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Abstract. Interval temporal logics formalize reasoning about in-
terval structures over (usually) linearly ordered domains, where time
intervals are the primitive ontological entities and truth of formulae
is defined relative to time intervals, rather than time points. In this
paper, we introduce and study Metric Propositional Neighborhood
Logic (MPNL) over natural numbers. MPNL features two modalities
referring, respectively, to an interval that is “met by” the current one
and to an interval that “meets” the current one, plus an infinite set
of length constraints, regarded as atomic propositions, to constrain
the lengths of intervals. We argue that MPNL can be successfully
used in different areas of artificial intelligence to combine qualitative
and quantitative interval temporal reasoning, thus providing a viable
alternative to well-established logical frameworks such as Duration
Calculus. We show that MPNL is decidable in double exponential
time and expressively complete with respect to a well-defined sub-
fragment of the two-variable fragment FO2[N, =, <, s] of first-order
logic for linear orders with successor function, interpreted over nat-
ural numbers. Moreover, we show that MPNL can be extended in
a natural way to cover full FO2[N, =, <, s], but, unexpectedly, the
latter (and hence the former) turns out to be undecidable.

1 Introduction

Interval temporal logics provide a natural framework for temporal
reasoning about interval structures over linearly (or partially) ordered
domains. They take time intervals as the primitive ontological entities
and define truth of formulae relative to time intervals, rather than
time points. Interval logics feature modal operators that correspond
to various relations between pairs of intervals. In particular, the well-
known logic HS [16] features a set of modal operators that makes it
possible to express all Allen’s interval relations [1].

Interval-based formalisms have been extensively used in various
areas of AI, such as, for instance, planning and plan validation, theo-
ries of action and change, natural language processing, and constraint
satisfaction problems. However, most of them make severe syntactic
and semantic restrictions that considerably weaken their expressive
power. Interval temporal logics relax these restrictions, thus allowing
one to cope with much more complex application domains and sce-
narios. Unfortunately, many of them, including HS and the majority
of its fragments, turn out to be undecidable (a comprehensive sur-
vey can be found in [6]). One of the few cases of decidable interval
logic with truly interval semantics, i.e., not reducible to point-based
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semantics, is Propositional Neighborhood Logic (PNL), interpreted
over various classes of interval structures (all, dense, and discrete lin-
ear orders, integers, natural numbers) [15]. PNL is a fragment of HS
with only two modalities, corresponding to Allen’s relations meets
and met by.

In this paper, we consider a proper extension of PNL over natu-
ral numbers, called Metric PNL (MPNL), that features a family of
special atomic propositions representing integer constraints (equali-
ties and inequalities) on the length of the intervals over which they
are evaluated. The right-neighborhood fragment of MPNL has re-
cently been introduced and studied in [8] – the main precursor of
this paper, which extends and strengthens it substantially. MPNL is
particularly suitable for quantitative interval reasoning, and thus it
emerges as a viable alternative to existing logical systems for quan-
titative temporal reasoning. Various metric extensions to point-based
temporal logics have been proposed in the literature. They include
Timed Propositional Temporal Logic (TPTL) [2], two-sorted met-
ric temporal logics [19], Quantitative Monadic Logic of Order [17],
and Metric Temporal Logic [21]. Little work in that respect has been
done in the interval logic setting. Among the few contributions, we
mention the extension of Allen’s Interval Algebra with a notion of
distance developed in [18]. The most important quantitative interval
temporal logic is Duration Calculus (DC) [11], which is quite expres-
sive, but generally undecidable. A number of variants and fragments
of DC have been proposed to model and to reason about real-time
processes and systems [4, 11, 12]. Many of them recover decidabil-
ity by imposing semantic restrictions, such as the locality principle,
that essentially reduce the interval system to a point-based one.

The main results of the present paper are: (i) decidability and com-
plexity of the satisfiability problem for MPNL; (ii) expressive com-
pleteness of MPNL with respect to a well-defined subfragment of
FO2[N, =, <, s]; (iii) an extension of MPNL which is expressively
complete with respect to full FO2[N, =, <, s] and a proof of their
undecidability.

