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Abstract. Conditional random fields (CRF) are widely used for
predicting output variables that have some internal structure. Most of
the CRF research has been done on structured classification where
the outputs are discrete. In this study we propose a CRF probabilis-
tic model for structured regression that uses multiple non-structured
predictors as its features. We construct features as squared predic-
tion errors and show that this results in a Gaussian predictor. Learn-
ing becomes a convex optimization problem leading to a global so-
lution for a set of parameters. Inference can be conveniently con-
ducted through matrix computation. Experimental results on the re-
mote sensing problem of estimating Aerosol Optical Depth (AOD)
provide strong evidence that the proposed CRF model successfully
exploits the inherent spatio-temporal properties of AOD data. The
experiments revealed that CRF are more accurate than the baseline
neural network and domain-based predictors.

1 Introduction

A data mining approach for regression is based on learning relation-
ships between attributes and the target variable. In the standard re-
gression setting we are given a data set with N training examples,
D = (xi, yi), i = 1 . . . N , where xi ∈ X ⊂ RM is an M dimen-
sional vector of attributes and y ∈ R is a real-valued target variable.
The objective of regression is to learn a non-linear mapping f from
training data D that predicts the output variable y as accurately as
possible given an input vector x.

Traditional supervised learning models, like neural networks
(NN), are powerful tools for learning non-linear mappings. However,
such models mainly focus on the prediction of a single output and
could not exploit relationships that exist between multiple outputs.
In structured learning, the model learns a mapping f : XN → RN

to simultaneously predict all outputs given all input vectors. For ex-
ample, let us assume that the value of yi is dependent on that of yi1
and yi+1, as is the case in temporal data. Let us also assume that input
xi is noisy. A traditional model that uses only information contained
in xi to predict yi might predict the value for yi to be quite differ-
ent from those of yi−1 and yi+1 because it treats them individually.
A structured predictor uses dependencies among outputs to take into
account that yi is more likely to have value close to yi−1 and yi+1

thus improving final predictions. In structured learning we usually
have some prior knowledge about relationships among the outputs y.
Mostly, those relationships are application-specific where the depen-
dencies are defined in advance, either by domain knowledge or by
assumptions, and represented by statistical models.
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Relationships among outputs can be represented by graphical
models. In the case of spatial-temporal data, some popular models
are the traditional Markov random fields [9] and the recently pro-
posed Conditional Random Fields (CRF) [5]. Originally, CRF were
designed for classification of sequential data [5]. Recently, it has
found many applications in areas such as computer vision [4] and
computational biology [6]. CRF for regression is a less explored
topic. To address this gap, in this paper we build on the recently pro-
posed Continuous CRF [7] and develop a solution that is applicable
to regression on spatial-temporal data. We are particularly interested
in applying the CRF for regression to a remote sensing problem of
Aerosol Optical Depth (AOD) prediction.

Aerosols are minute particles suspended in the atmosphere origi-
nating from natural and man-made sources. AOD, as reported by sur-
face and space-based passive remote sensing, is a measure of aerosol
light extinction integrated vertically through the entire atmosphere.
One of the biggest challenges of todays climate research is to charac-
terize and quantify the effect of aerosols on Earths radiation budget.

The operational AOD prediction algorithms are deterministic typ-
ically manually tuned by domain scientists. In contrast to domain-
driven methods, the AOD prediction is achievable by a completely
data-driven approach. This statistical method consists of training a
nonlinear regression model to predict AOD using the satellite ob-
servations as inputs. The targets are obtained from a network of un-
evenly distributed ground-based sites over the world (shown at Fig-
ure 1). This approach is possible when a data set is available that con-
sists of satellite observations and collocated ground-truth measure-
ments. A property of statistical prediction is that its high accuracy
is guaranteed only for the conditions similar to those at the ground-
based sites. However, some regions are underrepresented due to non-
uniform distribution of ground-based sites over the world. The goal
is to combine the two approaches so that in some regions where we
know that deterministic algorithm performs better, we rely more on
deterministic than on a statistical method, and vice versa.

