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Abstract.

Semi-supervised learning is a machine learning paradigm in which
the induced hypothesis is improved by taking advantage of unlabeled
data. It is particularly useful when labeled data is scarce. Cotraining
is a widely adopted semi-supervised approach that assumes availabi-
lity of two views of the training data a restrictive assumption for most
real world tasks. In this paper, we propose a one-view Cotraining
approach that combines two different k-Nearest Neighbors (KNN)
strategies referred to as global and local k-NN. In global KNN, the
nearest neighbors selected to classify a new instance are given by the
training examples which include this instance as one of their own
k-nearest neighbors. In local KNN, on the other hand, the neighbor-
hood considered when classifying a new instance is computed with
the traditional KNN approach. We carried out experiments showing
that a combination of these strategies significantly improves the clas-
sification accuracy in Cotraining, particularly when one single view
of training data is available. We also introduce an optimized algo-
rithm to cope with time complexity of computing the global KNN,
which enables tackling real classification problems.

1 INTRODUCTION

The ever increasing storage capacity of electronic devices, coupled
with the growth and popularization of the Web, promoted the proli-
feration of large and diverse collections of data in electronic format.
Research by Gantz et. al. [4] forecasts a digital universe of nearly
1,800 exabytes in 2011, a ten-fold increase since 2006. In most cases,
however, the quality of this data is not appropriate for automatic
knowledge discovery tasks and considerable effort is required from
experts in cleansing, structuring, and labeling the data. Although un-
labeled data is usually easy to collect, this preprocessing effort is
difficult, expensive, time consuming, and often impractical. In this
scenario, semi-supervised algorithms have been proposed since they
address this problem of using a small quantity of labeled instances
with a large quantity of unlabeled ones for classification purposes.

Cotraining [2] is a very effective semi-supervised algorithm that
provides a framework for using unlabeled examples to improve
classification accuracy. It boosts accuracy by using a small number
of labeled examples in a training set iteratively augmented with the
most confident predictions from two classifiers. This approach di-
ffers from the Selftraining algorithm [10] by the number of represen-
tations or views employed in the training process. While Selftraining
uses only one representation and iteratively trains a single classifier,
Cotraining employs two views and trains two classifiers, one for each
representation.
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In that sense, Cotraining is classified as a multi-view based algo-
rithm. It assumes representations obtained from independent sources,
and therefore conditionally independent given the label. Neverthe-
less, obtaining two representations that satisfy the Cotraining a-
ssumptions is not a trivial task, particularly the assumption on con-
ditional independence between representations [8]. In fact, several
research contributions relax the independence assumption in order to
extend Cotraining usage and application domains [8, 1, 18].

Recent contributions consider the multi-view based algorithms as
a category of a new paradigm referred to as semi-supervised learning
based in disagreement [12, 17]. In this paradigm, the existence of a
large disagreement between base learners is the key for a successful
learning process. In this context, the existence of two explicit views is
a sufficient condition, rather than a necessary one, for disagreement-
based approaches. The required diversity between classifiers may be
ensured in many other ways, from employing different learning al-
gorithms [6], or ensembles [15], to adopting variations of the same
learning algorithm [16].

Following the above rationale, we propose employing two alter-
native strategies to find the nearest neighbors from an example and
combine them with Cotraining. We show that the combination of
these two strategies ensures the diversity between classifiers required
for a successful Cotraining process. Such results support the theory
of semi-supervised learning by disagreement when just one explicit
set of attributes is available.

The remainder of the paper is organized as follows. In the follow-
ing Section we briefly introduce the background and related work. In
Section 3 we present the concepts of Cotraining, as well as the theo-
retical background on semi-supervised learning by disagreement. In
Section 4 we present the classification strategies to be combined and
define the proposed approach, as well as an optimized classifier for
the semi-supervised framework. In Section 5 we present experimen-
tal results on a collection of UCI datasets. Finally, in Section 6 we
present the conclusions and discuss future work.

