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Abstract. In this work, we present a heuristic search technique
(Contract Search) which can be automatically adapted for a specified
node expansion limitation. We analyze the node expansion properties
of best first search and propose a probabilistic model (rank profile) to
characterize heuristic search under restricted expansions. We identify
the basic properties of the rank profile and establish its relation with
the search space configuration. In Contract Search, we use the rank
profile model to formulate an optimal strategy to choose level de-
pendent restriction bounds maximizing the probability of obtaining
the goal node under the specified contract. Experimental comparison
with anytime search techniques like ARA* and beam search shows
that Contract Search outperforms these techniques over a range of
constraint specifications.

1 Introduction

The design of efficient anytime algorithms [4], i.e., algorithms which
can work under any time limitations, has become a necessity for mod-
ern practitioners facing large sized problems that are NP -hard in
nature. Anytime algorithms are further classified into two categories,
namely interruptible algorithms and contract algorithms. Interrupt-
ible algorithms are expected to regularly produce solutions of im-
proved quality and when suddenly terminated, return the best solu-
tion produced so far as the result. For a contract algorithm, time is
allocated a priori and the algorithm is required to provide a high-
quality solution at the end of the contract.

The development of an effective heuristic search algorithm that
works under a node expansion contract requires attention both the-
oretically as well as from an algorithmic point of view. While most
interruptible anytime algorithms can be used for contract purposes,
it is important to consider using the time effectively to produce a
good solution as compared to several inferior ones. In general, the
interruptible heuristic search algorithms follow two basic principles.
They use depth guided non-admissible pruning to discover solutions
quickly, and work in multiple iterations with gradual relaxation of the
constraints. In the past few years, a number of interruptible heuris-
tic search algorithms have been developed. These algorithms can be
broadly classified into two categories, weighted A* [6, 8] approaches
and structural restriction based approaches, such as beam search al-
gorithms [2, 3, 10], AWA* [1], etc.

One of the major disadvantages of using the interruptible tech-
niques for time constrained purposes is that the contract informa-
tion can only be used to control the termination, whereas the algo-
rithm’s execution remains independent of the constraint specifica-
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tion. Also, in most of the cases the interruptible techniques use non-
admissible pruning. As the basic characteristics of A* change with
non-admissible heuristics [7], it becomes very difficult to establish
a relation between node expansions and the probability of conver-
gence. The beam search technique [2, 9, 10] seems to be a promising
choice for contract search purposes if the depth of the goal node is
known. However, in spite of encouraging experimental results (with
beam search), a strong reason for using a constant beam width at all
levels has been lacking. Another approach was proposed [3] where a
variant of best first beam search was used with dynamic adjustment
of beam width (guided by solution cost a bound obtained from depth
first search), but the relation between the chosen beam width, the
node (or time) contract and the probability of obtaining an optimal
cost solution remains unexplored.

This work is based on the observation that for each level of a
search space if we expand only up to the optimal-path node (a prede-
cessor of the optimal-cost goal node) we can attain optimality with-
out expanding all nodes having cost less than (or equal to) the opti-
mal cost. We introduce the concept of the rank of a node at a par-
ticular level, and analytically show how the rank based restriction
may be applied to obtain optimal (or near-optimal) solutions with
fewer node expansions compared to A*. We develop an algorithm
(Contract Search) that considers local competition amongst nodes at
the same level and explores only a limited number of nodes at each
level depending on the contract following a policy similar to beam
search. However, we do not use a constant beam width like beam
search. In our approach, the local node expansion limits are opti-
mally selected based on the probability of the optimal cost path lying
within this bound. For this, we develop the concept of probabilistic
rank profiles. We analyze the characteristics of the profile function
and present its properties with respect to the search space structure
and heuristic accuracy. We also present an approximation model to
estimate the profile function. Using this rank profile, we present an
optimal selection strategy that computes the node limits k(l) at ev-
ery level given an overall contract C such that the probability of ob-
taining the optimal solution is maximized. We perform experiments
on various search problems and compare Contract Search with two
anytime algorithms, namely ARA* and beam search, obtaining very
encouraging results.

