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Abstract. We introduce First Order ProbLog, an extension of first
order logic with soft constraints where formulas are guarded by prob-
abilistic facts. The paper defines a semantics for FOProbLog, devel-
ops a translation into ProbLog, a system that allows a user to com-
pute the probability of a query in a similar setting restricted to Horn
clauses, and reports on initial experience with inference.

1 Introduction

A problem for languages that combine probability theory with ex-
pressive logical formulas is that probabilistic and logical knowledge
might interact in complex ways, leading to a semantics that is too
complicated to understand, and inference/learning that is too slow to
be of practical use. Initial research into Probabilistic Logic Learning
therefore mainly focused on adding probabilities to restricted logi-
cal languages, such as definite clause logic [3, 13]. Since then, the
trend has been to extend the expressivity of the logical language,
e.g., to normal clauses [10]. In the past few years there has been a
lot of attention to Markov Logic [12], a probabilistic logic used in
statistical relational learning [1]. Markov Logic consists of a set of
weighted logical formulas each of which can be regarded as a soft
constraint. If such a soft constraint is violated by a possible world,
the probability of the world does not become zero, as in first order
logic, but gracefully decreases. The higher the weight, the harder the
constraint becomes, with infinite weights corresponding to the usual
logical interpretation. While Markov Logic has been very successful
as a framework for statistical relational learning and has been applied
in several challenging applications, such as natural language process-
ing and entity resolution, Markov Logic models are hard to interpret
and not really suitable as a knowledge representation tool. The rea-
son is that the weights cannot directly be interpreted as probabilities
and also that the probability of a formula depends non-linearly on all
weights in the theory.

This paper contributes a new formalism, called First Order
ProbLog, using the Markov Logic idea of soft constraints, but in
which each first order formula is annotated with the probability that
a grounding of the formula – independently of anything else – holds.
This gives a logic very similar to that of Nilson [9]. The questions
arise whether inference is feasible and how one can cope with incon-
sistency. These questions are explored in this paper. Using ideas of
Stickel [15], we translate a theory in our logic into a ProbLog pro-
gram [5] that also includes clauses for inferring inconsistency (with
head false). We show how to use the ProbLog machinery to assign
a minimal and a maximal probability to the truth of the query while
taking consistency requirements into account.
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2 First Order ProbLog and its Semantics

A ProbLog program [4, 5] consists of a set of facts annotated with
probabilities – called probabilistic facts – together with standard def-
inite clauses that can have positive and negative probabilistic facts in
their body. The semantics is defined through belief sets which corre-
spond to least Herbrand models of the clauses together with subsets
of the probabilistic facts. If fact fi is annotated with pi, fi is included
in a belief set with probability pi and left out with probability 1−pi.
The different facts are assumed to be probabilistically independent,
however, negative probabilistic facts in clause bodies allow the user
to enforce a choice between two clauses.

In this paper we define FOProbLog, a language similar
to ProbLog, but using full first order logic formulas instead
of definite clauses. A FOProbLog statement is of the form
∀x.Ψ1 : α1 ∨ . . . ∨ Ψn : αn where the αi are non-zero probabilities
with sum 1 and the Ψi are first order formulas with free variables in-
cluded in x. If Ψi is true, it can be omitted (in which case the sum of
the probabilities becomes smaller than 1); if α1 = 1, it can be omit-
ted as well. These formulas express independent beliefs about the
world. Each belief is disjunctive: we believe that for each ground-
ing of x exactly one of a number of possibilities holds, but we don’t
know which one, so we attach a probability to each of the disjuncts.
We can now have a number of different ”complete belief sets”, which
are formed by believing precisely one disjunct from every grounded
disjunction according to its probability.

Ex. 1 Our running example uses a domain with a single constant
Floris and theories consisting of subsets of the following formulas

(1) male(Floris) : 0.4 ∨ female(Floris) : 0.6
(2) ∀x.(cs(x) → male(x) : 0.8) ∨ (cs(x) → female(x) : 0.2)
(3) ∀x.¬(male(x) ∧ female(x))
(4) cs(Floris)

If the theory contains only formula (1), expressing a prior belief
about the name Floris being male or female, each complete belief
set either includes the fact male(Floris) (with probability 0.4) or
the fact female(Floris) (with probability 0.6).
After adding the second formula, each complete belief set also con-
tains one of cs(Floris) → male(Floris) and cs(Floris) →
female(Floris). One of the resulting four belief sets, with prob-
ability 0.8 · 0.6, contains the formulas female(Floris) and
cs(Floris) → male(Floris).
Adding the third formula to the theory, the extension of the latter
belief set allows one to infer ¬male(Floris) and ¬cs(Floris).

