
Optimal Task Migration in Service-Oriented Systems:
Algorithms and Mechanisms

Sebastian Stein and Enrico Gerding and Nicholas R. Jennings 1

Abstract. In service-oriented systems, such as grids and clouds,
users are able to outsource complex computational tasks by procur-
ing resources on demand from remote service providers. As these
providers typically display highly heterogeneous performance char-
acteristics, service procurement can be challenging when the con-
sumer is uncertain about the computational requirements of its task
a priori. Given this, we here argue that the key to addessing this
problem is task migration, where the consumer can move a partially
completed task from one provider to another. We show that doing
this optimally is NP-hard, but we also propose two novel algorithms,
based on new and established search techniques, that can be used by
an intelligent agent to efficiently find the optimal solution in realistic
settings. However, these algorithms require full information about
the providers’ quality of service and costs over time. Critically, as
providers are usually self-interested agents, they may lie strategically
about these to inflate profits. To address this, we turn to mechanism
design and propose a payment scheme that incentivises truthfulness.
In empirical experiments, we show that (i) task migration results in
an up to 160% improvement in utility, (ii) full information about the
providers’ costs is necessary to achieve this and (iii) our mechanism
requires only a small investment to elicit this information.

1 INTRODUCTION
Service-oriented approaches promise to revolutionise the way com-
putational resources are used and shared in distributed systems [10].
Specifically, emerging cloud, grid and peer-to-peer platforms allow
consumers to procure such resources on demand to complete highly
demanding computational tasks (such as video rendering, climate
modelling or difficult optimisation problems). Providers, on the other
hand, benefit from selling unused resources, and there is already a
plethora of services that are being offered over the Internet.2

Now, a key feature in these systems is the highly heterogeneous
nature of the available offerings, ranging from cheap (or even free)
processing time on idle desktop PCs to the exclusive use of expen-
sive supercomputers. This poses a critical decision problem for the
consumer — when choosing a service, its cost and quality need to be
balanced with the value and time constraints of the task. Doing this is
particularly challenging when there is uncertainty about the compu-
tational requirements of the task, which occurs frequently in practice
for many well-known computationally hard problems [3, 11].

In this paper, we will argue that the key to addressing this uncer-
tainty is task migration, i.e., the process of transferring the current
state of a running task from one resource to another [7], thus al-
lowing several providers to contribute sequentially to the same task.

1 University of Southampton, UK, email: {ss2,eg,nrj}@ecs.soton.ac.uk
2 See, e.g., aws.amazon.com/ec2, code.google.com/appengine or
www.microsoft.com/windowsazure.

When faced with uncertainty, migrating the task allows the consumer
to proactively switch to faster resources as the deadline approaches.
Additionally, the consumer can use migration opportunistically to ex-
ploit low resource costs when these fluctuate over time.

While task migration has received considerable attention in the
literature, most of this focuses on balancing and predicting loads in
closed systems, such as data centres or clusters [7, 2]. This is fun-
damentally different from the emerging open systems we consider,
where resources are offered by self-interested agents that are not nec-
essarily cooperative and that demand financial remuneration. First, it
is necessary to reason about the costs of resources and balance this
with the value and inherent uncertainty in the consumer’s task. Sec-
ond, it is vital to consider the incentives of the participants and ad-
dress the possibility that they lie about their capabilities, for example
by inflating costs to increase profits or by overstating their speeds.

Some of these issues are addressed by [5], who consider uncer-
tainty in the behaviour of service providers and propose a mechanism
to incentivise them to be truthful. However, they do not examine task
migration or settings where the consumer is able to flexibly buy pro-
cessing time (this is often known as infrastructure as a service rather
than software as a service, where functionality is provided without
control over the underlying implementation). Furthermore, they do
not discuss potentially strategic behaviour by the consumer.

We address these shortcomings in this paper, and, more specifi-
cally, make the following three contributions to the state of the art.
First, we prove that optimal task migration is an NP-hard problem.
Second, we employ both novel and established search algorithms and
analytical techniques to design two algorithms that can be used by an
intelligent agent to optimally migrate tasks. Respectively, these deal
with settings where the task can be processed at a given provider for
any arbitrary amount of time, and where processing time is sold in
discrete time slots. Third, we propose a payment mechanism that can
be used by an intermediary agent to achieve optimal task migration in
practice. Specifically, this mechanism is efficient, i.e., implements the
optimal migration strategy, incentive-compatible, i.e., incentivises all
participants to reveal their private information truthfully, and individ-
ually rational, i.e., both providers and the consumer expect to benefit.

Additionally, we evaluate our techniques empirically and show
that task migration offers a significant benefit, leading to an up to
160% improvement in utility. We also demonstrate that full infor-
mation about cost profiles allows the consumer to further benefit by
using the most cost-effective provider at any time. Finally, we show
that our proposed intermediary mechanism requires only a small in-
vestment in order to incentivise truthfulness.

In the following, we first formalise our model (Section 2) and then
consider optimal migration (Section 3). In Section 4, we describe our
mechanism and evaluate our work in Section 5. Section 6 concludes.