2 MPNL over Natural Numbers

Given a linearly ordered domain D = 〈D, <〉, interpreted as the set
of natural numbers N or any finite subset of it, a (non-strict) interval
over D is any ordered pair [i, j] such that i ≤ j. An interval structure
is a pair 〈D, I(D)〉, where I(D) is the set of all intervals over D. An
interval model is a tuple M = 〈D, I(D), V 〉, where 〈D, I(D)〉 is
an interval structure and V : I(D) → 2AP is a valuation function
assigning to every interval the set of atomic propositions that hold
over it. We define the standard distance function δ : N × N → N as
δ(i, j) = |i−j| (notice that natural numbers appear both as points in
the interval structure and as interval lengths). As a matter of fact, all
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results we will provide may be suitably rephrased for any function δ

satisfying the standard properties of distance over a linear order.
To add a metric dimension to PNL, we introduce a set of special

proposition letters referring to the length of the current interval. They
can be viewed as a metric generalization of the modal constant π of
PNL that ‘identifies’ intervals of the form [i, i] [15]. Formally, for
every k ∈ N and C ∈ {<, ≤, =, ≥, >}, we define the length
constraint lenCk. The formulae of MPNL, denoted by ϕ, ψ, . . ., are
generated by the following grammar:

ϕ ::= lenCk | p | ¬ϕ | ϕ ∨ ϕ | �rϕ | �lϕ.

For i ∈ r, l, we write �iϕ for ¬�i¬ϕ. Given an interval model
M = 〈D, I(D), V 〉 and an interval [i, j] over it, the semantics of
MPNL-formulae is given by the clauses:
• M, [i, j] � lenCk iff δ(i, j)Ck;
• M, [i, j] � p iff p ∈ V ([i, j]), for any p ∈ AP ;
• M, [i, j] � ¬ψ iff it is not the case that M, [i, j] � ψ;
• M, [i, j] � ψ ∨ τ iff M, [i, j] � ψ or M, [i, j] � τ ;
• M, [i, j] � �rψ iff there exists h ≥ j such that M, [j, h] � ψ;
• M, [i, j] � �lψ iff there exists h ≤ i such that M, [h, i] � ψ.
A MPNL-formula ϕ is satisfiable if there exist a model M and an
interval [b, e] over it such that M, [b, e] � ϕ. We can limit ourselves
to consider only length constraints of the form len=k, as all the re-
maining ones can be defined in terms of them.

3 MPNL at Work

Finding an appropriate balancing between expressive power and
computational complexity is a challenge for every knowledge repre-
sentation and reasoning formalism. Interval temporal logics are not
an exception in this respect. We believe that MPNL offers a good
compromise between the two requirements. In the following, we
show that MPNL makes it possible to encode (metric versions of)
basic operators of point-based linear temporal logic (LTL) as well
as interval modalities corresponding to Allen’s relations; in addition,
we show that it allows one to express limited forms of fuzziness.

First, MPNL is expressive enough to encode the strict sometimes
in the future (resp., sometimes in the past) operator of LTL:

�r(len>0 ∧ �r(len=0 ∧ p)).

Moreover, length constraints allow one to define a metric version of
the until (resp., since) operator. For instance, the condition: ‘p is true
at a point in the future at distance k from the current interval and,
until that point, q is true (pointwise)’ can be expressed as follows:

�r(len=k ∧ �r(len=0 ∧ p)) ∧ �r(len<k → �r(len=0 ∧ q)).

MPNL can also be used to constrain interval length and to express
metric versions of basic interval relations. First, we can constrain
the length of the intervals over which a given property holds to be
at least (resp., at most, exactly) k. As an example, the next formula
constrains p to hold only over intervals of length l, with k ≤ l ≤ k′:

[G](p → len≥k ∧ len≤k′), (bl)

where the universal modality [G] (for all intervals) is defined as
in [15]. By exploiting such a capability, a metric version of all, but
one (the ‘during’ relation), Allen’s relations can be expressed. As an
example, we can state that: ‘p holds only over intervals of length l,
with k ≤ l ≤ k′, and any p-interval begins a q-interval’ as follows:

(bl) ∧ [G]
k′^

i=k

(p ∧ len=i → �l�r(len>i ∧ q)).