Belief sets in FOProbLog can be inconsistent. One should assign
zero probability to such belief sets. With s a total choice and c(s) ex-
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pressing consistency of s, P (s|c(s)), the normalized probability of a
total choice s, is given by P (s)·P (c(s)|s)/P (c(s)) where P (c(s)|s)
is either 1 or 0.

Ex. 2 Using all four formulas of Example 1 makes the belief set
with formulas female(Floris), cs(Floris) and cs(Floris) →
male(Floris) (as well as another one) inconsistent. The probabil-
ity of an inconsistent belief set is 0.8 · 0.6 + 0.4 · 0.2 = 0.56. Nor-
malizing the probabilities of the two consistent belief sets, we obtain
0.4·0.8/(1−0.56) = 0.73 for the one containing male(Floris) and
0.27 for the one with female(Floris). Using all our independent
formulas about maleness, we thus derive that Floris is more likely
male than female, contrary to the belief about the name Floris.

While the above example can be modeled in ProbLog, the
probabilities inferred there will have a different meaning, as
ProbLog adopts a different view on consistency. In a ProbLog pro-
gram containing clauses male(Floris). with probability 0.4 and
male(X):-cs(X). with probability 0.8, those clauses together de-
fine the male predicate and, by closed world assumption, also
¬male, the equivalent of female. There are 4 different belief
sets, one with both clauses, two with one clause and one without
clauses, but none with an inconsistent belief set where Floris is
both male and not male. The probability of male(Floris) is thus
0.8 + 0.4 − 0.8 · 0.4 = 0.88 instead of 0.73.

In the rest of the paper, we use a more basic form of FOProbLog
which, similarly to ProbLog, distinguishes probabilistic facts from
the logical part of a theory.

Def. 1 (FOProbLog theory) A FOProbLog theory T = (PF, Φ)
consists of a probabilistic part PF and a logical part Φ. Its pred-
icates are split into sets ΣP and ΣL of probabilistic and logical
predicates, respectively. PF contains probabilistic facts of the form
pf(x) : α, with α a non-zero probability, x n different variables and
pf/n ∈ ΣP . Each ground instance pf(x)θ of such a fact is true with
probability α, and is not a grounding of any other probabilistic fact.
Different instances (of the same or of different probabilistic facts)
are probabilistically independent. An assignment of a truth value to
a ground instance of a probabilistic fact is called atomic choice, an
assignment to all of them a total choice. The probability prob(s) of a
total choice s is the product of all αi for true instances pfi(x)θ : αi

and all (1 − αj) for false instances pfj(x)θ : αj . The logical part
Φ of the theory consists of a set of implications ∀x.P (x) → F (x),
where F (x) is a first-order formula with free variables x using only
predicates from ΣL, and P (x) is a conjunction of literals with pred-
icates from ΣP

2.

Ex. 3 Formulas (1)-(4) of Example 1 are now written as

(1a) pf mn(Floris) : 0.4
(1b) pf mn(Floris) → male(Floris)
(1c) ¬pf mn(Floris) → female(Floris)
(2a) pf cs(x) : 0.8
(2b) ∀x.pf cs(x) → (cs(x) → male(x))
(2c) ∀x.¬pf cs(x) → (cs(x) → female(x))
(3) ∀x.¬(male(x) ∧ female(x))
(4) cs(Floris)

The probabilistic part of formulas (3) and (4) is true and omitted.

2 A formula ∀x.Ψ1 : α1 ∨ . . . ∨ Ψn : αn is split into n formulas
∀x. Pi(x) → Ψi(x) and n − 1 probabilistic facts are introduced, their
probabilities are computed and the probabilistic part Pi(x) of each formula
contains a conjunction of probabilistic literals as described in [4].