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-73

73

2 SYSTEM MODEL
We consider a setting where a service consumer faces a computa-
tional task of uncertain difficulty, which corresponds to the number
of computational cycles3 required to complete it. Prior to comple-
tion, the consumer has a probability distribution over this difficulty,
where we use F to denote its cumulative distribution function and
f the corresponding density function. Thus, F (x) is the probability
that the task requires at most x cycles. Furthermore, the task has a
deadline td and a value V > 0, which the consumer only receives if
the task is completed and the results are returned within the deadline.

We assume there are n service providers that are able to work on
the task on the consumer’s behalf. Each provider i ∈ {1, 2, . . . , n}
has a quality of service (QoS) qi, which denotes the number of cy-
cles it can execute in one time unit. While working on the task, the
provider also incurs a cost. This represents both the running cost for
the service, but also, and typically more importantly, the opportunity
cost that arises from offering the resource to the consumer rather than
use it for other purposes, including selling it to a different customer.
As these costs can vary significantly over time, for example, during
peak hours or when the provider requires the resource for its own
computations, we represent this as a cost profile ci, which maps time
to a cost per time unit.4 Using this, the cost for running the resource
from time a to b is calculated as

∫ b

a
ci(t)dt.

Crucially, a running task can be interrupted at a certain provider i
and migrated to another provider j, which then continues execution.
This may happen several times during task execution, but to reflect
network charges, the consumer incurs a monetary cost of mi→j for
each such migration.5 These costs are also incurred when initially
transferring the task to the first provider and when eventually receiv-
ing the results after the required number of cycles have been executed
(using i = 0 to denote the consumer).

Given this formalisation, we represent the consumer’s strategy for
executing and migrating its task as a migration schedule ρ = 〈s, t〉,
where s is a vector of service providers, and t is a vector denoting the
maximum execution times at each provider i in the schedule before
migrating to i + 1.6 We use η = |s| = |t| to denote the number of
providers in the schedule, and, w.l.o.g., we assume that the sum of
execution times does not exceed the deadline, i.e.,

∑
1≤i≤η ti ≤ td.

Next, we will describe in more detail the utility functions of the
participants in these systems (assuming they are risk neutral). In do-
ing so, we cover the two possible ways in which services may be pro-
visioned in practice: continuous-time and discrete-time provisioning.

We first look at continuous-time service provisioning, where the
consumer can execute the task for any arbitrary amount of time at
a given provider. When this applies, only costs for the actual time
the task is executing are incurred, and the results are transferred back
to the consumer as soon as the required number of cycles has been
reached. Here, the scheduled times ti may take on any values from
R

+, and so the consumer’s expected utility prior to execution is:

E[UC(ρ)] = F

(
η∑

i=1

tiqi

)
· V −

η∑
i=1

⎛
⎝1 − F

⎛
⎝i−1∑

j=1

tjqj

⎞
⎠

⎞
⎠ · mi−1→i

−

η∑
i=1

⎛
⎝F

⎛
⎝ i∑

j=1

tjqj

⎞
⎠ − F

⎛
⎝i−1∑

j=1

tjqj

⎞
⎠

⎞
⎠ · mi→0 (1)

where the first term is the expected reward from completing the task
successfully, while the second and third terms comprise the total mi-

3 In practice, this might be measured in floating point operations (FLOP).
4 When costs are subject to uncertainty, these correspond to expected costs.
5 We assume migration costs are subadditive, i.e., ∀i, j, k : mi→j ≤
mi→k +mk→j , since we could simply route through intermediate nodes.

6 For conciseness and w.l.o.g., we assume that si = i, unless noted otherwise.

gration costs between providers and back to the consumer, respec-
tively. Similarly, the expected utility for a given provider i is:

E[Ui(ρ)] = −

∫
ti

0

qi · f

⎛
⎝xqi +

i−1∑
j=1

tjqj

⎞
⎠ · ci

⎛
⎝x +

i−1∑
j=1

tj

⎞
⎠

−

⎛
⎝1 − F

⎛
⎝ i∑

j=1

tjqj

⎞
⎠

⎞
⎠ · ci

⎛
⎝x +

i−1∑
j=1

tj

⎞
⎠ dx (2)

where the first term integrates over the cost when the task is com-
pleted at provider i (and thus a partial cost is incurred), while the
second term adds the full cost when the task is not completed after
ti time units at provider i. While this service provisioning mech-
anism may offer more flexibility, it is rather uncommon in reality,
mostly for practical reasons. Instead, services are typically allocated
in fixed-size time slots, which eases the administrative burden on
both providers and consumers.

In these discrete-time service provisioning mechanisms, execu-
tion time can only be allocated to the consumer in multiples of some
fixed time slots Δt, i.e., it must hold that ti = x ·Δt, where x is an
integer. This is common in many real cloud or grid settings, where
processing time is allocated in hourly slots. In these settings, once
started, the resource is reserved for the user for the full time slot,
and so the entire cost is incurred even if the task completes half-way
through execution. For conciseness, we assume that Δt is a system-
wide parameter and that migration may only take place at the end of
a time slot. In these settings, the consumer’s expected utility is still
given by Equation 1, but E[Ui(ρ)] is now obtained by simply sum-
ming the expected costs of each time slot. This follows from Equa-
tion 1 (without the need to integrate over f).