As another example, a metric version of Allen’s relation contains can
be expressed by pairing (bl) with:

[G]

k′^
i=k

(p ∧ len=i →
_

j �=0,j+j′<i

(�l�r(len=j ∧ �r(len=j′ ∧ q)))).

The relationships between the satisfiability problem for PNL and
the consistency problem for Allen’s Interval Networks have been in-
vestigated in some detail in [9, 22].

Finally, MPNL allows one to express some form of ‘fuzziness’. As
an example, the condition: ‘p is true over the current interval and q

is true over some interval close to it’, where by ‘close’ we mean that
the right endpoint of the p-interval is at distance at most k from the
left endpoint of the q-interval, can be expressed as follows:

p ∧ (�r�l(len<k ∧ �l�rq) ∨ �r(len<k ∧ �rq)).

MPNL capabilities suffice to cope with various application do-
mains. As a source of illustration, we show how to express some
basic safety requirements of the classical gas-burner example (a for-
malization of such an example in DC can be found in [11]). Let the
propositional letter Gas (resp., F lame, Leak) be used to state that
gas is flowing (resp., burning, leaking), e.g., M, [i, j] � Gas means
that gas is flowing over the interval [i, j]. The formula

[G](Leak ↔ Gas ∧ ¬F lame)

states that Leak holds over an interval if and only if gas is flowing
and not burning over that interval. The condition: ‘it never happens
that gas is leaking for more than k time units’ can be expressed as:

[G](¬(len>k ∧ Leak)).

Similarly, the condition: ‘the gas burner will not leak uninterruptedly
for k time units after the last leakage’ can be formalized as:

[G](Leak → ¬�l(len<k ∧ �lLeak)).

We conclude the section by mentioning two application domains
where MPNL features are well-suited, namely, medical guidelines
and ambient intelligence. In the former area [23], events with dura-
tion, e.g., ‘running a fever’, possibly paired with metric constraints,
e.g., ‘if a patient is running a fever for more than k time units, then
administrate him/her drug D’, are quite common. In general, many
relevant phenomena are inherently interval-based as there are no gen-
eral rules to deduce their occurrence from point-based data. The use
of temporal logic in ambient intelligence, specifically in the area of
Smart Homes [3, 14], has been advocated by Combi et al. in [13].
MPNL can be successfully used to express safety requirements re-
ferring to situations that can be properly modeled only in terms of
time intervals, e.g., ‘being in the kitchen’.

4 Decidability of MPNL

In this section, we use a model-theoretic argument to show that the
satisfiability problem for MPNL has a bounded-model property with
respect to finitely presentable ultimately periodic models, and it is
therefore decidable. For lack of space, we only sketch the proofs of
the main technical results. From now on, let ϕ be any MPNL-formula
and let AP be the set of proposition letters of the language.

Definition 1 The closure of ϕ is the set CL(ϕ) of all subformu-
lae of ϕ and their negations (we identify ¬¬ψ with ψ). Let

J
∈

{�r, �l, �r, �l}. The set of temporal requests from CL(ϕ) is the
set TF (ϕ) = {

J
ψ |

J
ψ ∈ CL(ϕ)} ∪ {¬

J
ψ | ¬

J
ψ ∈

CL(ϕ)}.
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Definition 2 A ϕ-atom is a set A ⊆ CL(ϕ) such that for every
ψ ∈ CL(ϕ), ψ ∈ A iff ¬ψ ∈ A and for every ψ1 ∨ ψ2 ∈ CL(ϕ),
ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A.

We denote the set of all ϕ-atoms by Aϕ. One can easily prove that
|CL(ϕ)| ≤ 2|ϕ|, |TF (ϕ)| ≤ 2(|ϕ| − 1), and |Aϕ| ≤ 2|ϕ|. We now
introduce a suitable labeling of interval structures based on ϕ-atoms.