To define the semantics of our logic, we fix a domain D and con-
sider the set WD of all possible worlds in D, i.e., each I in WD is
an interpretation for the vocabulary of the theory with D as its do-
main; in particular I assigns true or false to each probabilistic and
each logical ground atom.

Notation 1 In what follows, we use I |= s with I an interpretation
and s a total choice to express that I makes the same truth assign-
ments to the probabilistic facts as s. We often say I extends s.

Def. 2 (Semantics) Let T = (PF, Φ) be a theory and D a domain.
Let Cons be the set of total choices s such that there exists an

interpretation I that extends s (I |= s) and is a model of Φ (I |= Φ),
i.e., the total belief set corresponding to the total choice is consistent.dprob(s) (the normalized probability of a total choice) is
given by prob(s) · prob(s ∈ Cons|s)/ P

s∈Cons prob(s) where
prob(s ∈ Cons|s) is 1 when s is consistent and 0 otherwise.

A probability distribution μ over WD is a model of T , denoted
μ |= T , if and only if (i) for all I : I �|= Φ implies μ(I) = 0; (ii) for
each total choice s: dprob(s) =

P
I|=s μ(I).

The theory is inconsistent when no consistent total choice exists.
In that case, no probability distribution is defined.

Note that the normalization introduced here corresponds to condi-
tioning on total choices with consistent extensions, which will be
exploited in Section 3 to calculate probabilities of queries.

In contrast to the above informal exposition, where belief sets con-
tained logical formulas and hence had interpretations over the logical
predicates only, now interpretations assign truth to both probabilistic
and logical predicates.

Ex. 4 In our example, with two probabilistic and three logical pred-
icates and a single constant, we now have 32 possible interpreta-
tions. However, as before, only two of the four total choices can
be extended in a belief set that is a model of the logical part;
moreover, these models are unique. One of them is the belief set
{pf cs(Floris), pf mn(Floris), cs(Floris), male(Floris)}. It
extends the total choice {pf cs(Floris), pf mn(Floris)}, is a
model of the logical part of the theory and is assigned probability
0.73 in the probability distribution that is a model. The other one,
{cs(Floris), female(Floris)}, extends the total choice where
both probabilistic atoms are false; it is assigned probability 0.27.
The total choices that make one probabilistic atom true and the other
one false cannot be extended in a model of the logical part; their
probability mass has been redistributed over the other ones.

In the above example, there is at most one belief set that ex-
tends a total choice and hence only one probability distribution that
is a model. This does not hold in general. FOProbLog theories im-
pose constraints, and any distribution satisfying these constraints is a
model. Instead of making additional assumptions (such as the princi-
ple of indifference) to choose a specific distribution, we will restrict
ourselves to sound inference, and will infer probability intervals only.

Ex. 5 Consider a theory consisting of the probabilistic fact
pf(x) : 0.7 and the logical formula ∀x.pf(x) → p(x) with a single
element domain {A}. The total choice pf(A) can be extended into
the belief set {pf(A), p(A)} and hence μ({pf(A), p(A)}) = 0.7.
The empty total choice can be extended in two ways, namely ∅ and
{p(A)}; hence μ(∅) + μ({p(A)}) = 0.3. Any distribution that sat-
isfies the latter constraint is a model. The principle of indifference
would assign probability 0.15 to each of the latter two belief sets and
hence 0.85 to p(A) and 0.15 to ¬p(A). We infer that the probability
of p(A) is in the interval [0.7, 1.0] and that of ¬p(A) in [0.0, 0.3].
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3 Inference

We are now interested in deciding what the theory T allows
us to conclude over the probability of some query formula Q.
For each given domain, T has a non-empty set M̂ of mod-
els μ. Each μ ∈ M̂ assigns a particular probability μ(Q) =P

I|=Q μ(I) to Q, yielding, in general, a non-empty probabil-
ity interval [minμ∈M̂ μ(Q), maxμ∈M̂ μ(Q)]. We are now inter-
ested in the inference task of determining this interval. Because
maxμ∈M̂ μ(Q) must be equal to 1 − minμ∈M̂ μ(¬Q), we can re-
strict attention to the computation of a lower bound on the probabil-
ity of a query. As the following theorem shows, we can compute this
lower bound without having to consider any specific model μ of T .