Finally, for both the continuous and discrete provisioning scenar-
ios, we define the expected social welfare of a migration schedule as
the sum of all the participants’ utilities:

E[W (ρ)] = E[UC(ρ)] +

η∑
i=1

E[Ui(ρ)] (3)

In the following, we will be interested in finding the optimal mi-
gration schedule ρ∗ that maximises the social welfare, i.e., ρ∗ =
argmaxρE[W (ρ)]. We focus our attention on this schedule, as it max-
imises the expected difference between the value of completing the
task and the total costs incurred and so naturally represents a solution
that best uses the available resources to complete the task.

3 OPTIMAL TASK MIGRATION
In this section, we consider the problem of finding the optimal mi-
gration schedule ρ∗. Initially, in Section 3.1, we characterise the
computational complexity of this problem and then we describe two
algorithms for solving it — the first, in Section 3.2, deals with
continuous-time provisioning for a particular problem distribution,
while the second, in Section 3.3, presents a general algorithm for any
distribution when discrete provisioning is employed.

3.1 Problem Hardness
Unfortunately, finding the optimal migration schedule is a computa-
tionally hard problem, as we show in the following.

Theorem 1 OPTIMAL TASK MIGRATION [OTM] is NP-hard.

Proof. We prove this by providing a polynomial time transformation
from an instance of the NP-complete KNAPSACK problem to an in-
stance of OTM. The proof applies to both continuous and discrete
provisioning. First, we consider an instance of KNAPSACK: we let
I = {1, 2, . . . , k} be a set of items, wi the weight of item i and vi its
value. The capacity is C and the target value is T . To transform this
to an instance of OTM, we create one service provider for each item
i. For each such provider i, we set its quality of service as qi = vi
and define its cost profile ci such that ci(x) = 0 if i−1 ≤ x ≤ i, and

S. Stein et al. / Optimal Task Migration in Service-Oriented Systems: Algorithms and Mechanisms74

ci(x) = ∞ otherwise. We also define an additional provider k + 1
with qk+1 = 0 and ck+1(x) = 0 that corresponds to not choosing
an item. Next, we define the migration costs such that migrating to a
provider i (with 1 ≤ i ≤ k) costs wi (mj→i = wi), while migrating
to provider k + 1 or back to the consumer is free (mi→k+1 = 0,
m0→k+1 = 0 and mi→0 = 0). Finally, we set the value of the task
to V = C + ε, where ε < mini wi, its deadline to td = k, and
we set F , such that the difficulty is always T . This transformation
can be performed in polynomial time, and it is straight-forward to
see that the original instance of the KNAPSACK problem is satisfied
if and only if the solution to the constructed OTM instance contains
at least one provider other than k + 1. �

Despite this hardness result, we will propose two algorithms for
solving OTM that work well in practice and that apply to the two
different provisioning mechanisms outlined earlier.

3.2 Continuous-Time Provisioning
First, we consider continuous-time provisioning. Now, to solve OTM
optimally in this case, we need to make some assumptions about
the difficulty distribution of the task. For the purpose of this paper,
we will assume that the difficulty follows an exponential distribution
with rate parameter λ, i.e., F (x) = 1 − e−λx and f(x) = λe−λx.
We chose this particular distribution, as there is evidence that the
run-time of computionally difficult tasks often follows this in prac-
tice [11]. For the purpose of this section, we will also make the sim-
plifying assumption that the cost of each provider does not fluctuate
over time — which we denote by defining ci(x) = ki for some con-
stant cost ki. We make these assumptions to keep the calculations
manageable, but we note that we will consider arbitrary costs and
distributions for the discrete mechanism in Section 3.3.

Given this, we can now calculate the expected social welfare as
follows (using Equations 1, 2 and 3):

E[W (ρ)] =

η∑
1=i

e
−λ

∑i−1
j=1

tjqj

·

((
V − mi→0 −

ki

λqi

)(
1 − e−λtiqi

)
− mi−1→i

)
(4)

To find ρ∗ that maximises this, we first show how to find the optimal
processing times, t, given a particular sequence of providers, s. Here,
we can use Lagrange multipliers to maximise Equation 4 subject to
the deadline constraint. Due to space reasons, we omit the details and
simply show the resulting closed form solution for all tx with x > 1:

tx = −
1

λqx
ln

⎛
⎝

kx−1
λ

− qx−1

(
mx−1→x + mx→0 − mx−1→0 + kx

λqx

)
(qx−1 − qx)

(
V − mx→0 − kx

λqx
− Sx

)
⎞
⎠

(5)

with Sx =
∑η

i=x+1
e−λ

∑i−1
j=x+1

tjqj

·
((

V −mi→0 − ki
λqi

) (
1− e−λtiqi

)
−mi−1→i

)
(6)

The first processing time, t1, is obtained as t1 = td −
∑η

i=2
ti. It

is important to note here that each tx only depends on the times of
providers following x in the schedule. Thus, all times can be calcu-
lated efficiently using backwards induction.