2 RELATED WORK

Cotraining is a widely adopted algorithm in domains where two ex-
plicit views can be obtained (see [3, 13] as examples). However, its
effectiveness and usefulness are limited in most real world applica-
tions, as typically just a single attribute set is available. In this con-
text, methods that not require two explicit views of the examples have
been introduced.

Nigam and Ghani [8] compared the Cotraining model to the semi-
supervised version of the Expectation Maximization (EM). In or-
der to compare the two algorithms in scenarios where the indepen-
dence assumption is disregarded, they split the features into two sub-
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sets, showing that Cotraining still improves classification accuracy
in those scenarios. Zhang and Zheng [14] extended this feature par-
titioning strategy by selecting orthogonal attributes to artificially ge-
nerate two views. The authors projected the data into an orthogonal
subspace using Principal Component Analysis (PCA).

Goldman and Zhou [5] applied the Cotraining algorithm to train
two classifiers with different learning algorithms and just one set of
features. In order to achieve a good performance, each classifier must
split the instance space into a number of equivalence classes (a simi-
lar idea to equivalence classes from decision trees). When the classi-
fiers agree, the example is used to update the labeled training set.
Otherwise, the predicted label is decided based on the equivalence
classes. Despite promising results, few classifiers split the instance
space into equivalence classes and hence such approach is considered
restrictive.

Zhou and Li [6] proposed the Tritraining, which trains three classi-
fiers with different training sets. It differs from the Cotraining multi-
view setting because Tritraining does not require explicit multi-view
attribute sets. The key idea is that the majority teaches the minority,
even if the three classifiers employ the same learning algorithm. Note
that this approach can be extended to multiple classifiers, improving
the semi-supervised classification accuracy with ensembles of learn-
ing techniques [15]. In the same line, Zhou and Li [16] generated
two regressors based on the k-Nearest Neighbor algorithm (KNN)
and combined them with Cotraining. Diversity between the regres-
sors was achieved by changing the parameters of the Minkowsky
distance measure.

We propose a semi-supervised approach similar to the one by
Zhou and Li [16], but for classification purposes. Our approach
adopts two different strategies to find the nearest neighbors, as origi-
nally proposed by Motta [7]. The author constructed a special graph
called K-Associated which has a similar construction process as
KNN-Networks, differing in that only instances holding the same
label are connected. A new unlabeled instance is connected into the
network by applying two alternative strategies called “TestInstance-
Network” and “Network-TestInstance”. The “TestInstance-Network”
strategy connects the new instance to its k-nearest neighbor, simi-
larly to the traditional approach. The “Network-TestInstance” strate-
gy connects the new instance with the instances that include the new
instance within their k-nearest neighborhood. Whilst a K-Associate
classifier is a supervised graph-based classification approach, our a-
pproach aims at classifying data in a semi-supervised setting, adopt-
ing the combined KNN setting with Cotraining.

Variations of the KNN algorithm have been proposed in the li-
terature that tried to take into account the global distribution of the
data. The one most related to our approach was proposed by Nock
et. al. [9], who introduced the Symmetric Nearest Neighbor learning
rule (SKNN). It increases the nearest neighbors setting by adding to
the usual k-nearest neighbors (local neighborhood) those instances
considered into a global neighborhood of the target instance. Rather
than merging those local and global sets, our approach proposes to
handle them separately to better integrate the information from each
strategy.

3 SEMI-SUPERVISED LEARNING BY
DISAGREEMENT

In this Section, the Cotraining algorithm, introduced by Blum and
Mitchell [2], is briefly introduced, as well as its assumptions. We
also present a brief explanation of the semi-supervised learning by
disagreement as a generalization of the Cotraining framework.

3.1 The Cotraining Algorithm

Cotraining is employed when multiple views of the training data are
available. Its purpose is to train weak classifiers (one with each view)
by using a few number of labeled examples and exploit unlabeled
data to boost them in a cooperative process, where one classifier la-
bels instances which the other classifier assumes as labeled instances.
This integration of classifiers aims at overcoming the lack of labeled
instances in the training process.