Definition 3 A (ϕ-)labeled interval structure (LIS for short) is a
structure L = 〈D, I(D),L〉, where 〈D, I(D)〉 is the interval structure
over natural numbers (or over a finite subset of it) and L : I(D) →
Aϕ is a labeling function such that for every pair of neighboring in-
tervals [i, j], [j, h] ∈ I(D), if �rψ ∈ L([i, j]), then ψ ∈ L([j, h]),
and if �lψ ∈ L([j, h]), then ψ ∈ L([i, j]).

Notice that every interval model M induces a LIS, whose labeling
function is the valuation function: ψ ∈ L([i, j]) iff M, [i, j] � ψ.

Thus, LIS can be thought of as quasi-models for ϕ, in which the
truth of formulae containing neither �r , �l nor length constraints
is determined by the labeling (due to the definitions of ϕ-atom and
LIS). To obtain a model, we must also guarantee that the truth of the
other formulae is in accordance with the labeling. To this end, we
introduce the notion of fulfilling LIS.

Definition 4 A LIS L = 〈D, I(D),L〉 is fulfilling iff:
• for every length constraint len=k ∈ CL(ϕ) and interval [i, j] ∈

I(D), len=k ∈ L([i, j]) iff δ(i, j) = k;
• for every temporal formula �rψ (resp., �lψ) in TF (ϕ) and inter-

val [i, j] ∈ I(D), if �rψ (resp., �lψ) in L([i, j]), then there exists
h ≥ j (resp., h ≤ i) such that ψ ∈ L([j, h]) (resp., L([h, i])).

Clearly, every interval model is a fulfilling LIS. Conversely, ev-
ery fulfilling LIS L = 〈D, I(D),L〉 can be transformed into a
model M(L) by defining the valuation in accordance with the la-
beling. Then, one can prove that for every ψ ∈ CL(ϕ) and interval
[i, j] ∈ I(D), ψ ∈ L([i, j]) iff M(L), [i, j] |= ψ by a routine induc-
tion on ψ.

Definition 5 Given a LIS L = 〈D, I(D),L〉 and an interval [i, j] ∈
I(D), the set of left (resp., right) temporal requests at i (resp., j),
denoted by REQL(i) (resp., REQR(j)), is the set of temporal for-
mulae of the forms �lϕ, �lϕ (resp., �rϕ, �rϕ) in TF (ϕ) belonging
to the labeling of any interval beginning in i (resp., ending in j). For
any h ∈ D, we write REQ(h) for REQL(h) ∪ REQR(h),

We denote by REQ(ϕ) the set of all possible sets of temporal re-
quests over CL(ϕ). Let m be |TF (ϕ)|

2
and k be the maximum among

the natural numbers occurring in the length constraints in ϕ. For ex-
ample, if ϕ = �r(len>3 ∧ p → �l(len>5 ∧ q)), then m = 2 and
k = 5. It is easy to show that |REQ(ϕ)| = 2m. Moreover, given any
set of temporal requests REQR(j) (resp., REQL(i)), it can be eas-
ily proved that all of them can be satisfied using at most m different
points greater than j (resp., less than i).

Now, consider any MPNL-formula ϕ such that ϕ is satisfiable on
a finite model. We have to show that we can restrict our attention to
models with a bounded dimension.

Definition 6 Given any LIS L = 〈D, I(D),L〉, we say that a k-
sequence in L is a sequence of k consecutive points in D. Given a k-
sequence σ in L, its sequence of requests REQ(σ) is defined as the
k-sequence of temporal requests at the points in σ. We say that i ∈ L

starts a k-sequence σ if the temporal requests at i, . . . , i + k − 1

form an occurrence of REQ(σ). Moreover, the sequence of requests
REQ(σ) is said to be abundant in L (on an interval [i, j]) iff it has
at least 2 · (m2 + m) · |REQ(ϕ)|+ 1 disjoint occurrences in D (in
the interval [i, j]).

Lemma 7 Let L = 〈D, I(D),L〉 be any LIS such that REQ(σ)
is abundant in it. Then, there exists an index q such that for each
element R ∈ {REQ(d) | iq < d < iq+1}, where iq and iq+1 begin
the q-th and the q + 1-th occurrence of σ, respectively, R occurs at
least m2 + m times before iq and at least m2 + m times after iq+1.