This leaves the problem of determining the optimal ordering of
providers, s. However, we can exploit some characteristics of the
optimal solution to design an algorithm that is fast in practice:7

1. The optimal solution never contains a dominated provider (i is
dominated by j if (ki ≥ kj ∧ qi < qj) ∨ (ki > kj ∧ qi ≤ qj)).

2. It is never optimal to migrate to a slower provider (i.e., qi+1 ≥ qi).
3. When Equation 5 is negative or cannot be solved for a particu-

lar x in a given schedule s, this indicates that the optimal tx is 0.

7 Intuitively, these hold due to the time invariance of the exponential function.

Algorithm 1 Continuous-Time Algorithm.
1: P ←FILTERDOMINATED � Prune providers using item 1
2: 〈s∗, t

∗
〉 ← 〈〈〉, 〈〉〉 � Best ordering and times so far

3: Q ← 〈s∗〉 � Unexpanded orderings
4: while Q �= 〈〉 do � More unexpanded?
5: s ← REMOVEHEAD(Q) � Remove first element of Q
6: t ← OPTIMALTIMES(s) � Calculate times for s
7: if FEASIBLE(t) then � Prune using item 3
8: for all i ∈ P do � Consider all providers
9: if qi < qs1 then � Prune using item 2

10: Q ← Q ⊕ (〈i〉 ⊕ s) � Add new ordering
11: if E[w(〈s, t〉)] > E[w(〈s∗, t

∗
〉)] then � Best so far?

12: 〈s∗, t
∗
〉 ← 〈s, t〉 � Update current best

13: return 〈s∗, t
∗
〉 � Return optimal

Thus, the provider can be removed from s without decreasing the
expected utility. Furthermore, since tx depends only on the char-
acteristics of sx−1, sx, . . . , sη , there must be an optimal schedule
that does not end with these providers.

Using these, we search the space of possible orderings, discarding
any that cannot be optimal. Critically, we perform this search by
considering the last provider first and then build up the migration
schedule from back to front. Doing this allows us to exploit item 3
above and prune all orderings that end with infeasible providers.

The full details are given in Algorithm 1.8 In practice, the algo-
rithm finds a solution for realistic settings with hundreds of providers
in seconds on a standard PC. In the following, we now turn to the
discrete-time provisioning mechanism and present an algorithm that
can be used for arbitrary distributions and fluctuating prices.

3.3 Discrete-Time Provisioning
Due to the discrete time slots present here and the limited size of the
state space, this problem is a natural candidate for dynamic program-
ming [4]. Thus, we characterise the state of a task as S = 〈d, t, i〉,
where d is the difficulty achieved so far, t is the elapsed time and i
is the provider where the task is currently executing. Given this, we
recursively define the optimal expected welfare achievable in state S:

E[w∗
(S)] =

{
0 if t + Δt > td
max(0,maxj

(
E[w∗

j (S)]
)
) otherwise (7)

where E[w∗
j (S)] is the optimal expected welfare achievable in state

S given that the task is next executed at provider j:

E[w∗
j (〈d, t, i〉)] = −mi→j −

∫
t+Δt

t

cj(x)dx + Fj(d) · (V − mj→0)

+ (1 − Fj(d)) · E[w∗
(〈d + qjΔt, t + Δt, j〉)] (8)

where Fj(d) is the conditional probability that provider j will suc-
cessfully complete the task within the time interval Δt, given that
d cycles have already been executed without completing the task,
i.e., Fj(d) = (F (d+ qjΔt)− F (d))/(1− F (d)). In the special
case where F (d) = 1, we let Fj(d) = 0. We also assume here that
mi→i = 0, which occurs when the task is not migrated.

Using this recursive formulation, we can find the optimal migra-
tion schedule by finding the solution to E[w∗(〈0, 0, 0〉)] and noting
the chosen decision variables j in Equation 7. The resulting list of
providers indicates the optimal sequence of providers to use for each
time slot. We omit a detailed listing of our algorithm to solve this
here, as it follows standard dynamic programming practices (we first
identify reachable states and then compute Equation 7 for all such
states in a bottom-up manner starting from the deadline and then
working backwards in time). Clearly, as with all dynamic program-
ming approaches, the efficiency depends on how well the problem
can be discretised. Specifically, the number of states to evaluate is
bounded by n ·

(
t2 + t

)
/2 · maxi(qi)/ gcd(q1, q2, . . . , qn), where

8 In the algorithm, ⊕ denotes concatenation, such that 〈a〉 ⊕ 〈b〉 = 〈a, b〉.

S. Stein et al. / Optimal Task Migration in Service-Oriented Systems: Algorithms and Mechanisms 75

n is the number of providers, t =
td/Δt� the number of full time
slots that can be utilised before the deadline and gcd(q1, q2, . . . , qn)
is the greatest common divisor of all qi. Yet, in practice, even large
problems can be solved quickly. For example, when the deadline is
td = 24 hours, a single time slot is Δt = 1 hour, there are 50 po-
tential providers, and the values for qi range in integer steps from 1
to 100, then the algorithm considers up to 1.5 million states. On a
modern PC, this is solved in seconds.