The aerosol data are characterized by strong spatial and tempo-
ral dependencies that CRF is able to exploit by defining interactions
among outputs using feature functions. The use of features to de-
fine the CRF models allows us also to include arbitrary properties
of input-output pairs into the compatibility measure. In this study
we propose CRF probabilistic model for structured regression that
uses multiple non-structured predictors as its features. We construct
features as squared prediction errors of deterministic and statistical
models and show that this results in multivariate Gaussian condi-
tional P (y|x) distribution. Learning becomes a convex optimization
problem leading to a global solution for a set of parameters. Inference
can be conveniently conducted through matrix computation. The per-
formance of the proposed approach is compared to the baseline sta-
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Figure 1. Global distribution of ground-based sites.

tistical and deterministic methods.
The rest of the paper is organized as follows. In Section 2, we

introduce Continuous CRF. We then show how to apply Continuous
CRF for AOD prediction in Section 3. We give experimental results
in Section 4. Finally, we conclude the paper in Section 5.

2 CONTINUOUS CONDITIONAL RANDOM
FIELDS

Conditional Random Fields (CRF) provide probabilistic framework
for exploiting complex dependence structure among outputs by di-
rectly modeling the conditional distribution P (y|x). In regression
problems, the output yi is associated with input vectors x =
(x1, . . .xN ) by a real-valued function called association potential
A(α, yi,x), where α is K - dimensional set of parameters. The
larger the value of A is the more yi is related to x. Usually, A is
a combination of functions. We can use as many association func-
tions as we find necessary to model input-output relations in data. In
general, A takes as input all input data x to predict a single output yi
meaning that it does not impose any independency relations among
inputs xi.

To model interactions among outputs, a real valued function called
interaction potential I(β, yi, yj ,x) is used, where β is an L dimen-
sional set of parameters. Interaction potential represents the relation-
ship between two outputs and in general can depend on an input x.
Different applications can have different interaction potentials. For
example, in the AOD prediction problem, interaction potential can
be modeled as a correlation between neighboring (in time and space)
outputs. The larger the value of the interaction potential, the more
related outputs are.

For the defined association and interaction potentials, CRF models
a conditional distribution P (y|x), y = (y1 . . . yN ), according to the
associated graphical structure (an example of the structure is shown
in Figure 2)

P (y|x) = 1

Z(x, α, β)
exp(

N∑
i=1

A(α, yi,x) +
∑
j∼i

I(β, yi, yj ,x))

(1)
where j ∼ i denotes the connected outputs yi and yj (connected

with solid line at Figure 2) and where Z(x, α, β) is normalization

Figure 2. Continuous CRF graphical structure. x-inputs (observations);
y-outputs; dashed lines-associations between inputs and outputs; solid

lines-interactions between outputs.

function defined as

Z(x, α, β) =

∫
y

exp(

N∑
i=1

A(α, yi,x) +
∑
j∼i

I(β, yi, yj ,x)) (2)

The learning task is to choose values of parameters α and β to max-
imize the conditional log-likelihood of the set of training examples

L(α, β) = logP (y|x)
(α̂, β̂) = argmax

α,β
(L(α, β)) (3)

This can be achieved by applying standard optimization algorithms
such as gradient descent. To avoid overfitting, we regularize L(α, β)
by adding α2/2 and β2/2 terms to formula (3) that prevents the pa-
rameters from becoming too large.

The inference task is to find the outputs y for a given set of obser-
vations x and estimated parameters α and β such that the conditional
probability P (y|x) is maximized,

ŷ = argmax
y

P (y|x) (4)

The following dLearning and inference in models with real valued
targets pose quite different challenges than in the discrete-valued
case. The most important difference is that the normalizing function
Z is an integral instead of the sum. Discrete valued models are al-
ways feasible as Z is a finite number defined as a sum over finitely
many possible values of y. On the contrary, to have a feasible model
with real valued outputs,Z must be integrable. Proving directly that
Z is integrable might be difficult due to the complexity of association
and interaction potentials.

In CRF applications, A and I could be defined as linear combina-
tions of a set of fixed features in terms of α and β [5]

A(α, yi,x) =
∑K

k=1 αkfk(yi,x)

I(β, yi, yj ,x) =
∑L

l=1 βlgl(yi, yj ,x)
(5)

The use of features to define the model is convenient because it
allows us to include arbitrary properties of input-output pairs into
the compatibility measure. This way, any potentially relevant feature
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could be included to the model because parameter estimation auto-
matically determines their actual relevance by feature weighting.

In general, to evaluate P (y|x) needed during training and infer-
ence, one would need to use time consuming sampling methods such
as Markov Chain Monte Carlo-based algorithms. However, if A and
I are defined as quadratic function in terms of y, then the sum A+ I
can be transformed to (y−μ)TΣ−1(y−μ)+const. This expression
corresponds to multivariate Gaussian distribution with mean μ and
covariance Σ. If this is the case, learning and inference are conve-
nient. Learning becomes a convex optimization problem leading to a
global solution for α and β. Inference can be conveniently conducted
through matrix computation. For inference, given new observation x,
the output y is calculated as the conditional expectation E(y|x). By
exploiting the sparsity inherent to spatio-temporal data, the inference
can be performed in time linear with the number of spatio-temporal
observations.