Theorem 1 Let M̂ be the non-empty set of models of a consistent
theory T . Then minμ∈M̂ μ(Q) =

P
s|=Q

dprob(s), where s |= Q

means that Q holds in all I ∈ WD such that I |= s.

Proof 1 Let WQ = {I|I |= Q} and WSQ = {I|∃s : I |= s ∧
s |= Q}. By definition, μ(Q) =

P
I∈WQ

μ(I). Also by definition,P
s|=Q

dprob(s) =
P

I∈WSQ
μ(I). Obviously,

P
I∈WQ

μ(I) ≥P
I∈WSQ

μ(I). To prove the theorem, it suffices to show that there
exists a probability distribution μ′ that is a model and for which the
equality holds. The equality holds if μ′ assigns 0 probability to all
I ∈ WQ \ WSQ. For such I , we can distinguish two cases. Either I
restricted to the probabilistic atoms gives a total choice that cannot
be extended into a consistent belief set, in which case all distributions
that are a model assign 0 probability to I . Or I restricted to the prob-
abilistic atoms gives a total choice s with at least one I ′ extending
s such that I ′ �|= Q. In this case, μ′ can be chosen to assign all the
probability mass dprob(s) to interpretations that are not models of Q
and hence set μ′(I) = 0. Hence μ′(I) = 0 for all I ∈ WQ \ WSQ.

The normalized probability of a total choice that can be ex-
tended into a consistent belief set is obtained by dividing its
probability by the probability of all such total choices. The lat-
ter is the complement of the probability of those total choices
where this is not possible, that is, the belief sets containing false.
Furthermore, recall that dprob(s) = 0 for total choices with-
out consistent extension. Hence, we also have minμ∈M̂ μ(Q) =“P

s|=Q∧¬false prob(s)
”

/
“
1 − P

s|=false prob(s)
”

, which in fact

corresponds to the conditional probability prob(Q|¬false).

Ex. 6 Let us reconsider the theory consisting of pf(x) : 0.7 and
∀x.pf(x) → p(x). The query p(A) can be proven with a total choice
that includes the probabilistic fact pf(A). As no total choice results
in inconsistency, this gives a minimal probability of 0.7. No proofs
are possible for ¬p(A), hence the maximal probability of p(A) is 1.

The number of total choices is exponential in the number of proba-
bilistic facts, hence it is not feasible to evaluate a query for each total
choice. More promising is the ProbLog approach that enumerates all
proofs in terms of the probabilistic facts they use and encodes this in-
formation in a Binary Decision Diagram (BDD), which can be used
to compute the probability of the query [5]. The main difference is
that we do not work with Horn clauses but with full first order logic,
hence we cannot, as in ProbLog, use the SLD proof procedure to enu-
merate proofs. However, for quickly building a first prototype and for
making maximal use of the ProbLog technology, it is interesting to
stay as much as possible within Prolog. Here the work of Stickel [15]

that describes how to use Prolog technology for building a first order
logic theorem prover comes to the rescue and allows us to convert
FOProbLog theories into ProbLog programs.

The basic idea of Stickel’s work is to transform for-
mulas into clausal form and to encode each n-literal
clause l1 ∨ . . . ∨ ln by n Horn clauses of the form
li:-not(l1), . . . , not(li−1), not(li+1), . . . , not(ln).. To ob-
tain Horn clauses, negative literals are encoded by positive ones: For
each predicate p/n, Stickel introduces a not p/n and the negation
of p(t) is replaced by not p(t). In the context of FOProbLog, for
each formula ∀x.P (x) → F (x), the logical part F (x) is converted
in clausal form, Stickel’s transformation is applied to the resulting
clauses, and the conjunction P (x) is added to the bodies of the final
Horn clauses.

Ex. 7 Applying the transformation to our example gives the follow-
ing ProbLog program (we switch to Prolog notation for constants
and variables):

(1a) 0.4::pf_mn(floris)
(1b) male(floris) :- pf_mn(floris).
(1c) female(floris) :- not(pf_mn(floris)).
(2a) 0.8::pf_cs(X)
(2b) male(X) :- cs(X), pf_cs(X).
(2b) not_cs(X) :- not_male(X), pf_cs(X).
(2c) female(X) :- cs(X), not(pf_cs(X)).
(2c) not_cs(X) :- not_female(X), not(pf_cs(X)).
(3a) not_female(X) :- male(X).
(3b) not_male(X) :- female(X).
(4) cs(floris).