To conlude this section, we note that both algorithms presented
here cover a wide range of realistic settings and can efficiently com-
pute optimal migration schedules when there are dozens or even hun-
dreds of providers. However, we have assumed full information about
the providers and that these willingly offer their services. In the next
section, we address the more realistic case where participants are
self-interested and might strategise about the information they reveal.

4 INCENTIVISING TRUTHFULNESS
In order to calculate the optimal migration schedule we have so far
assumed that the consumer has access to complete information about
the quality of service (QoS) and cost profiles of the providers. In
practice, this information needs to be elicited and a strategic pro-
vider may misreport if this results in a higher expected utility. To
this end, we turn to the field of mechanism design to find appro-
priate payments that incentivise the service providers to reveal their
information truthfully. In this context, a well known mechanism is
Vickrey-Clarke-Groves (VCG) [8]. The main advantage of VCG is
that the resulting allocation is efficient, i.e., it maximises the social
welfare in the system. However, as we will show, the VCG mecha-
nism only works in our setting if we know or can verify the providers’
quality of service, and the consumer is truthful about the properties
of the task (i.e., the task difficulty distribution and the value it de-
rives if the task is completed). To address the setting in which both
sides can misreport, we first need to introduce a trusted intermedi-
ary agent (henceforth called the centre) who calculates and enforces
the payments. Furthermore, we need to design appropriate payments
to incentivise both sides. In the following, we first apply the VCG
mechanism when the consumer is assumed to be truthful and the QoS
is known. We then proceed to the setting where the QoS also needs
to be elicited. Finally, we assume that the consumer is also strategic
and consider the elicitation problem on both sides.

4.1 Strategic Providers and Known QoS
We first consider the case where a provider can only misreport its
cost profile.9 In this case, we can use the standard VCG mechanism,
which calculates the payments to a service provider based on the
marginal contribution of that provider [8]. Specifically, for our set-
ting, the VCG payments or transfers to each provider i are given by:

τi = E[W−i(ρ
∗)]− E[W (ρ∗−i)], (9)

where ρ∗ is the optimal migration schedule, ρ∗−i is the optimal sched-
ule if provider i did not exist, and E[W−i(ρ

∗)] = E[W (ρ∗)] −
E[Ui(ρ

∗)] is the social welfare excluding the expected costs incurred
by i (but including the provider in the schedule ρ∗ and its impact on
the other agents’ expected utilities). In words, the transfers to provi-
der i are equal to the difference between the social welfare excluding
the costs of i, and the social welfare when excluding i altogether.
This is also known as its marginal contribution to the social welfare.

VCG has a number of desirable properties. First, it is incentive
compatible in dominant strategies, which means that a provider is
always (weakly) better off revealing its true cost profile, irrespective

9 The QoS could be verified by the centre during execution, e.g., by mod-
ifying the task code to sample the speed of the processor. In this case, a
penalty could be imposed (either monetary or virtual by using a reputation
mechanism) if the observed QoS does not correspond to the reported QoS.

of the reports of others. Intuitively, it can be seen that, for this to hold,
it is necessary that the payment does not depend on the (reported)
costs of provider i, which is the case for Equation 9.10 Second, the
mechanism is individually rational, which means that the provider
will always be better off (in expectation) participating than not. Note
that this requires τi + E[Ui(ρ

∗)] to be positive always, and it is easy
to verify that this is indeed the case.

4.2 Strategic Providers and Unknown QoS
If the service provider is also asked to report its QoS and this can-
not be verified by the centre, then the VCG mechanism is no longer
incentive compatible. To see this, note that the service provider can
artificially inflate the expected social welfare, E[W−i(ρ

∗)] in Equa-
tion 9, by reporting a higher QoS, resulting in a higher payment (even
if the optimal migration schedule remains unchanged).

Now, this problem can be avoided by calculating the payments
based on the actual utilities of the other agents after execution, rather
than using the expected utilities. This so-called execution-contingent
VCG has been successfully applied to address similar problems, e.g.,
in [9, 5]. Specifically, the payments are here calculated as follows.
Let ρ′ = 〈s′, t

′
〉 denote the executed schedule, where s′ contains

the service providers that have actually been used, and t
′ the actual

time that they spent executing the task. Furthermore, let η′ = |s′|.
Then the actual utility of the ith provider in the schedule is given

by: Ui(ρ
′) = −

∫ t′i
0

ci(x +
∑i−1

j=1
t′j)dx. Furthermore, the utility of

the consumer is UC(ρ
′) = V −

∑η′

i=1
mi−1→i −mη→0 if the task

has succeeded, and UC(ρ
′) = −

∑η′

i=1
mi−1→i otherwise. Then the

payment to i is given by:

τi =

⎡
⎣Uc(ρ

′
) +

∑
j∈{1,η′}\i

Uj(ρ
′
)

⎤
⎦ − E[W (ρ

∗
−i)] (10)