2 Rank of the Optimal-Path Node versus Nodes
Expanded by A*

In this section, we formally define the concept of the rank of an
optimal-path node and establish the relation between A* node ex-
pansions and the rank limited node expansions. We examine the extra
amount of expansions performed by A* even after it has obtained the
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’optimal-path’ node at a level. For our analysis, we assume that our
search space is a tree with a unique optimal cost solution. We also
assume that the heuristic used is admissible and consistent [7]. We
consider two sets of nodes for each level of the search tree, defined
as follows,

Definition 1 V (l) : For a given level l, 0 ≤ l ≤ h (h height of the
tree), V (l) denotes the set of nodes belonging to that level that are
surely expanded by A*, thus,

V (l) =

{ {s} if (l = 0)
{n|Parent(n) ∈ V (l − 1) and f(n) < f∗}
∪{ng,l} otherwise

(1)
where f∗ is the cost of an optimal solution, s is the start node and
ng,l is the ’optimal-path’ node at level l.

Definition 2 W (l) : For a given level l, 0 ≤ l ≤ h (h height of
the tree), W (l) denotes the set of nodes that have f -value less than
the ’optimal-path’ node at that level (l) and whose parents belong to
W (l − 1), plus the ’optimal-path’ node at that level, i.e.,

W (l) =

{ {s} if (l = 0)
{n|Parent(n) ∈ W (l − 1) and
f(n) < f(ng,l)} ∪ {ng,l} otherwise

(2)

where ng,l is the ’optimal-path’ node at level l.

From the definitions, we observe that for each level A* expands at
least V (l) nodes. On the other hand, W (l) is the set of nodes which
must be expanded at each level to reach the optimal cost goal through
a best-first mechanism. Next, we define two rank terminologies re-
lated to the cardinality of these two sets.

Definition 3 max rank A∗(l) : It is the maximum rank (relative
position in terms of f(n) value) of a node at level l (among nodes in
the same level), which is surely expanded by A*, i.e.,

max rank A∗(l) = |V (l)| (3)

Definition 4 opt node rank(l) : It is the relative position of the
’optimal-path’ node at a level l among the nodes in the open list that
are also at level l (when for all levels l′ < l, only the nodes in W (l′)
have been expanded), i.e.,

opt node rank(l) = |W (l)| (4)

From the definitions of max rank A∗(l) and opt node rank(l),
we deduce the following relation.

Theorem 1

∀l, 0 ≤ l ≤ h opt node rank(l) ≤ max rank A∗(l). (5)

Theorem 1 shows that we can attain optimality by expanding fewer
nodes than A*. Next, we present some experimental and analytical
observations which highlight the gap between the max rank A∗(l)
and opt node rank(l) values.

Experimental Observations We perform experiments on two op-
timization problems, Euclidean TSP and 0/1 Knapsack problem.
For TSP, we use two heuristics, minimum remaining edge (h1)
and minimum spanning tree (h2). For Knapsack, we use two over-
estimating heuristics, best cost density (h1) and fitting based (h2).
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Figure 2. Comparison of average max rank A∗(l) and
opt node rank(l) values at different levels (l) of a search tree for 0/1

Knapsack problem

In both the cases, h2 dominates h1. Comparisons of the average
max rank A∗(l) and opt node rank(l) values (for each level), for
h1 and h2, are shown in Figure 1 (10-city TSP) and 2 (10 object
0/1 Knapsack), respectively. These results are obtained for a set of
10, 000 randomly generated problems.

From the above experiments, we observe that for most levels,
there is a significant difference between max rank A∗(l) and the
opt node rank(l) value. Also, we observe that the stronger the
heuristic estimation, the larger is the gap between nodes expanded
by A* and opt node rank at a given level. Next, we try to explain the
observed behavior in terms of a search tree model.

