can be thought of providing
an intermediate solution between SVMs and 1NN. One crucial sim-
ilarity between the 1NN and NCH methods is that in both cases the
decision surface between the classes is not explicitly computed. In-
stead, for any test point the methods output the predicted class that is
implied by a decision surface. Since the NCH classifier implements
the idea to find the distance to the closest point of a given convex
hull, and it has to do so for each hypothetical test instance, the NCH
approach can be categorized as being an instance-based large-margin
classification approach.

The soft-NCH classifier has a number of advantageous qualities,
such as uniqueness of (optimization) solution, avoidance of over-
fitting, good generalization ability, the possibility to handle nonlin-
earities with ease via so-called kernel functions and/or slack vari-
ables, and the robustness to outliers. The uniqueness-of-solution
property stems from the formulation of the optimization problem be-
ing solved. Overfitting, or fitting too well to the training data, is over-
come via the introduction of a regularization term that suppresses
too complex potential fits. Nonlinear solutions that are more com-
plex than those already produced in the original data space are pro-
duced using kernel functions. The kernel functions provide for the
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possibility to map the training data into a higher-dimensional space
and to compute distances to convex hulls in this space computation-
ally efficiently, just like in the case of SVMs. The potential over-
fitting effect in this higher-dimensional space due to the increased
complexity/nonlinearily of the (implicit) soft-NCH decision func-
tion is counter-weighted by the ability to apply regularization. The
robustness-to-outliers property originates from the linear (and not
for example quadratic) penalization of the training errors induced
in case of class overlap. Another advantage of the soft-NCH as an
instance-based method, particularly over SVMs, is its computational
efficiency and higher training speed especially for multi-class classi-
fication tasks. This occurs because only same-class objects are con-
sidered in the estimation of a (soft) distance to a convex hull, and
not the entire data set. Furthermore, no additional question arises re-
garding what type of multi-class approach for combining binary clas-
sifiers to use, such as one-against-one or one-against-all. A general
disadvantage of the NCH classifier is the requirement to solve k op-
timization problems to find the predicted class-label of a test point,
where k is the number of classes. This property is however tied to
the instance-base nature of the method. Nevertheless, each of the k
optimization problems, one per class, is significantly easier to solve
than a single overall optimization problem that involves all training
data points.

We note that one can find parallels not only with SVMs and 1NN,
but with other techniques as well. For example, the jump from Lin-
ear Discriminant Analysis (LDA) to Quadratic Discriminant Analy-
sis (QDA) resembles in many ways the transition from SVMs to the
NCH classifier. More generally, various links between the areas of
instance-based methods and large-margin methods have extensively
been exploited elsewhere in the literature. Examples include a large-
margin nearest neighbor classifier proposed by [8], a kernel nearest-
neighbor algorithm of [12], a k-local hyperplane and convex distance
nearest neighbor algorithms by [19], and others. We confer also to
[20] for a more general discussion on distance-based classification.

The paper is organized as follows. First we provide some intuition
behind the soft-NCH classifier and a formal definition of it. Next, we
discuss the technical aspects of the classifier – derivation and imple-
mentation. Finally, we show some experimental results on simulated
and real data sets and then conclude.

2 NEAREST CONVEX HULL CLASSIFIER:
DEFINITION AND MOTIVATION

At the outset, consider a binary data set of positive and negative ob-
jects 〈I+, I−〉 from R

n. The classification task is to separate the two
classes of objects with a decision surface that can generalize well to
test data sets. This task is formalized as finding a (target) function
f : R

n → {−1, 1} such that f will classify correctly unseen obser-
vations. The extension to the multi-class case is straightforward. The
decision rule of the NCH classifier is defined as follows: a test point
x ∈ R

n should be assigned to that class, which convex hull is closest
to x. The convex hull of a class is defined as the smallest convex set
that contains the training instances from that class.

Below we split the exposition in two parts. First we consider the
case with no class overlap, called the (linearly) separable case, and
then we discuss the nonseparable case.