However, we need to make sure that P (y|x) is feasible conditional
distribution. The condition for P (y|x) to be multivariate Gaussian is
that normalization function Z is finite. Z defined in (2) is finite if
covariance matrix Σ is positive semi-definite. Hence, when learning
the parameters we have to imply constraint that covariance matrix Σ
is positive semi-definite.

3 THE CCRF MODEL FOR AOD PREDICTION

In the following we describe in detail the proposed CRF for regres-
sion in remote sensing, using the AOD prediction as the motivat-
ing example. Given a data set that consists of satellite observations
and ground based AOD measurements, a statistical prediction model
(SP ) can be trained to use satellite observations as attributes and
predict the labels which are ground-based AODs. The deterministic
AOD prediction models (DP ) are based on solid physical principles
and tuned by domain scientists. To model the association potential,
i.e the dependency between the predictions and target AOD, we in-
troduce two feature functions,

f1(yi,xi) = −(yi − SP (xi))
2

f2(yi,xi) = −(yi −DP (xi))
2 (6)

where for a given observation xi, SP (xi) and DP (xi) are outputs
of statistical and deterministic models, respectively. These feature
functions follow the basic principle for association potentials (their
values are larger for more accurate predictions). Learned parameters
α of the linear combination of these features,

A(α, yi,xi) = −α1(yi − SP (xi))
2 − α2(yi −DP (xi))

2 (7)

provide some insight on how much to trust the SP and DP pre-
diction algorithms. For example, large α1 places large penalty on
mistakes of SP model and is an indicator of large quality of this
predictor.

To improve expressiveness of the CRF model we introduce various
indicator functions. Here are some examples of possible indicator
functions

I1(xi) =

{
1, if xi belongs to North America
0, otherwise

I2(xi) =

{
1, if xi is a data point of high quality
0, otherwise

(8)

Association potential now becomes

A(α, yi,xi) =

K/2∑
k=1

(α2k−1Ik(xi)(yi − SP (xi))
2 +

α2kIk(xi)(yi −DP (xi))
2) (9)

By introducing indicator functions we essentially partition the whole
data set into smaller subsets. Learned α represents our belief in SP
and DP in different subsets, corresponding to different prediction
conditions.

To model the interaction potential we introduce feature function

g1(yi, yj ,x) = −wij(yi − yj)
2 (10)

In AOD prediction problem data are irregularly sampled in both
space and time. Weight wij is positive number representing a mea-
sure of spatio-temporal proximity between data points i and j (closer
points are given larger weight). The corresponding interaction poten-
tial is

I(β, yi, yj ,x) = −βwij(yi − yj)
2 (11)

Here, the learned parameter β represents the level of spatio-temporal
correlation of neighboring outputs (large β indicates that spatio-
temporal correlation is large).

Finally, the resulting CRF model is

P (y|x) = 1

Z
exp(−

N∑
i=1

K/2∑
k=1

(α2k−1Ik(xi)(yi − SP (xi))
2 −

α2kIk(xi)(yi −DP (xi))
2)− βwij(yi − yj)

2) (12)

In the following we show that (12) can be represented as multivariate
Gaussian distribution. In (12), the exponent E is quadratic function
in terms of y, and therefore P (y|x) can be transformed to a Gaussian
form by representing E as

E =
1

2
(y−μ)TΣ−1(y−μ) = yTΣ−1y+yTΣ−1μ+const (13)

To transform P (y|x) to Gaussian form we need determine Σ and μ
by matching (12) and (13). We will first represent quadratic terms of
y in association and interaction potentials as -yTQ1y and -yTQ2y
respectively. Then we will combine them to get Σ−1 = 2(Q1+Q2).
The quadratic term of y in association potential can be represented
as -yTQ1y, where Q1 is diagonal matrix with elements

Q1ij =

{ ∑K/2
k=1(α2k−1Ik(xi) + α2kIk(xi), i = j

0, i �= j
(14)

The quadratic term of y in interaction potential is -yTQ2y, where
Q2 is symmetric matrix with elements

Q2ij =

{ ∑
j βwij , i = j

−βwij , i �= j
(15)