Analytical Observations We study the difference between the ex-
pected max rank and opt node rank values with respect to heuris-
tic errors, considering a uniform cost search tree model (Chapter
8 of [7]). Our search space is modeled as a uniform m-ary tree
T , with a unique start state S and a unique goal state G, situated
at a distance N from S (Figure 3). The solution path is given as
(S → ng,1.. → ng,i → ..ng,N−1 → G) where ng,i denotes the
optimal-path node at level i. The trees T1..Ti..TN are sub-trees of T ,
one level removed from the optimal path. Each ’off-course’ sub-tree
Ti is rooted at a direct successor of ng,i−1 which is off the solution
path (there are m − 1 such Ti for each i). An ’off-course’ node is
labeled as ni,j , where j denotes the level of that node and i denotes
the root level of the ’off-course’ sub-tree (Ti) to which the node be-
longs. Using the search tree model, we compare the expected node
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Figure 3. Uniform binary tree (model)

expansions (max rank A∗(l) versus opt node rank(l)) for each
level of the tree. First, we present some definitions.

Definition 5 qi,j : qi,j denotes the probability of node ni,j having
f -value less than the optimal cost, i.e.,

qi,j = P (f(ni,j) < N) (6)

Definition 6 ri,j : ri,j denotes the probability of f(ni,j) being less
than the estimated cost (f -value) of the ’optimal-path’ node at that
level, i.e.,

ri,j = P (f(ni,j) < f(ng,j)) (7)

Definition 7 Expected max rank A* : Expected max rank A*
(EMR(l)) denotes the expected value of max rank A* value at a
given level l of a search tree.

Definition 8 Expected opt node rank : Expected opt node rank
(EOR(l)) denotes the expected value of opt node rank at a given
level l of a search tree.

Next, we use the tree model to compute the expected node expan-
sions.

Lemma 1 The EMR and EOR values at a given level l of a m-ary
uniform cost search tree T (with goal depth = N ) are given as,

EMR(l) = 1 + (m − 1)
∑i=l

i=1
ml−i ∗ Πj=l

j=iqi,j

EOR(l) = 1 + (m − 1)
∑i=l

i=1
ml−i ∗ Πj=l

j=iri,j

(8)

We now estimate the expansion probability values (qi,j , ri,j) from
the heuristic information available. We assume that the relative esti-
mation errors, are independent random variables (e1 ≤ Y (n) ≤ e2)
with an arbitrary distribution function.

Y (n) = [h∗(n) − h(n)]/h∗(n) (9)

Lemma 2 With the chosen error model,

qi,j = 1− P (Y (n) ≤ 2(j + 1 − i)/(N + j + 2(1 − i)))
ri,j = 1− P (Y (n) − Y (g) ∗ (N − j)/(N + j + 2(1 − i))

≤ 2(1 + j − i)/(N + j + 2(1 − i)))
(10)

Where Y (n) and Y (g) are two identically distributed random vari-
ables within (e1, e2) bound.

Theorem 2

∀l, 1 ≤ l ≤ N, EOR(l) ≤ EMR(l) (11)

Next, we establish the relation between the heuristic accuracy and
the gap between EMR and EOR values. To quantify this gap and
to understand its relation with heuristic accuracy, we choose an er-
ror distribution function. We assume that Y (n) is a random variable
uniformly distributed over (0, e).

Lemma 3 With the uniform tree model and the uniform ([0, e])
heuristic error distribution, the qi,j and ri,j values are given as,

qi,j = e(N + j + 2(1 − i)) − 2(j + 1 − i)/e(N + j + 2(1 − i))

ri,j = (e(N + j + 2(1 − i)) − 2(j + 1 − i))2/2e2(N + 1 − i))2

(12)

This quantification of qi,j and ri,j values is obtained by using the
cumulative properties of uniform distribution. While qi,j contains a
single random variable ri,j is expressed as a subtraction of two inde-
pendent random variables having a triangular distribution.

Theorem 3 With the uniform ([0, e]) heuristic error distribution,

∀i, j, 1 ≤ j ≤ N, 1 ≤ i ≤ j, ri,j/qi,j ≤ 1−(j+1−i)/e(N+1−i)
(13)

That is, with e > 0 the difference between EMR(l) and EOR(l) is
magnified with greater heuristic accuracy.

In Theorems 2 and 3, we analytically prove the basic observations
obtained from the experiments, i.e., EOR(l) is less than (or equal to)
EMR(l) and the gap between EOR(l) and EMR(l) is magnified
with increasing heuristic accuracy.