2.1 NCH Classification in the Separable Case
Let us first consider the so-called separable case where two classes
are separable by a hyperplane without any misclassification error.
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Figure 1. Classification of a test point with SVM in Panels (a) and (c),
and NCH in Panels (b) and (d) on a binary data set. In Panel (a), the white

band has the largest possible width, which is equal to twice the margin,
shown in Panel (c). The points to the left and to the right of the band form

shaded sets S− and S+, respectively. Test point receives label +1 since it
is farther from S− than S+. In Panel (b) point is classified as −1 since it
is farther from the convex hull of the positive points, CH+, than from the

convex hull of the negative points, CH−.

Structurally, the NCH classifier can be viewed as an intermediate
method between the popular SVM classifier ([18]) and the 1-Nearest
Neighbor classifier. Therefore, we first draw an intuitive comparison
between NCH and SVM, and then between NCH and 1NN. See Fig-
ure 1 for an illustrative binary classification example. Panels (a) and
(c) refer to SVM classification, and Panels (b) and (d) refer to NCH
classification. To make the comparison between SVM and NCH clas-
sification more appealing, we describe SVM classification from an
instance-based point of view. That is, we focus on the classification
process of a particular test point. As it turns out, in both the SVM
and NCH cases a test point is classified according to the proximity
to particular sets of points. In the NCH case these sets are the con-
vex hulls of the positive and negative classes, denoted by CH+ and
CH− respectively, and in the SVM case these sets are areas to the
left and to the right of the so-called margin band, denoted by S− and
S+ (defined below).

In SVM classification, the target function is a hyperplane of the
form w′x + b = 0, where w is a vector of coefficients and b is the
intercept, and w′ is the transpose of (column vector) w. The SVM
hyperplane w∗′x + b∗ = 0 (denoted as hSVM in Figure 1) is the
hyperplane that separates the classes with the widest margin, where
a margin is defined as the distance between a (separating) hyperplane
and the closest point to it from the training data set. In terms of Figure
1, Panel (a), the width of the white band is equal to twice the margin.
The margin itself is shown in Panel (c). The closest point to hSVM

is defined to lie on the hyperplane w∗′x + b∗ = 1 if this point is
positively labeled, or on the hyperplane w∗′x + b∗ = −1 if this
closest point is negatively labeled. For all points x that do no lie
inside the margin it holds that either w∗′x+b∗ ≤ −1 or w∗′x+b∗ ≥
1. The former set of points is defined as S−, and the latter set of
points is defined as S+. For any test point x, the SVM classification
rule can be formulated as follows: a test point x is classified as +1
if it is closer to set S+ than set S−; otherwise x receives label −1.
It has been argued (see, e.g., [17], [6], [18]) that SVM classification
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searches for a balance between empirical error (or, the goodness-
of-fit over the training data) and complexity of the function class
that fits the data. Quantitatively, the complexity can be (inversely)
related to the distance between sets S+ and S−, that is, twice the
margin: the larger the margin, the lower the associated complexity
and the simpler the classification model. Note that in the separable
case at hand in Figure 1, the empirical training error of hSVM is zero
since it fits the data perfectly. In principle, the higher the function-
class complexity, the lower the empirical error. The tradeoff between
empirical error and complexity can intuitively be approached from an
instance-based viewpoint as well. In this case, complexity is imputed
in the classification of each separate test instance. Thus, the larger
the distance from a test object x to the farther one of the two sets S+

and S−, the lower the complexity associated with the classification
of x.