Note that the expected payment, E[τi], is identical to Equation 9
(given that the providers are truthful). However, Equation 10 no
longer relies on the reported QoS values. It is straightforward to show
that Equation 10 incentivises the providers to report their private in-
formation (including the QoS) truthfully. Essentially, this holds be-
cause doing so results in the optimal migration schedule, which in
turn results (in expectation) in the highest payment to the providers.
The fact that the migration schedule is calculated optimally is impor-
tant, otherwise incentive compatibility is generally lost.11 In the case
that providers are asked to report their QoS, however, this requires
all the providers in the system to be truthful. Now, since the optimal
response of a provider depends on the fact that others are truthful
as well, this means that the mechanism is no longer incentive com-
patible in dominant strategies, but rather in ex post implementation,
which is a slightly weaker solution concept [1]. Furthermore, note
that payments can be negative (e.g., when the task fails, payments
will always be negative). Therefore, providers bear some of the risk,
but, in expectation, payments are always positive. Therefore, given
the assumption of risk neutrality, individual rationality still holds.

4.3 Strategic Providers and a Strategic Consumer
We now turn to the problem of the strategic consumer, who may mis-
report his valuation V , deadline td and the difficulty distribution F
to the centre. A naı̈ve approach is to simply let the consumer pay the
sum of the transfers to the providers. However, it is easy to see that,
since these payments depend on the reports of the consumer, this is
not incentive compatible (e.g., the consumer may report a lower val-
uation in an attempt to lower these payments). If we instead apply the

10 The formal requirement is monotonicity, of which bid independence is a
consequence. See, e.g., [6] for details.

11 We note that our mechanism can be extended for certain suboptimal solu-
tions, similar to those reported in [5].

S. Stein et al. / Optimal Task Migration in Service-Oriented Systems: Algorithms and Mechanisms76

VCG mechanism as in Section 4.1, the marginal contribution of the
consumer becomes: E[W (ρ∗)]−E[UC(ρ

∗)]−0 =
∑η′

i=1
E[Ui(ρ

∗)]
(noting that the social welfare without the consumer is 0). This is
the sum of the expected utilities of the providers (which is always
negative). Now, using the standard VCG, a consumer still has an in-
centive to misreport the problem distribution, since the payments are
calculated based on expected utilities. For example, if the consumer
reports that the task will finish quickly with high probability, then
the expected utility of providers following the first one are likely to
be close to zero, resulting in low payments for the consumer. Again,
this problem can be solved by using the execution-contingent VCG.
Then the (negative) transfers to the consumer simply become:

τC =
∑η′

i=1
Ui(ρ

′) (11)

We summarise the main properties in the following theorem:

Theorem 2 For a given optimal schedule ρ∗, the transfers calcu-
lated by Equations 10 and 11 are ex-post incentive compatible (i.e.,
given that others are truthful) and individually rational w.r.t. the
providers and the consumer.

Although the (execution-contingent) VCG mechanism is efficient,
note that the payments to the service providers do not correspond to
the payments received by the centre from the consumer. That is, the
mechanism is not budget balanced. In fact, while the consumer pays
the true costs incurred by the providers, the centre has to pay them
slightly more to elicit this information truthfully. Therefore, the cen-
tre has to subsidise the market.12 This budget deficit could be recov-
ered by charging a fixed subscription fee to consumers, providers, or
both. Alternatively, if the mechanism is deployed within a company
or by the government, they may be willing to pay the mechanism in
return for obtaining an efficient market. In the next section, we will
empirically evaluate the mechanism and measure the size of the bud-
get deficit. We show that the deficit is small compared to the overall
costs when there is sufficient competition.

5 EMPIRICAL EVALUATION
In this section, we evaluate our approach empirically by simulating
a large range of distributed systems and realistic task distributions.
To this end, we first describe our experimental setup (Section 5.1)
and then outline a number of benchmark strategies (Section 5.2). In
Sections 5.3 and 5.4, we show our results for the continuous and
discrete provisioning settings, respectively.

5.1 Experimental Setup
We test our approaches over a wide range of settings to represent
possible scenarios that may be encountered in reality. In doing this,
we vary a number of system parameters and measure the expected
social welfare obtained by each strategy (and, where applicable, also
the expected utility of the intermediary agent, or centre).13

For consistency, we keep certain variables of the simulation
fixed throughout this section (the trends continue to hold for other
choices). First, the consumer faces a task with value V = $100 and
deadline td = 24 hours. We vary the distribution F , from which the
difficulty of the task is drawn, but we generally choose one with a
mean of around 100 (this could represent 100 · 1015 CPU cycles).

We assume that each provider owns one of two possible resource
types, chosen at random: cheap, slow desktop PCs (80%) or expen-
sive, fast supercomputers (20%). Each of the former has a quality

12 In general, it is impossible to have mechanisms which are both efficient
and budget balanced [8]. Here we focus on efficiency, and consider budget
balanced mechanisms in future work.