Formally, the learning framework of Cotraining is de-
fined as follows. The two-view instance space is de-
fined as X =

(
X(1) ∪ X(2)

)
over a distribution D. Let

XL =
(
�xi

(1), �xi
(2), yi

)l

i=1
be the labeled training set and

XU =
(

�xj
(1), �xj

(2)
)l+u

j=l+1
the unlabeled training set where

l = |XL| and u = |XU |. In order to succeed, Cotraining defines
a compatibility between target function and the unknown data
distribution D. Given two views X(1) and X(2), the compatibility is
defined as f1(X

(1)) = f2(X
(2)) = y. Therefore, f = (f1, f2) is

compatible with the distribution D if D assigns probability zero to
any example x = (x(1), x(2)) such that f1(x

(1)) �= f2(x
(2)).

Compatibility between target functions may be ensured with the
following assumptions about the representations: they should be re-
dundant for prediction (i.e., they should agree in the predicted label
in most cases); and they should be conditionally independent given
the class (i.e., information represented by each view should not be
correlated). Blum and Mitchell analytically showed that a good Co-
training performance is expected if those assumptions are satisfied.

Given the two data representations, the Cotraining algorithm is as
follows. Given a set XL of labeled examples and a set XU of unla-
beled examples, each represented by two views, two weak classifiers
trained with the respective representation of XL are generated. These
classifiers label every instance in set A, which is an arbitrarily sized
subset from XU . Each classifier chooses the n + p most confident
labeled examples from A to augment set XL. With n + p examples
selected from each classifier, there will be 2n + 2p less examples
in u, which must be replenished by drawing 2n + 2p random exam-
ples from XU . This procedure iterates a certain number times, finally
obtaining two semi-supervised trained classifiers. The values for n
and p are user-defined and, according to Blum and Mitchell, their
choice must consider the underlying data distribution. This process
is summarized in Algorithm 1.

Algorithm 1: Cotraining.
input : XL ← Labeled Examples, XU ← Unlabeled Examples,

loops ← Loops, p + n ← Number of examples to label
output: Classifiers h1 and h2

1 Create a random pool A from U ;
2 for it ← 1 to loops do

3 Train C1 with X(1);
4 Train C2 with X(2);
5 Allow C1 to label p + n more confident examples from A;
6 Allow C2 to label p + n more confident examples from A;
7 Add these self-labeled examples to XL;
8 Replenish A with 2p + 2n examples from U ;
9 end

10 return h1 and h2;

Blum and Mitchell justify the existence of set A to force the classi-
fiers to select examples respecting the underlying class distribution
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(i.e. A always has the same proportion of negative and positive exam-
ples). They also define a third “combined” classifier, which computes
the probability of an example to belong to a given class by multiply-
ing the probabilities calculated by each trained classifier.

3.2 Learning with Single View Multiple Classifiers

Several research works attempted to relax the independence assump-
tion [8, 5, 1, 18, 14] to increase Cotraining’s applicability. Al-
though many were successful in applying the algorithm to mono-
view domains, classic Cotraining theory can not explain those results
[8, 6, 16].

In that context, an interesting theoretical contribution by Wang and
Zhou [12] attempts to define a formal theoretical background to ex-
plain why information diversity, when combining classifiers, is im-
portant for the success of classification tasks. Formally, let H denote
the hypothesis space and D represent the data distribution generated
by the ground-truth hypothesis h∗. Let d(h, h∗) be the difference
between an arbitrary hypothesis and the ground-truth hypothesis de-
fined by

d(hi, h∗) = Prx ∈D

[
hi(x) �= h∗(x)

]
(1)

and let hi
j be the hypothesis of j−th classifier on the i−th iteration

of the Cotraining algorithm. As claimed in [17], their main result is
presented in the following Theorem.