Unlike SVMs, in NCH classification the target function is implicit.
A test point x receives classification according to its proximity to
the convex hull of the positive instances, CH+, and the convex hull
of the negative instances, CH−, which results in an overall implicit
nonlinear decision surface (for illustration, see Figure 4, upper left
panel). The NCH classification rule can be formulated as follows: if
x is closer to set CH+ than CH−, it receives label +1; otherwise x
receives label −1. Analogously to SVMs, the NCH classifier can also
be considered intuitively from a fit-versus-complexity standpoint. In
NCH classification one can consider the distance to the farther one
of the two sets CH+ and CH− as a proxy for the complexity asso-
ciated with the classification of test point x: the larger the distance,
the lower this complexity. Note that this distance is always as big as
or bigger than the distance from x to the farther of sets S+ and S−.
This property holds since the convex hull of the +1 (−1) points is
a subset of S+ (S−), as can be seen in Figure 1. The decision sur-
face produced by NCH in the original data space is in general non-
linear, implying that the method is more adaptive than the (linear)
SVMs. From generalization ability viewpoint, the better empirical fit
is however counterbalanced by the increased flexibility of the result-
ing NCH decision surface. As a consequence, it is not clear a priori
whether NCH or SVM will strike a better balance between fit and
complexity.

The NCH classifier could also be compared and contrasted with
the 1-Nearest Neighbor rule in terms of the fit-versus-complexity in-
terplay. The 1NN suffers from the curse of dimensionality and may
exhibit severe bias in high dimensional problems ([10]), due to the
fact that the training data set is generally too small to sufficiently
populate the input space. The 1NN rule is highly adaptive though,
as it is able to produce an extremely irregular decision surface that
separates the classes of any data set without an error (unless it con-
tains points from different classes with the same input values). One
may think of this high flexibility as giving rise to a rather high com-
plexity associated with the classification of any test point. The NCH
approach in a way softens the curse of dimensionality by introducing
hypothetical points – the points from the convex hulls of the classes
– with which to populate the input space in an artificial way. This
“cure” is however accompanied by worsened flexibility in the sense
of a more regular overall decision surface. The extent of interplay
between these two effects would ultimately determine which method
would prevail for a given task.

NCH has the property that the extent of proximity to a given class
is determined without taking into consideration objects from other
classes. This property contrasts with the SVM approach, where the
sets S+ and S− are not created independently of each other. A similar
parallel can be drawn between LDA and QDA methods. In LDA, one

first determines the Mahalanobis distances from x to the centers of
the classes using a common pooled covariance matrix and then clas-
sifies x accordingly. In QDA, one uses a separate covariance matrix
for each class. Analogically, the NCH classifier first determines the
Euclidean distance from x to the convex hulls of each of the classes
and then classifies x accordingly. In sum, loosely speaking one may
think of the shift from SVM to NCH as resembling the shift from
LDA to QDA.

2.2 NCH Classification in the Nonseparable Case

(a) (b) (c)

x x x

h
CHh

CH

Figure 2. Classification of a test point with (hard) NCH in Panel (a), soft
NCH in Panel (b), and soft SVM in Panel (c). In Panel (b), the hyperplane

from Panel (a) is “pushed” further away from and inside the convex hull of
the positive class, resulting in a soft distance from to this convex hull. In
Panel (c), the distance between the two parallel hyperplanes represents the

so-called (twice) SVM margin. In this case the slack is applied to both and
the points from the positive class, unlike the soft NCH, where no slack is

applied to .

In the so-called nonseparable case the convex hulls of the two
classes intersect each other. As a result, there exist test points that
belong to both convex hulls simultaneously and cannot therefore be
assigned to a particular class. To deal with this situation, we intro-
duce so-called slack distances to convex hulls, in a way not dissimilar
to the soft SVM approach, and call the resulting approach the soft-
NCH classifier. Consider Figure 2, which shows the solutions for the
separable NCH case, the nonseparable NCH case, and the nonsep-
arable SVM case. The difference between Panels (a) and (b) of the
figure is the increased, or soft, distance in Panel (b) to the convex
hull of the class in question (here, the positive class). Figuratively
speaking, the hyperplane hCH in Panel (a) is pushed further away
from the test point and inside the convex hull of the positive class in
Panel (b). This increased distance gives automatically rise to points
from the positive class appearing on the wrong side of the hyperplane
hCH. We consider these points as “errors” and associate a linear loss
with each of them that is proportional to the distance between any
such point and hCH. The introduction of a slack distance allows to
find a positive (soft) distance to a given convex hull even if the test
point lies inside the convex hull. This step is crucial as it allows to
deal with class overlap: even when a test instance lies inside two con-
vex hulls, implying that the distance to both hulls is equal (to zero),
unique class assignment is possible as the soft distances to the con-
vex hulls will in general be different. Notice that the hyperplane that
passes through the test point in Panel (a) preserves its position also
in Panel (b). In this way it is ensured that it is the slack distance to
the convex hull that is being measured, and not some other distorted
distance. An example of such distorted distance is given in Panel (c)
of the figure, which shows the soft SVM solution to the two-class
problem where one of the classes is the positive class, and the other
class consists of the test point only. As the standard SVM classifier
does not explicitly differentiate between the classes, both points from
the positive class and the test point are associated with a slack, which
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leads to a solution that does not represent the slack distance between
a fixed test point and a convex hull, but the slack distance between
two classes, one of which consists of the test point only.