To get μ we match terms linear in E to linear terms in exponent of
(12). If we represent the linear terms of (12) as yTb, then we get
μ = Σb, where b is vector with elements

bi = 2

K/2∑
k=1

(α2k−1Ik(xi)SP (xi) + α2kIk(xi)DP (xi)) (16)

If we calculate Z using transformed exponent, we will get

Z(α, β,x) = (2π)N/2|Σ|1/2exp(const) (17)

Exponent of const term from Z and P (y|x) cancels out, so that we
finally get

P (y|x) = 1

(2π)N/2|Σ|1/2 exp(−
1

2
(y − μ)TΣ−1(y − μ)) (18)
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where Σ and μ are defined previously.
Let us analyze feasibility condition for this model. In order for the

model to be feasible, covariance matrix Σ has to be positive semi-
definite. We can analyze the equivalent that Σ−1 is positive semi-
definite. Σ−1 is defined as a double sum of Q1 and Q2. Q2 is a
symmetric matrix with a property that the absolute value of a diag-
onal element is equal to the sum of absolute values of non-diagonal
elements from the same row

|Q2ii| =
∑
j �=i

|Q2ij | (19)

By Gershgorin’s circle theorem [1], a symmetric matrix is positive
semi-definite if all diagonal elements are non-negative and if matrix
is diagonally dominant. A matrix is diagonally dominant if for ev-
ery row of the matrix, the value of the diagonal element in that row
is larger than the sum of the absolute values of non-diagonal ele-
ments in that row. If we sum elements from diagonal matrix Q1 to
matrix Q2, and if all α’s and β are positive then the values on diag-
onal of Σ−1 will be non-negative and the matrix will be diagonally
dominant. Therefore, to ensure that our model is feasible, we have to
impose constraint that all parameters have to be greater than 0.

In this setting, learning is a constrained optimization problem be-
cause we need to guarantee that all αk > 0 and β > 0. Gradient
ascent cannot be directly applied to a constrained optimization prob-
lem. Here we adopt a technique similar to that in [7] and then em-
ploy gradient ascent. Specifically, we maximize log-likelihood with
respect to logαk and log β instead of αk and β. As a result, the
new optimization problem becomes unconstrained. Derivatives of
log-likelihood function and updates of α’s and β in gradient ascent
can be computed as

∂L

∂ logαk
= αk

∂L

∂αk
, logαnew

k = logαold
k + η

∂L

∂ logαk

∂L

∂ log β
= β

∂L

∂β
, log βnew = log βold + η

∂L

∂ log β
(20)

where η is is the learning rate.
In inference, since the model is Gaussian, the prediction will be

expected value, which is equal to the mean μ of the distribution,

ŷ = argmax
y

P (y|x) = Σb (21)

4 EXPERIMENTS

4.1 Data sources and collocation

In this study we consider data from MODerate resolution Imaging
Spectrometer (MODIS), an instrument aboard NASA’s Terra and
Aqua satellites [8]. Instruments mounted on Terra observe the Earth
during morning whereas those mounted on Aqua observe the Earth
during afternoon. In this study, we use data only from the Terra satel-
lite. Ground-based data are obtained from the AErosol RObotic NET-
work (AERONET) [2] which is a global remote sensing network of
radiometers that measure AOD several times per hour from specific
geographic locations.

MODIS has high spatial resolution (pixel is as small as 250x250
m2) and achieves global coverage daily. On the other hand,
AERONET sites, situated at fixed geographical locations, acquire
data at intervals of 15 min on average. This gives rise to the need for
both spatial and temporal data fusion. The fusion method involves

aggregating MODIS pixels into blocks of size 50x50 km2 and spa-
tially collocating them with an AERONET site. The MODIS obser-
vations are said to be temporally collocated with the corresponding
AERONET AOD predictions if there is a valid AERONET AOD pre-
diction within 30 minutes of the satellite overpass. The data collo-
cated in this way can be obtained from the official MODIS website
of NASA [3].

There are several levels of AERONET AOD measurements [2].
To avoid potential problems with outliers in ground truth data,
AERONET Level 2.0 observations were considered since they were
cloud screened and manually verified.