13 To obtain statistical significance, we repeat all experiments 1000 times
and when reporting performance differences, we ensure their significance
by performing ANOVA and pairwise t-tests with p < 0.05. As the 95%
confidence intervals of the results are small, we omit them from the graphs.

of service qi that is drawn from the discrete uniform distribution
Ud(1, 5), while each of the latter’s qi is drawn from Ud(5, 100). To
generate costs, we let ĉi denote the cost per cycle of i. As desktop
PCs are more common, likely to be in lower demand and have a
lower running cost, we draw each desktop’s ĉi from the continuous
uniform distribution Uc(0, 0.01), while each supercomputer’s ĉi is
drawn from Uc(0.35, 0.5). Using this, we calculate the cost per time
unit of provider i as ci = ĉi · qi.Thus, the desktop PCs may be virtu-
ally free, but even the fastest need 20 hours on average to complete
the consumer’s task. The fastest supercomputers, in contrast, do this
in an average 60 minutes, but charge up to $50 per hour.

To simulate realistic migration costs between providers in a global
network, we place all agents uniformly at random on a unit sphere.
We then compute the migration cost from i to j as the shortest dis-
tance between them along the outside of the sphere, multiplied by
a constant m̂. We vary this constant in our experiments, such that
migration costs at most $0, $5, $10 or $25.

5.2 Benchmark Strategies
As discussed earlier, we are interested in measuring the relative ben-
efit of considering migration and also of using full information about
the cost profiles of providers. Thus, we use a set of benchmark strate-
gies that we classify along the following dimensions:

• Information: Myopic strategies assume that costs do not change,
i.e., at each point in time, t, they plan optimally assuming ∀i, x >
t : ci(x) = ci(t). Once costs change, however, the plan is
adapted. Informed strategies use full information about ci.

• Migration: Single strategies plan optimally but use at most a sin-
gle provider to complete the task. Migrating strategies use migra-
tion when this is beneficial.

Throughout this section, we consider all combinations of these, not-
ing that our approach corresponds to informed migrating.

5.3 Continuous-Time Provisioning Results
We begin by looking at the continuous provisioning setting, where
the task difficulty is distributed according to an expenential distri-
bution with rate parameter λ = 1

100
. Since our approach does not

deal with fluctuating cost profiles, we do not examine the difference
between informed and myopic strategies here, concentrating instead
on the difference beween single and migrating strategies. To cover a
range of settings, Figure 1 shows the results for various numbers of
providers, n, and migration costs, m̂.

The top half here shows the average social welfare obtained for the
different strategies. Several trends immediately emerge here. First, it
is clear that using migration is generally of significant benefit, as it
consistently obtains a higher utility in all but one setting. This im-
provement arises because the consumer is able to first attempt execu-
tion on the slower, cheap providers and then only near the deadline
switch to the faster ones (a typical optimal migration schedule here
has 2–3 providers). The single strategy, on the other hand, immedi-
ately procures a fast, expensive provider to complete the task.

Over all these cases, migration yields an average improvement of
over 15%, but is as high as 22% in some cases. Generally, the rel-
ative improvement is greater when network costs are low and when
there are more providers. Intuitively, this is because there are more
opportunities for migration and the costs are lower.

To conclude the continuous case, the bottom half of the graph
shows the expected utility of the intermediary agent, or centre. As
outlined in Section 4, the centre here incurs a deficit. However, this
is relatively small (8.5% of the welfare on average) and drops to less
than 1% in some settings. In general, we note that the deficit de-
creases as the number of providers rises and as migration costs drop

S. Stein et al. / Optimal Task Migration in Service-Oriented Systems: Algorithms and Mechanisms 77

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100

So
ci

al
 W

el
fa

re

Providers:
Zero Network Costs Low Costs (<5) Medium Costs (<10) High Costs (<25)

Single
Migrating

−20

−10

 0

C
en

tr
e

U
til

ity

Figure 1. Results for continuous-time provisioning.

— this is because it is increasingly likely in these settings that a pro-
vider can be replaced by another similar one and so its marginal con-
tribution is relatively low (i.e., there is more competition).

5.4 Discrete-Time Provisioning Results
Next, we consider the discrete-time case. As our approach for this
deals with arbitrary distributions and cost profiles, we are here able
to evaluate the effect of varying levels of uncertainty as well as cost
fluctuations over time. Thus, we now assume the task difficulty is
drawn from a normal distribution with a mean of 100 and standard
deviations that we vary from 0 to 400 (truncated at 0). Furthermore,
we consider random cost profiles for providers, where we perturb
the cost per cycle ĉi (described above) randomly once per hour by
multiplying it by a random value drawn from Uc(0, 10). Second,
we consider a smooth profile, where the cost of i is calculated as
ci(x) = ĉi · qi · 2.5 · (sin(π

12
· (
⌊
12

π
θ
⌋
+ x)) + 1), where θ is the

longitude of the provider on the unit sphere. Choosing this means
that the cost varies smoothly between 0 and 5 times the normal cost
during a full day, thus simulating peak and off-peak hours. Using θ
creates an offset based on 24 equal time zones, reflecting the fact that
peak times may be specific to the provider’s location. As the trends
discussed in Section 5.3 continue to hold, we now only consider 25
providers and fix the maximum migration cost at $5.