Theorem 1 Given an initial labeled data XL, with size l which is
sufficient to train two classifiers h0

1 and h0
2 whose upper bounds on

the generalization error are, respectively, a0 < 0.5 and b0 < 0.5
with high probability (above 1 − δ) in the probably approximately
correct PAC model. Then h0

1 selects u examples and puts them in
σ2 and h1

2 is trained from σ2 by minimizing the empirical risk. If
l ∗ b0 ≤ e ∗ M

√
M ! − M then

P (d(h1
2, h

∗) ≥ b1) ≤ δ (2)

where M = u ∗ a0 and b1 = max
[

l∗b0+u∗a0−u∗d(h0
1,h1

2)

l
, 0

]
.

In other words, the more information diversity is considered by
classifiers, the closer will the final classifiers get to the ground-truth
hypothesis h∗, with probability higher than 1 − δ, by learning with
examples labeled from each other. Therefore, keeping a large dis-
agreement among learners leads to a better selection of the examples
to increase the labeled set XL in the Cotraining framework.

4 COMBINING LOCAL AND GLOBAL KNN
WITH COTRAINING

In this section, we define two different strategies to find the nearest
neighbors. Additionally, we present some evidence of the disagree-
ment between the classifiers based on each strategy, which enables a
good synergy between them in the semi-supervised learning by dis-
agreement framework.

4.1 Local KNN

We shall refer to the traditional KNN classifier as Local KNN. Using
this classifier to predict a new instance class, the k-nearest neighbors
to the target instance are taken into account, as shown in Figure 1.
This strategy is referred to as local because the chosen neighborhood
reflects the nearby locality of a target instance. A simple linear search

may be employed to find the k-nearest neighbors with time complex-
ity O(l), l = |XL|. If required, other strategies may be implemented
to reduce the time complexity to O(k ∗ log l), e.g., by adopting more
complex structures such as kd-trees).

Figure 1. Neighborhood of instance “?” by the local KNN approach
considering k = 3.

4.2 Global KNN

The Global KNN classifier selects the nearest neighbors of a target
instance from a different perspective that considers the training set as
a whole. The neighborhood considered is the set of training examples
�xi ∈ XL whose set of (local) k-nearest neighbors of �xi includes the
target instance �xnew. A similar strategy was adopted by Wang et.
al [11] considering the notion of citation and reference in scientific
papers. Note that the neighborhood obtained with this strategy may
be totally different from the one obtained with a local approach, as
illustrated in Figure 2 where each of the 4 selected instances has the
target instance “?” as one of its 3-nearest neighbors.

Figure 2. Neighborhood of instance “?” by the global KNN approach
considering k = 3.

A naive implementation would execute an exhaustive search over
the entire labeled training set to find the global k-nearest neighbors
of each example. Let Nk(�xi) be the k-nearest neighbors of example
�xi. Then, for each Nk(�xi) with i ∈ l, we need to verify if �xnew ∈
Nk(�xi). The worst-case time complexity is O(l ∗ (l + k)) = O(l2),
assuming l > k. Using kd-trees or other structures, the overall com-
plexity of retrieving the global k-nearest neighbors may be reduced
to O(l∗ (k∗ log l+k)) = O(l∗k∗ log l). Note that, unlike in the lo-
cal approach, the number of neighbors retrieved with the global KNN
approach is not fixed (and equal to k), i.e., |Nk(�xi)global| ∈ [0..l].

4.3 Disagreement Analysis

The difference between global and local KNN strategies may be a-
nalyzed from the KNN Networks perspective. Let Gk be the KNN
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Network generated from the labeled training set XL. Let’s consider
Gk a directed graph, i.e., the out-edges from a vertex vi represent
the connections with its k-nearest neighbors. Therefore, the in-edges
connects vertex vi with the vertices which include it as a k-nearest
neighbor. When a new vertex vnew is connected to the network, the
overall edge distribution of Gk will change. Furthermore, after the re-
distribution of edges, finding both local and global nearest neighbors
of vnew becomes a trivial process. As shown in Figure 3, the set of
local nearest neighbors of “�” with k = 3 is {1, 2, 3} and the set
of global nearest neighbors is {1, 2, 3, 5}. Note that the bidirectional
edges represent the connections with vertices in both neighborhoods.