The transformation also has to generate clauses with false in the
head, as those are needed during inference to take consistency into
account. One way to do so is to use the knowledge that a resolution
proof must use at least one clause pf(x) → not(l1)∨ . . .∨ not(ln)
with only negative literals (to have all such clauses as ”set of sup-
port”). By adding false:-l1, . . . ln, pf(x) for each such clause, we
ensure that all proofs of false employ such clauses. Alternatively, one
can use the positive clauses (clauses with only positive literals) as set
of support. Simply adding a clause false:-p(X), not p(X) for each
logical predicate p/n is also possible, but will typically result in a lot
of redundant proofs.

Ex. 8 In our example, using negative clauses as set of support
would add:
false :- male(X), female(X).
whereas using positive clauses would add:

false :- not_cs(floris).
false :- not_male(floris), pf_mn(floris).
false :- not_female(floris), not(pf_mn(floris)).

Stickel additionally needs to modify certain parts of the inference
mechanism. First, Prolog’s input resolution is extended with ancestor
resolution: resolution between the current goal and one of the ances-
tors in the linear chain from query to current goal. A convenient way
to do so in the setting of Prolog’s depth first left to right execution
policy is to keep track of the selected literals with uncompleted proof.
If in the uncompleted proof of a literal p(t) (or not p(t)), its nega-
tion not p(s) (or p(s)) is selected, the latter literal can be resolved
by unifying its atom with the atom of the former (i.e. unifying t with
s) [15]. Also, care is required to avoid unsound unification. In gen-
eral, some unifications may have to be replaced by a sound variant
that performs an occur check. When proving queries in knowledge
bases, it is unlikely that the occur check is needed. Finally, perform-
ing iterative deepening avoids that the search gets trapped in an infi-
nite branch.
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¬sameBib(b1, b2)

¬sameAuthor(a1, a2)

∀ b1, b2, b3 : sameBib(b1, b2) ∧ sameBib(b2, b3) →
sameBib(b1, b3)

∀ b1, b2, a1, a2 : author(b1, a1) ∧ author(b2, a2) ∧
sameAuthor(a1, a2) → sameBib(b1, b2)

∀ a1, a2, w : hasWordAuthor(a1, w) ∧
hasWordAuthor(a2, w) → sameAuthor(a1, a2)

∀a1, a2, w : ¬hasWordAuthor(a1, w) ∧
hasWordAuthor(a2, w) → ¬sameAuthor(a1, a2)

Figure 1. A key part of the logical theory.

Given the transformed theory and a query Q, we can now use
ProbLog’s machinery to construct two Boolean formulas ψ and φ
representing the proofs of Q and the proofs of false, respectively. The
formula ψ∧¬φ thus restricts the proofs of Q to consistent belief sets,
whereas φ is used for normalization, i.e. minμ∈M̂ μ(Q) is obtained
by P (ψ∧¬φ)/(1−P (φ)), where both intermediate results are calcu-
lated using ProbLog’s BDD algorithm. For the running example, we
obtain φ = (¬pf cs(floris)∧pf mn(floris))∨(pf cs(floris)∧
¬pf mn(floris)), and, for the query ?−male(floris), ψ∧¬φ =
pf cs(floris) ∧ pf mn(floris).

4 A case study

To assess performance in practice, we explored an application of
Markov Logic in entity resolution [14]. We will first review some
details of the application, and then describe how to encode key parts
of it directly in ProbLog.

In this application, a fact database containing information
about bibliographic entries such as authors and titles is com-
bined with a probabilistic first order theory describing when two
database references of the same type are likely the same. The
purpose of entity resolution is to compute the probability that
two keys or two authors (e.g. author_william_w_cohen_
and author_w_w_cohen_) refer to the same object, i.e., to
be able to get probabilities for the queries sameBib(b1, b2) and
sameAuthor(a1, a2), as well as for not sameBib(b1, b2) and
not sameAuthor(a1, a2).