The results of our experiments are shown in Figure 2, grouped by
the cost profiles used (homogeneous refers to the unperturbed cost
profiles, where no distinction between informed and myopic is neces-
sary). Here, the benefit of task migration is more pronounced and ev-
ident over a large range of settings. Typically, the informed migrating
strategy achieves a relative improvement of around 30–50% over the
simple myopic single strategy, although for high uncertainty and fluc-
tuating cost profiles, this rises to over 160%. The performance of the
informed single is generally higher than its myopic counterpart, but
usually significantly lower than either of the two migrating strategies.
Thus, migration appears to be the key to performing well in these set-
tings. In many settings, the myopic migrating strategy achieves 90%
or more of the informed migrating strategy, but this drops to less
than 70% for random cost profiles. Here, the random price fluctu-
ations lead to wrong migration decisions that frequently leave the
consumer unable to complete the task by the deadline. Thus, having
full information is critical in some settings. Furthermore, we gener-
ally notice that migration initially becomes more beneficial when the
uncertainty rises (i.e., as we increase the standard deviation of F).
However, when this is too high, the consumer is increasingly forced
to rely on a single fast provider again.

We also note that the centre’s deficit can be relatively high in set-
tings with random cost profiles. This is because the consumer often
includes many providers in its schedule (up to 9 on average), to ex-
ploit the best offer at any point in time. Each provider here needs
to be paid its marginal contribution, which results in a high overall

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 50 100 200 400 0 50 100 200 400 0 50 100 200 400St. Dev.:
Homogeneous Cost Profiles Random Cost Profiles Smooth Cost Profiles

Myopic Single
Informed Single

Myopic Migrating
Informed Migrating

−20

−10

 0

Figure 2. Results for discrete-time provisioning.

payment. When a smooth cost profile is used, transfers are generally
lower, because fewer providers are required and their marginal con-
tribution is often lower too. Overall, the deficit is usually acceptable
and, in all but two cases, outweighs the loss in welfare that would be
incurred by switching to any other strategy.

6 CONCLUSIONS AND FUTURE WORK
The approaches outlined in this paper can be applied in a wide range
of service-oriented settings. First, we envisage that users of cloud and
grid systems can use our algorithms to execute their tasks more ef-
fectively, reducing overall costs and meeting time constraints despite
uncertain requirements. Even in the absence of a mechanism, i.e.,
when the only information about costs consists of the current posted
prices of resources, we showed that a myopic migration strategy still
achieves a significant improvement over non-migrating strategies.

Second, our proposed mechanism can be used to implement ef-
ficient systems, where the best resources are selected to complete a
given task. As this requires investment by an intermediary, we believe
that this would most likely be offered by an organisation or govern-
ment that has an interest in ensuring efficiency, e.g., to manage an
open cloud or inter-organisational grid. Alternatively, an intermedi-
ary could offer the mechanism as a value-added service and reclaim
costs elsewhere, e.g., through subscription fees or advertising.

In future work, we will consider the possibility of failures and set-
tings where providers can invest a variable effort by dedicating only
a proportion of its resources to the task.

ACKNOWLEDGEMENTS
This work was undertaken as part of the ALADDIN project, which is jointly funded by
BAE Systems and EPSRC (EP/C548051/1), and as part of the EPSRC funded project
on Market-Based Control (GR/T10664/01).

REFERENCES
[1] D. Bergemann and S. Morris, ‘Ex post implementation’, Games and Economic

Behavior, 63(2), 527–566, (2008).
[2] A. Blum and C. Burch, ‘On-line learning and the metrical task system problem’,

Machine Learning, 39(1), 35–58, (2000).
[3] P. Cheeseman, B. Kanefsky, and W. M. Taylor, ‘Where the really hard problems

are’, in Proc. IJCAI-91, pp. 331–337, (1991).
[4] S. Dasgupta, C. Papadimitriou, and U. Vazirani, Algorithms, McGraw-Hill,

2006.
[5] E. Gerding, S. Stein, K. Larson, A. Rogers, and N. R. Jennings, ‘Scalable mech-

anism design for the procurement of services with uncertain durations’, in Proc.
AAMAS2010, pp. 649–656, (2010).

[6] A.V. Goldberg, J.D. Hartline, A.R. Karlin, M. Saks, and A. Wright, ‘Competi-
tive auctions’, Games Econ. Behav., 55(2), 242–269, (2006).

[7] E. Huedo, R. S. Montero, and I. M. Llorente, ‘A framework for adaptive execu-
tion in grids’, Softw. Pract. Exper., 34, 631–651, (2004).

[8] A. Mas-Colell, M.D. Whinston, and J.R. Green, Microeconomic Theory, Ox-
ford University Press, 1995.

[9] R. Porter, A. Ronen, Y. Shoham, and M. Tennenholtz, ‘Fault tolerant mecha-
nism design’, AIJ, 172(15), 1783–1799, (2008).

[10] M. P. Singh and M. N. Huhns, Service-Oriented Computing : Semantics, Pro-
cesses, Agents, John Wiley & Sons, Inc., 2005.

[11] J-P. Watson, L. D. Whitley, and A. E. Howe, ‘Linking search space structure,
run-time dynamics, and problem difficulty: A step toward demystifying tabu
search’, JAIR, 24, 221–261, (2005).

S. Stein et al. / Optimal Task Migration in Service-Oriented Systems: Algorithms and Mechanisms78