Figure 3. Re-distribution of edges in a KNN Network with k = 3. The
square represents �xnew .

Considering a traditional way of predicting the label of an instance
given its k nearest neighbors (such as majority or weighted vote), one
may consider two general scenarios. The first is when the surround-
ing distribution SD has a unique class or a large majority class in
which case the label predictions will likely be the same. This can be
proved since the edge re-distribution affects just a local subgraph LS
of the network which is a subset of SD. The classifiers will agree in
the label predictions with high probability even though the neighbor-
hoods do not share any vertex.

The other scenario is when the surrounding distribution SN has
different classes. This is the case when the new vertex vnew is close
to the decision boundary. In that sense, we claim that the variety be-
tween the nearest neighbors sets (i.e., the number of non bidirectional
edges) will increase, specially, when the dispersion changes with the
classes. As shown in Figure 4, the introduction of a new instance will
have higher impact in the distribution of the out-edges when the class
distribution is sparse. Moreover, the out-edges distribution of a class
C will not be affected if C is compact enough. Thus, given Nk(vi)
as the k-nearest neighbors of vertex vi, there will exist an out-edge
from vi to vnew if

d(vi, vnew) < argmax(d(vi, vj))vj∈Nk(vi) (3)

In summary, while the local KNN strategy considers the perspec-
tive of the added target instance as given by its out-edges, the global
KNN assigns more importance to the network topology as given by
its in-edges. This fact suggests that a combination of these strategies
may improve classification accuracy, particularly in decision bound-
aries. In this context, considering such diversity between the classi-
fiers one can expect that a Cotraining process might succeed.

4.4 The Co2KKN Algorithm

We called the proposed algorithm Co2KNN because it combines two
KNN strategies with the Cotraining algorithm. In order to avoid a
high time complexity for the global KNN strategy, we propose taking

Figure 4. Impact of an added instance in the edges distribution

advantage of Equation 3 to optimize the algorithm. For this purpose,
we maintain a list of distances Dkmax which stores the maximum
distance from each training example �xi to its farthest nearest neigh-
bor in Nk(�xi). It allows finding out the global nearest neighbors in
linear time on the number of training instances.

Algorithm 2 details this combination. Basically, it implements the
traditional Cotraining algorithm with the following changes: (i) both
classifier processes are based in the same view of the data; (ii) k is a
new parameter; and (iii) just the combined classifier is returned. We
choose the combined classifier because experiments have shown it
leads to the better performance.

Algorithm 2: Co2KNN
input : XL ← Labeled Examples, XU ← Unlabeled

Examples, loops ← Loops, p + n ← Number of
examples to label and k ← Number of neighbors

output: Combined Classifier h3

1 Create A from U ;
2 for it = 1 to loops do

3 TrainLocalKNN(h1,XL);
4 TrainGlobalKNN(h2,XL,k);

5 foreach �xi ∈ A do

6 Vi ←retrieveLocalKNN(XL, �xi, k);
7 Add confidence xi to clist1;
8 end

9 Chose p + n examples from clist1 to increase XL;

10 foreach �xi ∈ A do

11 Vi ←retrieveGlobalKNN(XL, �xi, k);
12 Add confidence xi to clist2;
13 end

14 Chose p + n examples from clist2 to increase XL;
15 Chose randomly 2p + 2n from u to replenish A;
16 end

17 Define h3 as Ph3(cj |x) ← Ph1(cj |x(1)) ∗ Ph2(cj |x(2));
18 return h3

Training the global KNN classifier will generate the initial Dkmax

list, which is then just updated with the added instances. Appropriate
data structures such as heaps may reduce the global KNN training
complexity to O(|L| ∗ log k). Assuming a linear search for the local
KNN, the overall complexity of the algorithm is O(loops ∗ (|L| ∗
log k+a∗|L|+a∗|L|)) = O(loops∗a∗|L|), with a = |A|. More-
over, choosing an appropriate value for loops, and assuming small
enough values for p and n, the relation |L| 
 u may be ensured,
making the overall algorithm complexity suitable for application in
real problems.
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5 EXPERIMENTS

We consider a realistic scenario where a data collection must be
classified and few labeled examples are available and just one fea-
ture set is available. We then generate two classifiers with each KNN
strategy and combine them with Cotraining.