3 Probabilistic Rank Profile

The analysis presented in Section 2 shows that if we restrict A* us-
ing the rank information (up to opt node rank) we can expect faster
convergence. However, the question is, how do we compute such a
rank estimate. We must note that determining a constant as well as
meaningful rank bound is not likely. More importantly, a constant
bound will not help us in a constrained scenario as (even with such
a bound) either we converge within the contract or we do not get a
solution. Therefore instead of a constant bound, we propose to ob-
tain a probabilistic estimation of opt node rank values, and use that
information to guide the search. For this, we put forward the concept
of Probabilistic Rank Profile (PRP).

Probabilistic Rank Profile is a model which represents the chance
of expanding the ’optimal-path’ node at a level if a maximum number
of k(l) nodes are expanded at that level.

Definition 9 Probabilistic Rank Profile (PRP) : Probabilistic Rank
Profile P (S | l, k(l)) (S denotes success) of a search space repre-
sents the probability of obtaining the ’optimal-path’ node (in case
of multiple, at least one of them) within the best (in terms of f(n))
k(l)-nodes at level l, i.e.,

P (S | l, k(l)) = P (opt node rank(l) ≤ k(l)) (14)

If we expand the ’optimal-path’ node at a level l, we say that we
have achieved local success at that level. Thus, the PRP basically
represents the chance of achieving local success at a level l with at
most k(l) expansions. Next, we investigate the basic characteristics
of the PRP and explore the possibilities of computing (or approxi-
mating) the PRP values from search space configuration (branching
factor, height, heuristic error estimates, etc)s.

For the first phase of analysis, we use the same uniform m-ary tree
model [7] and compute the P (S| l, k(l)) values from the heuristic
error information. First, we introduce the following notation:
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Definition 10 Pi,l : Pi,l denotes the probability of an ’off-course’
node ni,l to be in W (l). Thus,

Pi,l = P (ni,l ∈ W (l)) = Πj=l
j=iri,j (15)

In the following theorem we present the relation between the PRP
and the search space configuration,

Theorem 4 With the uniform cost m-ary tree model, the PRP func-
tion can be computed as,

P (S| l, k(l)) ≈ 0.5[1 + φ((k(l) − μ)/σ
√

2)]

where μ = 1 + (m − 1)
∑i=l

i=1
ml−i ∗ Pi,l,

and σ2 = (m − 1)
∑i=l

i=1
ml−i ∗ Pi,l ∗ (1 − Pi,l)

(16)

φ(x) is the standard error function for Normal distribution.

Proof 1 By definition,

P (S | l, k(l)) = P (opt node rank(l) ≤ k(l)) (17)

Now, the total number of nodes to be expanded at level l to obtain
the ’optimal-path’ node at that level, is a summation (over all possi-
ble ’off-course’ sub-trees at level l) of independent Bernoulli trials of
the nodes ni,l. Thus, the distribution function for opt node rank(l)
can be obtained as a sum of Binomial Distributions B((m − 1) ∗
ml−i, Pi,l) for 1 ≤ i ≤ l (with the obvious addition of the ’optimal-
path node’). Approximating the Binomial distribution function using
the corresponding Normal distribution, we get a more compact ex-
pression as,

P (opt node rank(l)) ≈ N(μ, σ)

where μ = 1 + (m − 1)
∑i=l

i=1
ml−i ∗ Pi,l

and σ2 = (m − 1)
∑i=l

i=1
ml−i ∗ Pi,l ∗ (1 − Pi,l)

(18)

From the above presented expression, P (opt node rank(l) ≤
k(l))), ∀k(l), 1 ≤ k(l) ≤ ml can be obtained from the cumula-
tive distribution function of P (opt node rank(l)). This probability
denotes the probability of success at level l when at most k(l) best
nodes are selected for expansion. Thus, following the Normal distri-
bution properties,

P (S| l, k(l)) ≈ 0.5[1 + φ((k(l) − μ)/σ
√

2)]

where μ = 1 + (m − 1)
∑i=l

i=1
ml−i ∗ Pi,l

and σ2 = (m − 1)
∑i=l

i=1
ml−i ∗ Pi,l ∗ (1 − Pi,l)

(19)

From Theorem. 4, we observe how the PRP values can be com-
puted using the search space configuration and heuristic error infor-
mation (which is captured through the Pi,l definition). However, ac-
quiring an accurate estimation of the heuristic error distribution for
a given search space is a non-trivial task. Thus, we try to identify
the basic properties of the PRP function and use them to suggest a
function to approximate the PRP values. First, we present a set of
observations about the nature of PRP.