Lemma 8 Let L = 〈D, I(D),L〉 be a fulfilling LIS that satisfies
ϕ. Suppose that there exists an abundant k-sequence of requests
REQ(σ) and let q be the index whose existence is guaranteed by
Lemma 7. Then, there exists a fulfilling LIS L = 〈D, I(D),L〉 that
satisfies ϕ such that D = D \ {iq , . . . , iq+1 − 1}.

Proof. [sketch] Let L = 〈D, I(D),L〉 be a fulfilling LIS satisfying ϕ

at some [b, e], REQ(σ) be an abundant k-sequence in L, and q be the
index identified by Lemma 7. Moreover, let D− = {iq , . . . , iq+1 −
1} and D′ = D \ D−. We denote by I(D′) the set of all intervals
over D′. We have the problem of suitably re-defining the evaluation
of all intervals on D′ in a way preserving the temporal requests at all
points in D′ and still satisfying ϕ.

First, we consider all points d < iq and for each of them, for all p

such that 0 ≤ p ≤ k − 1, we put L′([d, iq+1 + p]) = L([d, iq + p]).
In such a way, we guarantee that the intervals whose length has been
shortened as an effect of the elimination of the points in D− have a
correct labeling in terms of all length constraints of the forms len=k′

and ¬len=k′ , with k′ ≤ k. Moreover, since the requests (in both di-
rections) in L at iq+1 + p are equal to the requests at iq + p, this op-
eration is safe with respect to universal and existential requirements.
Finally, since the lengths of intervals beginning before iq and ending
after iq+1 + k − 1 are greater than k both in L and in L

′, there is no
need to change their labeling.

The structure L
′ = 〈D′, I(D′),L′〉 defined so far is obviously a

LIS, but it is not necessarily a fulfilling one. The removal of the
points in the set D− may generate defects, that is, situations in which
there exist a point d < iq (resp., d ≥ iq+1 + k) and a formula of the
type �rψ (resp., �lψ) belonging to REQ(d), such that ψ was satis-
fied on [d, d′] (resp., [d′, d]), with d′ ∈ D−, in L and it is not in L

′.
To repair these defects, one can simply redefine the labels at inter-
vals starting (resp., ending) at d and ending (resp., starting) at some
(eliminated) d′ using the m2 + m ‘copies’ of d′ following (resp.,
preceding) iq+1 in D′. This construction is similar to the one used
in [8] to show that the right-neighborhood fragment of MPNL has
the small-model property. If we repeat such a procedure sufficiently
many times, we obtain a finite sequence of LIS, the last one of which
is the required L.

The lemma above guarantees that we can eliminate sequences of re-
quests that occur ‘sufficiently many’ times in a LIS, without ‘spoil-
ing’ the LIS. This eventually allows us to prove the following small-
model theorem for finite satisfiability of MPNL.

Theorem 9 (Small-Model Theorem) If ϕ is any finitely satisfi-
able formula of MPNL, then there exists a fulfilling, finite LIS L =
〈D, I(D),L〉 that satisfies ϕ such that |D| ≤ |REQ(ϕ)|k ·(2·(m2+
m) · |REQ(ϕ)|+ 1) · k + k − 1.

To deal with formulae that are satisfiable only over infinite models,
we need to provide these models with a finite (periodic) representa-
tion, and to bound the lengths of their prefix and period.
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Definition 10 A LIS L = 〈D, I(D),L〉 is ultimately periodic, with
prefix L, period P , and threshold k if, for every interval [i, j],
• if i ≥ L, then L([i, j]) = L([i + P , j + P ]);
• if j ≥ L and δ(j, i) > k, then L([i, j]) = L([i, j + P ]).

It is worth noticing that, in every ultimately periodic LIS,
REQ(i) = REQ(i + P ), for i ≥ L, and that every ultimately peri-
odic LIS is finitely presentable: it suffices to define its labeling only
on the intervals [i, j] such that j ≤ L+P +max(k,P ); thereafter, it
can be uniquely extended by periodicity. Furthermore, we can iden-
tify a finite LIS with an ultimately periodic one with a period P = 0.