3 ESTIMATION
3.1 Separable case
Consider a data set of l objects from k different groups, or classes.
Let lk denote the number of objects in the kth class. According to
NCH, a test point x is assigned to that class, to which the distance
is minimal. In the separable case, the distance to a class is defined
as the distance to the convex hull of the objects from that class. The
algorithm for classifying x can be described as follows (see Figure
(3)): first, compute the distance from x to the convex hull of each
of the k classes; second, assign to x the label of the closest class.
Formally, to find the distance from a test point x to the convex hull
of the nearest class, one has to solve a quadratic optimization prob-
lem, as for instance described in [4], p.398. However, in order to be
able to employ kernels easily, we formulate a quadratic optimization
problem that has to be solved for each class k, which is similar to the
SVM optimization problem:

min
wk,bk

1

2
w′

kwk (1)

s.t. w′
kxi + bk ≥ 0, i = 1, 2, . . . , lk

−(w′
kx + bk) = 1

The distance between hyperplane w′
kx + bk = 0 and x is defined

x x x

(a) (b) (c)

a b

Figure 3. Classification of a test point with NCH on the binary data set
in Panel (a) in two steps. At stage one (Panel (b)), a test point is added to a
data set that contains only the positive class, and the distance a from to the
convex hull of this class is computed. At stage two (Panel (c)), is added to
a data set that contains only the negative class, and the distance b from to

the convex hull of this class is computed. If a > b (a < b), then is
assigned to the negative (positive) class.

as 1/
√

w′
kwk by the last constraint of (1). This distance is maximal

when 1
2
w′

kwk is minimal. At the optimum, it represents the distance
from x to the convex hull of class k. The role of the first lk inequality
constraints is to ensure that the hyperplane classifies correctly each
point that belongs to class k. Effectively, for each of the k classes,
the lk same-class objects are assigned label 1, and the test point is
assigned label −1. Eventually, x is assigned to that class to which
the distance is minimal, that is, which corresponding value for the
objective function in (1) is maximal.

3.2 Nonseparable case
The solution for wk of optimization problem (1) differs from 0 for
a given k only if the test point lies outside the convex hull of class
k. Therefore, a complication arises if some of the convex hulls over-
lap. Then a test point could lie simultaneously in two or more convex

hulls and its classification label would be undetermined. To cope with
these situations, so-called slack variables can be introduced, similarly
to the SVM approach, which gives rise to the soft Nearest Convex
Hull classifier. Consequently, the nonseparable version of optimiza-
tion problem (1) that has to be solved for each class k becomes:

min
wk,bk,ξ

1

2
w′

kwk + C

lk∑

i=1

ξi (2)

s.t. w′
kxi + bk ≥ 0 − ξi, ξi ≥ 0, i = 1, 2, . . . , lk

−(w′
kx + bk) = 1.