Part of the facts database is a binary encoding of a ternary
relation between authors, paper title and publication venue. A
tuple (author, paper, venue) is encoded as author(bib, author),
title(bib, paper) and venue(bib, venue) with bib an arbitrary
key identifying a bibliographic entry. As formulas for authors,
papers and venues are similar in structure, we will restrict our
discussion to those concerning authors and bibliographic entries.
Authors are strings (extracted from web pages) that are composed
from different words (e.g. author_william_w_cohen_
and author_w_w_cohen_ are composed of the words
word_cohen, word_w, and word_william. This information is
encoded in the database relation hasWordAuthor(author, word).

Figure 1 shows the first order logic formulas used in [14] to model
a key part of the application. A first simple set of rules states that
different strings refer to different authors or different bibliographical

not_author(B,A) :- not(author(B,A)).
not_hasWordAuthor(A,W) :-

not(hasWordAuthor(A,W)).

false :- author(B,A), not_author(B,A).
false :- hasWordAuthor(A,W),

not_hasWordAuthor(A,W).

sameBib(B,B).
sameAuthor(A,A).
not_sameBib(B1,B2) :- B1 \= B2, pf1(B1,B2).
not_sameAuthor(A1,A2) :- A1 \= A2, pf2(A1,A2).

false :- domBib(B), not_sameBib(B,B).
false :- domAuthor(A), not_sameAuthor(A,A).

sameBib(B1,B3) :- sameBib(B1,B2),
sameBib(B2,B3), pf5(B1,B2,B3).

not_sameBib(B1,B2) :- sameBib(B2,B3),
not_sameBib(B1,B3), pf5(B1,B2,B3).

not_sameBib(B2,B3) :- sameBib(B1,B2),
not_sameBib(B1,B3), pf5(B1,B2,B3).

sameBib(B1,B2) :-
author(B1,A1), author(B2,A2),
sameAuthor(A1,A2), pf9(B1,B2,A1,A2).

not_sameAuthor(A1,A2) :-
author(B1,A1), author(B2,A2),
not_sameBib(B1,B2), pf9(B1,B2,A1,A2).

not_author(B1,A1) :-
sameAuthor(A1,A2), author(B2,A2),
not_sameBib(B1,B2), pf9(B1,B2,A1,A2).

not_author(B2,A2) :-
sameAuthor(A1,A2), author(B1,A1),
not_sameBib(B1,B2), pf9(B1,B2,A1,A2).

Figure 2. Key clauses in ProbLog.

entries, respectively. The next formula is an example of rules express-
ing that the relations about sameness are likely transitive, while the
remaining ones link authors to bibliographical entries and words to
authors, respectively.

Figure 2 shows the result of translating those formulas into
ProbLog. We cannot blindly translate the first order theory. The main
reason is that the closed world assumption is applied on the large
database. Explicitly adding all negative facts would result in an ex-
ponential blow-up in the size of the logical theory. Therefore, we
instead use negation as failure to encode them and add the first group
of rules to our theory. Note that calls to these predicates are correctly
executed only when all arguments are ground. This need not be a
problem because ProbLog aims at inference of ground queries. An-
other difficulty – if we stick to the negative clauses as set of support –
is that, for each tuple (b, a) not in the database, we would need to add
a clause false :- author(b, a). As we cannot enumerate all such
pairs (b, a), we resort to a different approach to define false. Using a
positive set of support, we should add false :- not author(b, a)
for each pair in the author relation. As the theory does not contain
clauses with author/2 in the head, we can use the author relation
to generate the pairs. Furthermore, this approach introduces less re-
dundancy in the search space of proofs for false than the approach
of simply adding a rule false :- p(X), not p(X) for each of the
predicates author/2, hasWordAuthor/2, sameAuthor/2, and
sameBib/2. The next block of rules states that identical strings re-
fer to identical entities (with certainty), different strings to different
entities (with a rather high probability). As we have added positive
clauses, we also have to add the next block of extra rules for proving
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false. Here domBib/1 and domAuthor/1 are used to generate the
values for the keys and the authors respectively (appropriate ground
facts have to be added to the database). Each clause about transitivity
gives rise to three ProbLog clauses, which form the next block. Note
that loop checking as well as ancestor resolution are important for
doing exact inference with these clauses. The clauses linking authors
to bibliographic entries give rise to the last block. Finally, as the rules
linking authors and words can be translated in the same way as the
previous clauses, we do not further elaborate them.