Lemma 11 Let L = 〈N, I(N),L〉 be an infinite fulfilling LIS over
N that satisfies a formula ϕ on [b, e] for some b, e ∈ N. Then, there
exists an infinite ultimately periodic fulfilling LIS L = 〈N, I(N),L〉
over N that satisfies ϕ on [b, e].

Proof. [sketch] Let [b, e] be an interval such that ϕ ∈ L([b, e]). We
define the set REQinf (L) as the subset of REQ(ϕ) containing all
and only the sets of requests that occur infinitely often in L. We can
choose two points L, M , with L + k < M , such that L, M are the
least points in N that satisfy the following conditions: (i) L ≥ e; (ii)
for each point r ≥ L, REQ(r) ∈ REQinf (L); (iii) every set of
requests R ∈ REQinf (L) occurs at least m2 + m times before L

and it occurs at least m2 + m times between L and M ; (iv) for each
point i < L and any formula �rψ ∈ REQ(i), ψ is satisfied over
some interval [i, j], with j < M ; and (v) the k-sequences of requests
starting at L and at M are the same.

We put P = M − L. We can build an infinite ultimately periodic
structure L over the natural numbers with prefix L, period P , and
threshold k. To this end, for all points d < M , we put REQ(d) =
REQ(d) and, for all points M + n, with 0 ≤ n < P , we put
REQ(M + n) = REQ(L + n) (by condition (v), this is already
the case with 0 ≤ n < k). The labeling is defined as follows. For
all intervals [i, j] such that j < M , we put L([i, j]) = L([i, j]). As
for any interval [i, j], with M ≤ j < M + P , (a) if i ≥ M , we put
L([i, j]) = L([i − P, j − P ]), (b) if i < M , we must distinguish
three cases: (b1) if δ(i, j) ≤ k , then we put L([i, j]) = L([i, j])
(as REQ(i) has not been modified and REQ(j) = REQ(j) by
condition (v)); (b2) if k < δ(i, j) ≤ k + P , we put L([i, j]) =
L([i, h]) for some h such that REQ(j) = REQ(h) and δ(i, h) >

k, where the existence of such an h is guaranteed by condition (ii)
(in fact, if M ≤ j < M + K, we can take h = j); (b3) if δ(i, j) >

k + P , we put L([i, j]) = L([i, j − P ]). This construction labels
all subintervals in [0, M + P ] in such a way that L is a LIS, but
not necessarily a fulfilling one. As a matter of fact, there may exist
points L ≤ i ≤ M such that a formula �rψ ∈ REQ(i) is not
fulfilled anymore in L. To fix such defects, one can proceed as in the
proof of Lemma 8, exploiting conditions (i)−(v). Finally, L can be
extended over I(N) in a unique, ultimately periodic and “fulfillness-
preserving” way.

Theorem 12 (Small Periodic Model Theorem) If ϕ is any satisfi-
able formula of MPNL, then there exists a fulfilling, ultimately peri-
odic LIS satisfying ϕ such that both the length L of the prefix and the
length P of the period are less or equal to |REQ(ϕ)|k · (2 · (m2 +
m) · |REQ(ϕ)|+ 1) · k + k − 1.

Proof. Existence of an ultimately periodic fulfilling LIS is guaran-
teed by Lemma 11. The bound on the prefix and of the period can be
proved by exploiting Lemma 8.

Corollary 13 The satisfiability problem for MPNL, interpreted over
N, is decidable.

The results of this section immediately give a double exponen-
tial time nondeterministic procedure for checking the satisfiability
of any MPNL-formula ϕ. Such a procedure nondeterministically
checks models whose size is in general O(2|ϕ|k), where |ϕ| is the
length of the formula to be checked for satisfiability. It has been
shown in [8] that, in the case in which k is represented in binary, the
right-neighborhood fragment of MPNL is complete for EXPSPACE.
This means that, in the general case, the complexity for MPNL is
located somewhere in between EXPSPACE and 2NEXPTIME (the
exact complexity is still an open problem). It is worth noticing that,
whenever k is a constant, it does not influence the complexity class
and thus, since we have a NTIME(2|ϕ|) procedure for satisfiabil-
ity and a NEXPTIME-hardness result [10], we can conclude that
MPNL is NEXPTIME-complete. Similarly, when k is expressed in
unary, the value of k increases linearly with the length of the formula
and thus NTIME(2k|ϕ|)=NTIME(2|ϕ|2 ); therefore, as in the previous
case, MPNL is NEXPTIME-complete.