Note that in (2) the points that are incorrectly classified are penalized
linearly via the term

∑lk
i=1 ξi. If one prefers a quadratic penalization

of the classification errors, then the sum of squared errors
∑lk

i=1 ξ2
i

should be substituted for
∑lk

i=1 ξi in (2). One can go even further and
extend the NCH algorithm in a way analogical to LS-SVM ([9]) by
imposing in (2) that constraints w′

kxi + bk ≥ 0 − ξi hold as equal-
ities, on top of substituting

∑lk
i=1 ξ2

i for
∑lk

i=1 ξi. A closely related
approach to finding soft distances between convex hulls in case of
class overlap, which uses the concept of reduced convex hulls, can
be found in [2]. One key difference between this approach and soft
NCH is analogous to the difference between soft SVM and soft NCH
discussed in Section 2.2: soft NCH explicitly removes the slack vari-
able associated with the test point, via the equality constraint in (2).
It can be shown that soft NCH can be transformed into a reduced
convex classifier by imposing an additional constraint αlk+1 = 1 in
the dual of (2) below, (3).

Each of the k (primal) optimization problems pertaining to (2) can
be expressed in dual form2 as:

max
α

αlk+1 − 1

2

lk+1∑

i,j=1

αiαjyiyj(x
′
ixj) (3)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , lk,
lk+1∑

i=1

yiαi = 0,

where the α’s are the Lagrange multipliers associated with the re-
spective kth primal problem. Here αlk+1 is the Lagrange multiplier
associated with the equality constraint −(w′

kx + bk) = 1. In each
problem yi = 1, i = 1, 2, . . . , lk and ylk+1 = −1. The advan-
tage of the dual formulation (3) is that different kernels can be em-
ployed to replace the inner product x′

ixj in (3) in order to obtain
nonlinear decision boundaries, just like in the SVM case. Three pop-
ular kernels are linear κ(xi,xj) = x′

ixj , polynomial of degree d
κ(xi,xj) = (x′

ixj+1)d and the Radial Basis Function (RBF) kernel
κ(xi,xj) = exp(−γ ‖ xi − xj ‖2), where the manually-adjustable
γ parameter determines the proximity between xi and xj .

A total of k NCH optimization problems have to be solved to de-
termine the class of any test point x. This property provides for the
fact that the NCH decision boundary is in general implicit and non-
linear, even in case the original data is not mapped into a higher-
dimensional space via a kernel. Figure 4 demonstrates that this prop-
erty does not hold in general for Support Vector Machines, for in-
stance. This figure also illustrates that the NCH decision boundary
appears to be less sensitive to the choice of kernel and kernel param-
eters than the respective SVM boundary.

2 The derivation of the dual problem resembles the one used in SVM (see,
e.g., [6]).
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Table 1. Leave-one-out accuracy rates (in %) of the Nearest Convex Hull classifier as well as some standard methods on several data sets. Rbf, 2p and lin
stand for Radial Basis Function, second-degree polynomial and linear kernel, respectively.

NCH NCH NCH SVM SVM SVM
rbf 2p lin rbf 2p lin NB LR LDA QDA MLP kNN DS C4.5

Sonar 91.4 90.4 88.0 88.9 82.2 80.8 67.3 73.1 75.5 74.9 81.3 86.5 73.1 71.2
Voting 95.9 95.4 95.9 96.5 96.3 96.8 90.3 96.5 95.9 94.2 94.9 93.3 95.9 97.0
W.B.C. 97.4 97.1 97.3 97.0 96.9 96.9 96.0 96.1 96.0 91.4 95.0 97.0 92.4 95.3
Heart 85.6 82.6 84.1 85.6 81.1 85.6 83.0 83.7 83.7 81.5 78.9 84.4 76.3 75.2
A.C.A. 86.4 85.4 86.1 87.4 79.9 87.1 77.1 86.4 85.8 85.2 84.8 85.9 85.5 83.8
Hep. 85.2 84.5 84.5 86.5 86.5 86.5 83.2 83.9 85.8 83.9 79.4 85.8 79.4 80.0
Haberman 76.2 73.9 73.9 75.8 75.2 75.2 75.2 73.9 73.2 73.5 72.2 74.2 74.2 75.5
B.Cancer 74.5 75.2 75.2 76.9 75.9 71.3 72.7 68.5 36.7 44.8 69.6 75.2 72.0 70.3
Colic 84.2 81.3 83.7 84.5 84.8 84.5 75.8 79.6 68.5 67.9 78.5 81.3 81.5 83.4
CreditG 71.0 72.6 74.7 70.0 70.0 75.0 75.1 75.1 67.1 68.2 72.6 74.3 70.0 70.9