• The success probability of expanding best k(l) nodes of a frontier
should be greater than or equal to k(l)/frontier size(l), other-
wise the path estimation is a misleading one, i.e., for a reasonable
cost estimation function,

P (S | l, k(l)) ≥ k(l)/ml (20)

• The improvement in success probability (with more node expan-
sions) follows a sub-linear gradient (actually the improvement re-
duces exponentially) after a given number of expansions, i.e., after
a given number of expansion ψ(l) , for any Δ

P (S | l, ψ(l) + Δ) − P (S | l, ψ(l)) < Δ/ml (21)

• The PRP curve obtained for a given level l+1 dominates the PRP
curve for level l,

∀c, P (S | l, c) ≤ P (S | l + 1, c ∗ m) (22)

• If we have two heuristics h1 and h2, such that h1 is probabilisti-
cally more accurate than h2, in the average case, the PRP using
h1 dominates the PRP using h2,

∀ l, P (P (S |l, c)h1 ≥ P (S |l, c)h2) ≥ 0.5 (23)

Using these basic properties, we suggest a function to approxi-
mate the PRP values for unknown search spaces. We approximate
P (S|l, k(l)) using the following equation,

P (S|l, k(l)) = min((k(l)/ml) ∗ α)(h−l/h)∗β−γ , 1) (24)

where α, β and γ are positive constants chosen depending on the na-
ture of the search space, with α ≥ 1.0, β ≤ 1.0 and γ ≥ 0.0. It
should be noted that the suggested approximation function closely
follows the normal distribution error function curve (Theorem 4).
In Figure 4, we show two sets of PRP curves obtained for a uni-
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Figure 4. PRP values for uniform binary search tree

form binary tree of height 10. Figure 4(a) shows the curves obtained
using Eqn. 16 with heuristic error uniformly distributed over [0, 1],
and Figure 4(b) shows the curves obtained using the approximation
model with α = 1.2, β = 0.5, and γ = 0.1. From the figure, we
observe that the approximating function has similar growth charac-
teristics with the computed profile curves.

4 Contract Search : Formulation and Methodology

In this section, we present a heuristic search algorithm that maxi-
mizes the probability of reaching the optimal goal node(s) under a
given node expansion constraint.

Optimal Bound Selection From the probabilistic rank profiles
(PRP), we obtain the local success probabilities for each level of a
search space conditioned by the number of expansions. In this part,
we use the PRP to compute the expansion bounds for each level of
the search space depending on the contract specification. We con-
sider two different scenarios, one in which the optimal goal depth is
known in advance and the other with unknown goal depth. In this
first case, let the goal depth be N . We formulate the bound selec-
tion (k-selection) problem under a given contract C as follows: For
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a problem having PRP P (S|l, k(l)) we generate a k-cutoff for each
level l (0 ≤ l ≤ N ) such that,∑

l
k(l) ≤ C and PS(C) is maximized (25)

With this formulation, we define the k-selection strategy for a partic-
ular level as a Markov Decision Process (MDP).

Strategy 1 Optimal k-Selection Strategy with Known Goal Depth :
The k(l)-choice for a given level l, having remaining contract R and
maximum available choice c (number of nodes at that level) can be
obtained by solving the following equation for success probability
(PS),

PS(l, c, R) =
max n

n ≤ min(c, R)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P (S | l, n)∗
PS(l + 1, m ∗ n, R − n)
if (l < N),
P (S | h, min(c, R))
otherwise.

(26)

Where m is the branching factor. Now for a given contract C, solving
the equation for PS(0, 1, C) we get the optimal k(l)-value selection
for each level l.

We use dynamic programming to solve the above equation. The strat-
egy can be computed off-line and then used to guide the actual search
under specified node limitations.