5 Expressive Completeness and Undecidable
Extensions

Let us denote by FO2[=] the fragment of first-order logic with equal-
ity whose language contains only two distinct variables; we can fur-
ther assume w.l.o.g. that the arity of every relation in the considered
vocabulary is exactly 2 (since atoms in the two-variable fragment can
involve at most two distinct variables). We denote its formulae by
α, β, . . .. For example, the formula ∀x(P (x) → ∀y∃xQ(x,y)) be-
longs to FO2[=], while the formula ∀x(P (x) → ∀y∃z(Q(z, y) ∧
Q(z, x))) does not. The logic FO2[N, =, <] is the extension of
FO2[=], interpreted over natural numbers, over a purely relational
vocabulary {=, <, P, Q, . . .} including equality and a distinguished
binary relation < interpreted as the standard linear ordering. De-
cidability (NEXPTIME-completeness) of FO2[N, =, <] has been
shown in [20]. In [7], it has been shown that FO2[N, =, <] is ex-
pressively complete with respect to PNL. Here, we will extend such
a result to the language of MPNL. For the comparison of these log-
ics suitable truth-preserving model transformations between interval
models and relational models have been defined.

Given an interval model M = 〈D, I(D), VM 〉, the corresponding
relational model η(M) is a pair 〈D, Vη(M)〉, where for all p ∈ AP ,
Vη(M)(P ) = {(i, j) ∈ D × D : [i, j] ∈ VM (p)}. To define the
inverse mapping from relational models to interval ones, we associate
two proposition letters p≤ and p≥ of the interval logic with every
binary relation P . Thus, given a relational model M = 〈D, VM〉, the
corresponding interval model ζ(M) is a structure 〈D, I(D), Vζ(M)〉
such that for any binary relation P and any interval [i, j], we have
that [i, j] ∈ Vζ(M)(p

≤) iff (i, j) ∈ VM(P ) and [i, j] ∈ Vζ(M)(p
≥)

iff (j, i) ∈ VM(P ). We compare the expressive power of an interval
modal logic and a first-order logic by means of effective translations
of both formulae and models.

Let us consider the extension of FO2[N, =, <] with the successor
function s, denoted by FO2[N, =, <, s]. The terms of the language
FO2[N, =, <, s] are of the type sk(z), where z ∈ {x, y} and sk(z)
denotes z, when k = 0, and s(s(. . . s| {z }

k

(z) . . .)), when k > 0. More-

over, let FO2
r[N, =, <, s] be the fragment of FO2[N, =, <, s] with

the following restriction: if both variables x and y occur in the scope
of an occurrence of a binary relation, other than = and <, then the
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Table 1. Translation clauses from FO2
r [N, =, <, s] to MPNL.

τ [x, y](sk(z) = sm(z)) = � (z ∈ {x, y}), if k = m

= ⊥ (z ∈ {x, y}), if k = m

τ [x, y](sk(z) < sm(z)) = ⊥ (z ∈ {x, y}), if k ≥ m

= � (z ∈ {x, y}), if k < m

τ [x, y](sk(x) = sm(y))= ⊥, if k < m

= len=k−m, if k ≥ m

τ [x, y](sk(x) < sm(y))= �, if k < m

= len>k−m, if k ≥ m

τ [x, y](sm(y) < sk(x))= ⊥, if k < m

= len<k−m, if k ≥ m

τ [x, y](¬α) = ¬τ [x, y](α)

τ [x, y](α ∨ β) = τ [x, y](α) ∨ τ [x, y](β)
τ [x, y](∃xβ) = �r(τ [y, x](β)) ∨ �r�l(τ [x, y](β))
τ [x, y](∃yβ) = �l(τ [y, x](β)) ∨ �l�r(τ [x, y](β))