However, one important observation is that the sharing of words
in different author names, paper titles, and venues, results in a
densely connected network to the point that almost for every
pair (b1, b2) of keys, one can prove sameBib(b1, b2) as well as
not sameBib(b1, b2). Hence, there are a lot of inconsistent total
choices, it is essential to perform normalization and to execute the
false query. Clearly, this is very demanding.

5 Experiments

We set up experiments to investigate the feasibility of inference in
FOProbLog. We focus on the query false, as this can involve all
possible queries in a theory and thus is the most challenging query.
We used a version of ProbLog with tabling [6] which we extended
with ancestor resolution and iterative deepening as suggested by
Stickel [15]. Experiments are performed on an Intel Core 2 Duo CPU
at 3.00GHz with 2GB RAM running Ubuntu 8.04.2 Linux. In our ex-
periments ProbLog is used to first collect the proofs and construct a
Boolean formula for false and to then compute the probability by
constructing a BDD.

The first experiment uses the following FOProbLog theory
∀x, y, z. pf1(x, y, z) → (Fr(x, y) ∧ Fr(y, z) → Fr(x, z))
∀x. pf2(x) → (Sm(x) → Ca(x))
∀x, y. pf3(x, y) → (Fr(x, y) → (Sm(x) ↔ Sm(y)))

and randomly generated databases to investigate the influence of the
domain size and the maximum depth used in iterative deepening. The
latter limits transitive closure. The runtimes to obtain the Boolean
formula representing false are presented in Figure 3; a missing bar
indicates that the experiment failed to properly terminate. We notice
that the search space grows exponentially with the depth limit,
while the influence of the domain size is less drastic. Assessing the
probability of the Boolean formula through BDDs is feasible within
one minute for most of these experiments.

The second experiment uses the entity resolution model of Sec-
tion 4 with the full database of [14] containing 1295 bibliographic
entries involving roughly 90 authors, 400 venues, 200 titles and 2700
words. Figure 4 shows the time to obtain the Boolean formula repre-
senting false for increasing maximum search depth. The results con-
firm that search time increases exponentially, as can be expected for
such a densly connected problem. The limiting factor of our current
prototype is the size of the resulting BDDs; in this application, they
are too large to be constructed within a time limit of one hour.

It is worth mentioning that in both experiments, the Boolean for-
mulas for other queries are far smaller. However, in most cases, the
time still increases exponentially with the depth bound. Furthermore,
our current results do not permit general conclusions about the gap
between minimal and maximal probabilities obtained for each query.

6 Discussion

In FOProbLog, probabilities are associated with formulas in first or-
der logic. The assumption that these formulas are independent allows
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Figure 3. Friends experiments.
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Figure 4. Bibliography experiments.

us to define a semantics based on complete belief sets. Inference in
FOProbLog is the task of calculating the probability that a query can
be proven in a randomly selected complete belief set. Randomly se-
lected belief sets can be inconsistent. The probability of such a selec-
tion can be computed. Normalization assigns 0 probability to incon-
sistent total choices and redistributes their probability mass over the
consistent ones. The probability of the truth of a query is computed
with respect to consistent total choices.

One could argue that inconsistency is an indication of the violation
of the independence assumption. Interestingly, inconsistent belief
sets typically arise after adding factual knowledge (adding cs(Floris)
or adding the database of bibliographical information). This factual
knowledge can be seen as evidence that excludes certain belief sets.
Inconsistency in the non-factual part is thus not an indication of poor
design, as it can make sense to add a formula as evidence to an ex-
isting theory. This refines the theory by ruling out certain complete
belief sets, and hence causes a redistribution of the probability mass.

A related issue is the presence of redundant formulas. One might
consider a situation where two independent experts contribute ex-
actly the same formula to a theory, each of them claiming this for-
mula with probability p1 and p2 respectively. The probability that
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this formula then holds in a complete belief set is p1 + p2 − p1 · p2.
This makes sense when the expertise is really based on different
knowledge. However, with each additional independent expert com-
ing up with the same formula and assigning some probability pi to it,
the overall probability would further increase (unless the experts ex-
plicitly assign a probability to both the formula and its negation). It is
plausible that different experts have used the same common knowl-
edge to come up with their formula and hence the independence as-
sumption is violated. In general, the interaction can be more subtle.
For example, in the context of our case study, one could add that
sameBib is a symmetrical relation. This will likely result in differ-
ent probabilities for queries3.