Being instance-based, the NCH classifier is characterized by high
computational burden associated with the classification of test points
that are not in the original data set, as compared to methods that com-
pute a decision surface explicitly, as SVM’s for instance. Therefore,
tasks for which test points arrive quickly after each other will re-
quire greater offsetting computational power. On the other hand, the
NCH approach may lead to a faster determination of the manually-
adjustable parameters, such as C (used in SVM’s as well). This is
most evident if one estimates such parameters using the leave-one-
out procedure (say, in a two-class problem). At each step, one of the
test points is left for testing, and a model is built using the remain-
ing points in the data set. If the date set is balanced (the number
of instances per class is the same), then the NCH has to solve two
quadratic optimization problems of size N/2, where N is the to-
tal number of instances in the training set; in contrast, SVM’s have
to solve one quadratic optimization problem (quite similar to those
NCH solves) of size N . Current nonlinear SVM solvers scale more
than linearly (in time) with the number of instances, so NCH will be
faster overall. This effect fades out if one estimates the parameters
using a cross-validation procedure, where the number of folds is not
high. In this case, SVM’s have the benefit of being presented with
test instances from each of the cross-validation test folders en bloc,
and use a previously computed explicit decision rule to classify them
quickly.

Technically speaking, in case the convex hulls do not overlap,
NCH could be solved using the standard SVM optimization formu-
lation (see, e.g., [18], [6]). In this case one searches for the widest
margin between each of the k classes and a test point x. This margin
represents the distance from x to the convex hull of the kth class.
The class for which the margin is smallest is the winning one. The
standard nonseparable-case SVM formulation cannot however be au-
tomatically applied to the nonseparable NCH case, since the equality
constraint in (2) will not be satisfied in general.

4 EXPERIMENTS ON SIMULATED DATA
We first evaluate the performance of the soft-NCH classifier in an
artificial setting using a simulated data set. The next section focuses
on real data sets. Here we examine the generalization performance of
the NCH classifier on a popularized simulated two-class problem that
has been analyzed by many classification methods in [11]. The data
set consists of 100 training instanced per class in a 2D input space.
Each class is generated from a mixture of Gaussians, which results
in a nonlinear Bayes-optimal decision surface between the classes.
Refer to [11] for a full description of the data set and its generation.

NCH, linear kernel NCH, RBF kernel, γ=5 NCH, RBF kernel,γ=35

SVM, RBF kernel,γ=35SVM, RBF kernel, γ=5SVM, linear kernel

Figure 4. Decision boundaries for NCH and SVM using the linear and
RBF kernels on a linearly separable data set. The dashed contours for the

NCH method are iso-curves along which the ratio of the distances to the two
convex hulls is constant.

The data set together with the leave-one-out NCH-optimal (using the
RBF kernel) and the Bayes-optimal separation surfaces are shown in
Figure 5. Although the leave-one-out test error of the NCH classier,
0.228, is quite close to the minimal Bayes error, 0.21, the lowest-
possible test error of the NCH method is still lower than 0.228 and
can be found by tuning the parameters C and γ according to perfor-
mance on a test set rather than using a cross-validation procedure.
We have not however carried out such a brute-force exercise in order
to avoid unrealistically optimistic test-error results.