For our study we collected MODIS Terra observations collocated
with AERONET Level 2.0 points. We extracted satellite-based at-
tributes that are used as inputs to knowledge-based prediction al-
gorithms. The radiances at four wavelengths were taken from the
MODIS range 440nm 2100nm, as these are sufficient to describe
aerosol properties [8]. An average and standard deviation of radi-
ances of pixels in 50x50 km2 blocks were then estimated. Along
with radiances we also extracted ancillary attributes. Information
about geometry is characterized by solar and sensor angles. As sur-
face elevation affects estimated AOD, it was also included in the set
of attributes and has been extracted from AERONET data. In addi-
tion, we extracted information about the location of each data point
(longitude and latitude) and a quality of observation (QA) assigned
to each point provided by domain scientist. There are four levels of
qualities from lowest quality QA=0 to highest quality QA=3.

By convention, AOD is reported at the 550nm wavelength. Since
AERONET sites do not provide AOD value at that particular wave-
length, we performed a standard linear interpolation in the log scale
of AERONET AOD measurements at 440nm and 670nm to estimate
AOD at 550nm [8]. We collected 28374 data points distributed over
entire globe at 217 AERONET sites (Figure 1) during years 2005 and
2006.

4.2 Evaluation

To assess the efficiency of the proposed methods, we performed
training on 2005 data and used 2006 data for testing. Because we
jointly train NN on 2005 data and then its predictions as inputs to
CRF, we applied a nested cross-validation. First, we split AERONET
locations into 5 subsets and created five data sets Di, i = 1 . . . 5,
each with data points from one of the AERONET subsets in year
2005. We reserved one of Di datasets for testing and merged data
from the remaining 4 datasets Dj , j �= i, for training. The trained
NN predictor was tested on Di. The procedure was repeated five
times, for values j = 1 . . . 5. Finally, we get five NN models and
NN predictions for all points in training set.

There are many possible measures that could be used to assess
AOD prediction accuracy. Given vector t = [t1, t2, . . . tN ] of N
target values and vector y = [y1, y2, . . . yN ] of the corresponding
predictions, the

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ti)2 (22)

standard root mean squared error (RMSE) is defined as We also re-
port accuracy on domain specific measure fraction of successful pre-
dictions (FRAC) that penalizes errors on small AOD more than errors
on large AOD. The AOD prediction can be considered successful if
the absolute error is
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Table 1. RMSE and FRAC of C005, NN, and NN+CCRF using features defined over five regions, without (β = 0) and with spatio-temporal correlation
(β �= 0)

RMSE FRAC

Region C005 NN CRF,β = 0 CRF,β �= 0 C005 NN CRF,β = 0 CRF,β �= 0

Whole Globe 0.123 0.112±0.001 0.1067±0.0005 0.1056±0.0005 0.65 0.667±0.002 0.704±0.003 0.708±0.004
N. America 0.098 0.085±0.001 0.083±0.001 0.081±0.001 0.64 0.667±0.008 0.71±0.01 0.71±0.01
S. America 0.140 0.110±0.005 0.104±0.003 0.098±0.002 0.55 0.56±0.01 0.58±0.02 0.60±0.02
Europe 0.080 0.080±0.001 0.0736±0.0005 0.0728±0.0005 0.76 0.762±0.005 0.807±0.006 0.812±0.006
Africa 0.172 0.154±0.001 0.152±0.001 0.149±0.001 0.53 0.560±0.006 0.568±0.007 0.577±0.006
Asia&Aus. 0.161 0.156±0.001 0.145±0.001 0.148±0.001 0.64 0.66±0.01 0.71±0.01 0.70±0.01

Table 2. RMSE and FRAC of C005, NN, and NN+CCRF using features defined over four subsets of data of different quality (QA=0 lowest, QA=3 highest),
without (β = 0) and with spatio-temporal correlation (β �= 0)

RMSE FRAC

Data Quality C005 NN CRF,β = 0 CRF,β �= 0 C005 NN CRF,β = 0 CRF,β �= 0

Entire Set 0.123 0.112±0.001 0.1065±0.0005 0.105±0.0005 0.65 0.667±0.002 0.705±0.004 0.709±0.004
QA=0 0.151 0.128±0.002 0.123±0.001 0.121±0.001 0.59 0.60±0.01 0.64±0.01 0.64±0.01
QA=1 0.130 0.108±0.001 0.109±0.001 0.107±0.001 0.58 0.623±0.006 0.65±0.01 0.652±0.005
QA=2 0.118 0.110±0.002 0.104±0.001 0.101±0.001 0.64 0.65±0.01 0.686±0.007 0.689±0.007
QA=3 0.105 0.104±0.002 0.097±0.001 0.096±0.001 0.70 0.714±0.007 0.755±0.003 0.761±0.002

|yi − ti| ≤ 0.05 + 0.15ti (23)

We may now define the FRAC as

FRAC =
I

N
× 100% (24)

where I is the number of predictions that satisfy relation (23).