5.1 Datasets and Configurations

We considered 17 different datasets from the UCI repository. In or-
der to simplify the evaluation of the proposed algorithm, we have
selected datasets with two classes. As one may observe in Table 1,
datasets with different class distributions were chosen. Furthermore,
Cotraining parameters n and p have been chosen according to the
class distribution and the data set size.

Table 1. Datasets detail

DataSet Name %maj class size n p
1 adult 76% 48842 6 18
2 breast-cancer 70% 286 2 5
3 wisconsin-bcancer 65% 699 4 6
4 horse-colic 63% 368 4 6
5 credit-approval 55% 690 3 4
6 german-credit 70% 1000 3 7
7 diabetes 65% 768 4 6
8 heart-disease-cleav 54% 303 4 3
9 heart-disease-hunga 64% 294 3 5

10 heart-statlog 55% 270 3 2
11 hepatitis 79% 155 4 1
12 ionosphere 64% 351 1 2
13 kr-vs-kp 52% 3196 6 6
14 mushroom 51% 8124 8 8
15 sick 93% 3772 1 10
16 sonar 53% 208 2 2
17 vote 61% 435 5 3

In executing the Co2KNN algorithm we set the number of loops to
10. The size of subset A was fixed to 10% of the unlabeled training
set XU and the number of labeled examples was set to 20. Majority
vote was chosen as the label prediction strategy for both Local and
Global KNN. All the classifiers were implemented in the WEKA
framework2.

In order to confirm the improvement on classification precision
provided by combining both strategies, we compared Co2KNN
against several classifiers. Those classifiers were trained with Self-
training configured with the same parameter settings. We ran 10-fold
cross validation for each configuration, using the same fold to com-
pare the performance of each approach. The Area Under the Curve
(AUC) was used as it is a more discriminative measure than accuracy,
specially in scenarios with unbalanced classes.

We initially compared Co2KNN to traditional classifiers trained
with Selftraining to obtain a baseline comparison. The following
classifiers were chosen: Support Vector Machines (with the polyno-
mial kernel), Decision Trees (with the J48 algorithm) and the Multi-
nomial Naive Bayes all of them set with the default parameters of
WEKA. Then, we compared Co2KNN against each strategy trained
with Selftraining to ensure that the combination is, in fact, better than
each approach separately. We also compare Co2KNN with SKNN,
which may be considered as an alternative to Co2KNN, as stated
in the background section. We perform a statistical non-parametric

2 http://www.cs.waikato.ac.nz/ml/weka/

and paired comparison using the Friedman Test with p < 0.05 and
the Dunn method for one-to-many comparison, and Wilcoxon test to
compare Co2KNN with SKNN.

5.2 Experimental Results

For the baseline comparison, Co2KNN was executed with different
values of parameter k, k = 1, 3, 5, and 15. Results are shown in
Table 2 where the significantly better classifiers for each data set are
highlighted. Note that in all data sets, at least one Co2KNN classi-
fier achieved the best performance. It is worth mentioning that, as in
traditional KNN classification, k is a relevant parameter for classifi-
cation performance, hence better results are expected from Co2KNN
if a suitable value is selected for k, for each data set, rather than fix-
ing it at an arbitrary value, say k = 15. We performed statistical
comparisons which confirm the superiority of Co2KNN in all cases,
except for k = 1 (this comparison is not presented due to space
constraints).