One should be aware that the probability annotating a formula is
the probability that a ground instance is included in a belief set. To
know the minimal probability that the formula can be proven in a
randomly selected consistent belief set, one should query for it. This
probability can be different for different instances and our current
prototype supports querying only for ground instances.

In reality, given a theory and a number of datasets with evidence,
one will typically learn probabilities. In that case it is very desirable
to have a logical part that avoids inconsistencies and redundancies as
much as possible. Indeed, consider again the extreme case that one
has two copies of the same formula in the theory. From the evidence,
one will derive only the value of p1 + p2 − p1 · p2, so there is a
certain randomness in allocating p1 and p2. Hence, the logical the-
ory better avoids inconsistencies and redundancies to facilitate the
understanding of the learned probabilities.

7 Related Work and Conclusion

We have proposed FOProbLog, a simple but very expressive prob-
abilistic logic and defined its semantics. As Markov Logic, FO-
ProbLog is based on a notion of soft constraint, but formulas are
labeled by probabilistic predicates instead of weights. Indeed, the
higher the probability of a formula, the lower the probability will be
of interpretations not satisfying it. The use of probabilities should
make FOProbLog more intuitive from a knowledge representation
point of view. Another difference is that the semantics of Markov
Logic is defined through the sets of weighted ground instances of
the formulas, while FOProbLog’s semantics is defined in terms of
groundings of probabilistic facts. The difference can be illustrated
using the formula ∀X.pf(X) → ∃Y.likes(X, Y ). In Markov Logic
the probability would necessarily depend on the groundings of both
X and Y , whereas in FOProbLog it only depends on those of X .
Furthermore, the key inference mode in Markov Logic is typically
based on the MPE principle approximating a most likely state given
some evidence, while in FOProbLog an interval on the probability
of queries is computed. In this regard, FOProbLog is also related
to the work on Probabilistic Logic Programming (PLP) [8]. Both
PLP and FOProbLog combine probabilities of basic random events
to assign probabilities to Boolean valued interpretations, subject to
constraints given by the program or theory. However, in PLP, ba-
sic random events as well as individual atoms in clauses can be an-
notated with (independent) closed probability intervals. Inference in
PLP obtains maximally concise probability bounds for a given query
by propagating those intervals using techniques from linear program-
ming. Finally, FOProbLog is also closely related to systems such as
PRISM [13] and ICL [11], which are both based on atomic and total
choices, but only for definite clauses, as well as to Stochastic Logic

3 We have followed as close as possible the original Markov Logic formula-
tion as we only wanted to evaluate the feasibility of inference.

Programs [7], an extension of probabilistic context-free grammars,
where normalization is required to redistribute the probability mass
of failing derivations over successful ones.

We have described how FOProbLog theories can be transformed
into ProbLog programs and have identified the bottleneck to do infer-
ence in problems similar to the ones tackled by Markov Logic [12].
Much work remains to be done. Tabling makes search for all proofs
feasible even for large problems. But calculating the BDD needed for
normalization becomes too expensive. Hence approximation meth-
ods for tabled ProbLog are a first promising direction. Another one
is the analysis of independencies in the theory, which may allow
to restrict consistency computations to the parts of the database in-
fluencing the probability of the current query. Similarly, studying
the influence of the depth bound on the probability values obtained
may provide insights into the necessary depth of search. So far we
only compute probabilities of ground atomic queries. The question
arises whether inference for other queries is feasible. Our logic is
as expressive as Nilson’s [9], indeed, for a formula F we can write
F : α ∨ ¬F : 1 − α, so it is natural that some queries are hard
to evaluate. This has to be analysed. On the representation side, the
insights obtained from the case study can serve as basis for an au-
tomated translation of FOProbLog into ProbLog. Finally, learning
parameters for FOProbLog based on corresponding techniques for
ProbLog [2] is another interesting line of work.
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