Theorem 5 The k-Selection strategy specified maximizing the above
PS function, represents an optimal guiding strategy for a contract
search algorithm.

It is to be noted, that the k-selection problem itself is NP -hard (re-
ducible to 0/1 knapsack). However, a pseudo-polynomial time algo-
rithm can be used to solve the problem.

If the depth of the goal node is not known, we can use a proba-
bilistic estimate of the goal depth along with the rank profiles. For
this we define a term called GoalProbability(l), which represents
the probability of the goal node to be at depth l.

Definition 11 Goal Probability(l) : The Goal Probability (PG(l)) of
a search space represents the probability of the goal node to be at
depth l of the search graph/tree, i.e.,

PG(l) = P (goal depth = l) (27)

Using the Goal Probability values, the optimal k-selection strategy
can be obtained using the following equation,

PS(l, c, R) =
max n

n ≤ min(c, R)
P (S | l, n) ∗ (PG(l)+
PS(l + 1, m ∗ n, R − n))

(28)

Contract Search Algorithm In this part, we present the contract
based heuristic search algorithm (Contract Search). For a specified
contract we compute the node expansion restrictions for each level
using the k-selection routine. Contract Search uses these k(l) values
to limit the expansions for a particular level. A naive way of incor-
porating the restrictions would be to expand the best k(l) nodes at
level l.However, this approach will be inefficient, as it does not use
the pruning capabilities of A*. Our aim is to restrict the number of
competitions A* performs at a given level. If A* does not require to
expand more than k(l) nodes at a level l, we run it without restric-
tion, otherwise we restrict. With this idea, we present the algorithm
Contract Search(C) (Algorithm 1) using the off-line k-selection. In

Contract Search, we logically (not necessarily physically) maintain a
different open list for each level. Nodes are expanded in the best first
mode across all open lists. With each expansion from a given level
we update the node expansion count for that level. If the number of
nodes expanded at a given level l equals the k(l) value, the level is
suspended. The search terminates when all levels are suspended or
there are no more nodes having f(n) less than the obtained solution.

Algorithm 1 Contract Search (C)
STEP 0 :: INPUT

A graph G and a start node s. A cutoff k(l) for each level of the graph (depend-
ing on the contract specification C).

STEP 1 :: INITIALIZATION
for i = 0 to l, such that k(l) > 0 do

OpenList[i] ← φ; SuspendFlag[i] ← 0; ExpCount[i] ← 0;
end for
ClosedList ← φ; BestSol ← ∞; Insert s to OpenList[0];

STEP 2 :: SELECTION
if (NodeCount ≥ C) Return BestSol;
Select node n having the least f(n)-value across all OpenLists with
SuspendFlag = 0;
if (No such n exists) or (f(n) ≥ BestSol) then

Return BestSol;
end if
Insert n into ClosedList;

STEP 3 :: EXPANSION
NodeCount ← NodeCount + 1;
ExpCount[Level(n)] ← ExpCount[Level(n)] + 1;
if IsGoal(n) then

if f(n) < BestSol BestSol ← f(n); Goal ← n;
Goto STEP 2 (SELECTION);

end if
for Each successor node n′ of n do

Calculate f(n′);
if n′ is not in the OpenLists or ClosedList then

Parent(n′) ← n; Level(n′) ← Level(n) + 1; Insert n′ to
OpenList[Level(n′)];

else if n′ is in OpenLists then
if f(n′) < previously calculated path estimation then

Parent(n′) ← n; Level(n′) ← Level(n) + 1; Move n′ from the
earlier OpenList to OpenList[Level(n′)];

end if
else if n′ is in ClosedList then

Parent(n′) ← n; Level(n′) ← Level(n) + 1; Move n′ from
ClosedList to OpenList[Level(n′)];

end if
end for
if ExpCount[Level(n)] ≥ k(Level(n)) then

SuspendFlag[k] =← 1;
end if

STEP 4 :: Goto STEP 2 (SELECTION);

5 Experimental Results

We perform experiments on 4 core optimization problems, namely
Euclidean TSP, 0/1 Knapsack problem, 15-puzzle problem and in-
struction scheduling problem [5]. We compare Contract Search
against two anytime algorithms, ARA* [6] and best first beam search
(which can also be termed as band search [2]).