Table 2. Baseline AUC Comparison

DataSet Co2KNN
Bayes J48 SVM

k1 k3 k5 k15

1 0.67 0.77 0.77 0.80 0.76 0.67 0.62
2 0.63 0.66 0.64 0.70 0.70 0.54 0.53
3 0.97 0.98 0.99 0.98 0.95 0.92 0.97

4 0.73 0.83 0.85 0.85 0.71 0.75 0.75
5 0.76 0.85 0.86 0.89 0.79 0.84 0.79
6 0.58 0.64 0.64 0.66 0.60 0.52 0.55
7 0.61 0.70 0.73 0.75 0.68 0.58 0.58
8 0.77 0.84 0.86 0.90 0.89 0.70 0.77
9 0.75 0.85 0.86 0.89 0.85 0.73 0.77
10 0.71 0.83 0.86 0.88 0.88 0.64 0.75
11 0.65 0.79 0.77 0.80 0.77 0.69 0.61
12 0.79 0.86 0.86 0.81 0.76 0.74 0.66
13 0.78 0.82 0.83 0.79 0.66 0.72 0.64
14 0.96 0.97 0.96 0.96 0.93 0.94 0.82
15 0.62 0.65 0.70 0.67 0.56 0.52 0.58
16 0.72 0.77 0.76 0.71 0.60 0.66 0.69
17 0.94 0.94 0.98 0.97 0.94 0.93 0.88

In order to compare the Cotraining combination of the global and
local KNNs to performance of each individual strategy, we config-
ured selftraining versions of the local and global KNN with k =
1, 3, 5, and 15 for all data sets. Results from comparing Co2KNN
with both approaches trained with Selftraining are summarized in Ta-
ble 3. Note that Co2KNN achieves significant better results in nearly
all cases, suggesting that the Cotraining combination has a positive
impact in classification performance.

Table 3. Co2KNN vs Selftraining

Classifier k
Selftraining

Local KNN Global KNN

Co2KNN

1 Not Significant yes
3 Not Significant yes
5 yes yes

15 yes yes

Finally, we compared Co2KNN with the SKNN approach, which
appears as a natural alternative. We employed Selftraining to train a
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SKNN classifier with the same parameters and applied the Wilcoxon
test for comparison. As shown in Table 4, Co2KNN shows no signi-
ficant difference in the k = 1 scenario.

Table 4. Co2KNN vs SKNN

Classifier k
Selftraining

SKNN

Co2KNN

1 Not Significant
3 yes
5 yes
15 yes

Our hypothesis is that the global KNN strategy requires more than
a single nearest neighbor to reach a confident classification and im-
prove the Cotraining process, because for k = 1 the set of Global
KNN neighbors of an instance is usually empty. Figure5 shows the
average size of the neighborhood set for k = 1 for both Local and
Global KNN, in all data sets considered in the experiments. One ob-
serves that the average neighborhood size for Global KNN is less
than 1 in most data sets, confirming that empty neighborhoods are
found in several cases. In this setting, Co2KNN performance de-
grades to a Local KNN trained with Selftraining. These results in-
dicate that Co2KNN must adopt values of k > 1. On the other hand,
k should be less than the number of initial labeled examples.

Figure 5. Average neighborhood size found by Global KNN for k = 1

6 CONCLUSION

We investigated the integration of two different KNN strategies into a
Cotraining framework for application in a semi-supervised scenario.
Results from employing the global and local KNN strategies show
empirical evidence that supports the theory of semi-supervised learn-
ing by disagreement and the use of Cotraining in one-view scenarios.
Although the global KNN may be seen as an expensive approach, we
have proposed an optimized algorithm for real tasks. Experiments
suggest that the combination of these two strategies improves classi-
fier performance, particularly when labeled data is scarce.

Further work on global KNN is required to ensure its relevance
in the Cotraining process, as well as to compare it with other semi-
supervised approaches. The relation between our approach and semi-
supervised ensembles will be deeply studied by combining other
classifiers. As Active Learning has become a hot topic in last years,
we intend to investigate how the strategy employed in the Co2KNN
training process may be adapted for an active learning scenario.
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