4.3 Benchmark Methods

4.3.1 Deterministic prediction algorithm C005

The primary benchmark for comparison with our predictors was the
most recent version of the MODIS deterministic algorithm called
C005. The deterministic algorithms that retrieve AOD from MODIS
observations rely on the domain knowledge of aerosol properties and
are based on lookup tables representing the most common atmo-
spheric conditions.

4.3.2 Statistical prediction by neural network

As a baseline statistical algorithm we used a neural network trained
to predict AERONET AOD from all MODIS attributes except loca-
tion information and quality flag. The neural network has a hidden
layer with 10 nodes and an output layer with one node. In nested
5-cross-validation experiments we trained 5 neural networks. When
tested on 2006 data, we used a single network trained on the whole
training set.

4.4 The CRF model

4.4.1 Integration of models

We first consider the case when interaction potential does not exist
(β = 0). NN and C005 predictions are inputs to CRF. We partitioned
the world into five regions: North America, South America, Europe,

Africa, and Asia and Australia. Asia and Australia were treated to-
gether due to the small number of data points in each of them. Then,
we defined five indicator functions. Each function indicates belong-
ing to one of five regions. We determined ten α parameters corre-
sponding to C005 and NN predictions over these regions. Results are
presented in Table 1. Over all regions CRF achieved better accuracy
than either NN or C005 alone. Values of obtained α parameters sug-
gest that we should trust NN more in the North America (ratio of α’s
is NN:C005=24:13 approximately) while in Africa we should trust
C005 a little bit more (ratio of α’s is NN:C005=8:9 approximately).
Also, CRF improves domain-based accuracy measure FRAC (Table
1).

Second, we check how much we should rely on NN and C005 over
observations with different qualities. We partitioned data into four
subsets having quality flags QA=0, 1, 2, and 3. We introduced four
indicator functions to indicate belonging to each of subsets. We deter-
mined eight α parameters corresponding to C005 and NN predictions
over these subsets. Results are presented in Table 2. For all data qual-
ities CRF achieved better accuracy than either NN or C005 alone. As
expected, error of the deterministic predictor C005 decreases as data
quality increases. Values of obtained α parameters also suggest that
we should trust NN more for low data quality QA=0 (ratio of α’s
is NN:C005=21:10 approximately) while for high data quality we
should equally trust to C005 and NN (ratio of α’s is NN:C005=16:16
approximately). FRAC is also improved by CRF, Table 2.

4.4.2 Integration of spatio-temporally correlated models

Here we consider the case when interaction potential does exist
(β �= 0). NN and C005 predictions are inputs to CRF. To model inter-
action potential we need to define weights wij in (11). After analysis
of spatial and temporal AOD autocorrelation (results not shown) we
decided to define spatial-temporal neighbors as a pair of observations
where temporal distance temporalDist(i, j) is less than 60 days
and spatial distance spatialDist(i, j) is less than 100km. Therefore,
we used weighted distance in defining wij , weights are multiplica-
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tion of Gaussians

wij =

{
exp(− spatialDist(i,j)2

2σ2
s

− temporalDist(i,j)2

2σ2
t

, i ∼ j

0, otherwise
(25)

where σs = 50 and σt = 10 were determined empirically.
Taking into account spatio-temporal correlation and comparing

to the CRF model with (β = 0) when the world was partitioned
into five regions, we get better results globally and over all regions
separately except Africa where two models were equally good and
Asia&Australia where the latter model was better (Table 1). This re-
sult suggests that level of spatio-temporal correlation is different in
different regions, and each region should have its own β. β was esti-
mated to 0.049, which does not indicate significant correlation, but it
is still enough to improve single-output based predictors.

Including spatial-temporal correlation in the model when data
were partitioned based on quality also improves final prediction (Ta-
ble 2), β was estimated to 0.06.

5 CONCLUSION

Structured learning is a new research area in machine learning that
had great success in classification, but its application on regression
problems has not been explored sufficiently. We proposed a method
to combine the outputs of a powerful non-linear regression tool such
as NN by incorporating a variety of correlated knowledge sources
into single prediction model.

We reported the results on remote sensing applica-
tion of predicting AOD from satellite-based observations.

Presented results provide strong evidence that structured learn-
ing approaches can be successfully applied to not only the AOD
prediction problem but also other remote sensing regression
problems. Furthermore, the presented model can be applied to
any regression application where there is a need for knowledge
integration and exploration of structure in outputs.
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