For Contract Search, we use the PRP curve approximated using
Eqn. 24. The approximation Eqn. 24 is used with the basic set of co-
efficient values (α = 1.0, β = 1.0 and γ = 0.0). We assume 100
nodes to be to be a unit, and accordingly adjust the contract speci-
fication, i.e., a contract of 50, 000 nodes is equivalent to 500 units.
We compute the k(l) values for each level of the search space(for
different problem). The maximum computation steps vary (for dif-
ferent problem) from 50, 000 − 60, 000 basic operations, and the
time required is almost insignificant (<< 1ms). Moreover, the k(l)
selection is performed off-line and once only (for each problem do-
main). In ARA*, we start with a weight bound of 2.0 and gradu-
ally decrease the bound by 0.1 at each iteration. For beam search,
the beam width is calculated depending on the contract specification
(beam width = contract/height). In Figure 5(a), we present the
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Figure 5. Comparative results for TSP and 0/1 Knapsack: ARA*, beam
search, and Contract Search.

tour length values obtained for a random set of 20 100-city TSP in-
stances for 10 contracts ranging from 5, 000 − 50, 000 nodes (with
the MST heuristic). Figure 5(b) shows the cost vs contract results
for 20 200 object 0/1 Knapsack instances for a constraint range of
3, 000−30, 000 nodes (with the best fitting heuristic). For Knapsack,
the weights and costs of individual objects are generated randomly
while the constraint is chosen within 0.4−0.6 of the sum of weights.
In Figure 6(a) and Figure 6(b), we include the results obtained for the
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Figure 6. Comparative results for 15-Puzzle and Instruction Scheduling:
ARA*, beam search, and Contract Search.

15-puzzle problem (random set of 50 problems) and the instruction
scheduling problem (randomly generated set of 50 100 node DAGs).
For 15-puzzle, which is a graph problem having unknown solution
depth, the framework needs to have an idea about goal depth dis-
tribution. For this, we use two simple functions to approximate the
goal probabilities, uniform (from level 20−60) and standard normal
(mean = 40) distribution. In Figure 6(a), the two Contract Search
variants are labeled as Contract Search (UGP) and Contract Search
(NGP), respectively. If no solution is obtained within the expansion
limit, the cost is taken as 100 3 For the time constrained instruction
scheduling problem, we run the experiments with random time con-
straints between 10 − 20 steps. All operator costs are taken as 1.

3 This penalty is chosen in a random manner to have an equivalent distribution
curve across all algorithms and contracts. For most of the contracts the
number of unsolved problems for beam search and contract search (both
UGP and NGP) is equivalent, while ARA* seems to perform worst in this
regard.

The results show that for most of the contract specifications, solu-
tion qualities obtained with Contract Search are are superior than the
other algorithms. For 3 of the 4 problems, Contract Search perfor-
mance is significantly better than both ARA* and beam search. For
15-puzzle, Contract Search with normal goal depth distribution out-
performs the other algorithms. However, if uniform goal probability
is assumed, the results are equivalent with beam search. Compar-
ing ARA* and best-first beam search (band search), we observe that
beam search performs marginally better than ARA*, validating util-
ity of obtaining a single solution over a stream of solutions. Overall,
the trend shows that Contract Search with level specific expansions
is a robust algorithm which provides quality solutions for different
problems over a range of constraint specifications. It may be noted
that the results are generated considering the simplest form of the ap-
proximation function (without any prior knowledge about the heuris-
tic error distribution). If adequate information about the search space
is acquired, the performance can be improved further. However, even
with insufficient information, the search strategy can be appropri-
ately adapted to a node constraint specification. using some generic
knowledge about the search space characteristics 4.

6 Conclusions

In this paper, we have presented a contract specific heuristic search
algorithm (Contract Search), which uses rank based local restrictions
to adapt itself according the constraints. We have developed an ana-
lytical method to compute the level specific bounds from the search
space configuration. Experimental results obtained on 4 important
combinatorial optimization problems show the efficacy of the pro-
posed algorithm.
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