5 EXPERIMENTS ON UCI AND SlatLog DATA
SETS

The basic optimization algorithm for Nearest Convex Hull classifi-
cation (3) is implemented via a modification of the freely available
LIBSVM software ([7]). We tested the performance of NCH on sev-
eral small- to middle-sized data sets that are freely available from the
SlatLog and UCI repositories ([15]) and have been analyzed by many
researchers and practitioners (e.g. [5], [13], [14], [16] and others):
Sonar, Voting, Wisconsin Breast Cancer (W.B.C.), Heart, Australian
Credit Approval (A.C.A.), Hepatitis (Hep.), Haberman, Breast Can-
cer (B.Cancer), Colic, and German Credit (CreditG). Detailed infor-
mation on these data sets can be found on the web sites of the re-
spective repositories. The chosen benchmark data sets have numeric

G. Nalbantov and E. Smirnov / Soft Nearest Convex Hull Classifier 845



Figure 5. The NCH-optimal (using the RBF kernel) decision boundary
found using a leave-one-out cross-validation procedure for tuning the C and

γ parameters in solid contour and Bayes-optimal decision boundary in
dashed contour on a synthetic data set introduced in [11]. The Bayes error is
0.210, and the test error of the NCH classifier is 0.228. The instances of the
two classes are denoted with pluses and triangles. The data set is balanced

and consists of 200 instances in total.

attributes, which avoids obtaining favorable results that are due to
data-preprocessing rather than qualities of the applied classification
techniques. On the other hand, distance-based classifiers are natu-
rally more suitable to numeric domains.

We compare the results of NCH to those of several state-of-art
techniques: Support Vector Machines (SVM), Linear and Quadratic
Discriminant Analysis (LDA and QDA), Logistic Regression (LR),
Multi-layer Perceptron (MLP), k-Nearest Neighbor (kNN), Naive
Bayes classifier (NB) and two types of Decision Trees – Decision
Stump (DS) and C4.5. The experiments for the NB, LR, MLP, kNN,
DS and C4.5 methods have been carried out with the WEKA learn-
ing environment using default model parameters, except for kNN.
We refer to [21] for additional information on these classifiers and
their implementation. We measure model performance by the leave-
one-out (LOO) accuracy rate. Because we aim at comparing several
methods, LOO seems to be more suitable than the more general k-
fold cross-validation (CV), because it always yields one and the same
error rate estimate for a given model, unlike the CV method (which
involves a random split of the data into several parts).

Table 1 presents performance results for all methods considered.
Some methods, namely kNN, NCH and SVM, require tuning of
model parameters. In these cases, we report only the highest LOO ac-
curacy rate obtained by performing a grid search for tuning the nec-
essary parameters. Overall, the NCH classifier performs quite well
on all data sets, and achieves best accuracy rates on four data sets.
Its performance is comparable to that of SVMs, and is better than
SVMs in some cases. The rest of the techniques show relatively less
favorable and more volatile results. For example, the C4.5 classifier
performs best on the Voting data set, but achieves rather low accuracy
rates on two other data sets – Sonar and Heart. Note that not all data
sets are equally easy to handle. For instance, the performance varia-
tion over all classifiers on the Voting and Breast Cancer data sets is
rather low, whereas on the Sonar data set it is quite substantial.

6 CONCLUSION

We have introduced a new technique that can be considered as a type
of an instance-based large-margin classifier, called Soft Nearest Con-
vex Hull classifier (soft-NCH). The soft-NCH assigns a test observa-
tion to the class, which convex hull is closest. Convex-hull overlap
is handled via the introduction of slack variables and/or kernels. The
soft-NCH method induces an implicit and generally nonlinear deci-
sion surface between the classes. One of the advantages of soft-NCH

is that an extension from binary to multi-class classification tasks
can be carried out in a straightforward way. Others are its alleged
robustness to outliers and good generalization qualities. A potential
weak point of soft-NCH, which also holds for SVMs, is that it is not
clear a priori which type of kernel and what value of the tuning pa-
rameters should be used. Furthermore, we do not address the issue
of attribute selection and the estimation of class-membership prob-
abilities. Further research could also concentrate on the application
of soft-NCH to more domains, on faster implementation suitable for
analyzing large-scale data sets, and on the derivation of theoretical
test-error bounds.
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