τ [x, y](P (sk(x), sm(x))) = �l�r(len=k ∧ �r(len=m−k ∧ p≤)), if k < m

= �l�r(len=k ∧ �r(len=0 ∧ p≤ ∧ p≥)), if k = m

= �l�r(len=m ∧ �r(len=k−m ∧ p≥)), if k > m

τ [x, y](P (sk(y), sm(y))) = �r(len=k ∧ �r(len=m−k ∧ p≤)), if k < m

= �r(len=k ∧ �r(len=0 ∧ p≤ ∧ p≥)), if k = m

= �r(len=m ∧ �r(len=k−m ∧ p≥)), if k > m

τ [x, y](P (x, y)) = p≤

τ [x, y](P (y, x)) = p≥

successor function s cannot occur in the scope of that occurrence.
As an example, each of the formulae sk(x) = sm(y), sk(x) <

sm(y), P (sk(x), sm(x)), P (x, y) belongs to FO2
r[N, =, <, s], but

none of P (x, s(y)) and P (s(x), y) does. By using 2-pebble games
and a standard model-theoretic argument, one can show that:

FO2[N, =, <] ≺ FO2
r[N, =, <, s] ≺ FO2[N, =, <, s].

In the following, we show (i) that MPNL ≡ FO2
r[N, =, <, s], (ii)

that there is a natural extension of MPNL, denoted here by MPNL+

which is functionally complete for FO2[N, =, <, s], and (iii) that,
perhaps unexpectedly, FO2[N, =, <, s], and, therefore, MPNL+,
are already undecidable, which means that the decidability result
from [20] cannot be extended by adding one successor function.

First of all, consider the following standard translation STx,y of
MPNL-formulae into FO2

r[N, =,<, s]:

STx,y(ϕ) = x ≤ y ∧ ST
′
x,y(ϕ),

where x, y are the two first-order variables in FO2
r[N, =,<, s], and:

ST ′
x,y(p) = P (x, y)

ST ′
x,y(len=k) = sk(x) = y

ST ′
x,y(ϕ ∨ ψ) = ST ′

x,y(ϕ) ∨ ST ′
x,y(ψ)

ST ′
x,y(¬ϕ) = ¬ST ′

x,y(ϕ)
ST ′

x,y(�lϕ) = ∃y(y ≤ x ∧ ST ′
y,x(ϕ))

ST ′
x,y(�rϕ) = ∃x(y ≤ x ∧ ST ′

y,x(ϕ)).

It can be proved by structural induction that a formula ϕ of MPNL
is satisfied on an interval model M at an interval [i, j] if and only
if STx,y(ϕ) is satisfied by substituting x with i and y with j on
the model η(M). The inverse translation τ from FO2[N, =, <, s] to
MPNL is given in Table 1. We have the following lemma.

Lemma 14 For every FO2
r[N, =, <, s]-formula α(x, y), every

FO2
r[N, =, <, s]-model M = 〈N, VM〉, and every pair i, j ∈

N, with i ≤ j, it holds that: (i) M |= α(i, j) if and only if
ζ(M), [i, j] � τ [x, y](α), and (ii) M |= α(j, i) if and only if
ζ(M), [i, j] � τ [y, x](α).

As a consequence, for every FO2
r[N, =, <, s]-formula α(x, y) and

every FO2
r[N, =, <, s]-model M = 〈N, VM〉, M |= ∀x∀yα(x, y)

if and only if ζ(M) � τ [x, y](α) ∧ τ [y, x](α), which implies the
following theorem.

Theorem 15 FO2
r[N, =, <, s]≡ MPNL.

A natural way to extend MPNL to cover the entire FO2[N, =, <,s]
would be to add diamond modalities that shift respectively the begin-
ning, or the end, of the current interval to the right by a prescribed
distance, viz:

• M, [i, j] � �
+k
e ψ iff M, [i, j + k] � ψ;

• M, [i, j] � �
+k
b ψ iff (i + k ≤ j and M, [i + k, j] � ψ) or

(i + k > j and M, [j, i + k] � ψ).
We denote the resulting language as MPNL+. It is not difficult
to see that the standard translation ST ′

x,y of MPNL-formulae into
FO2[N, =, <, s] can be extended to MPNL+, as well as the inverse
translation, by adding suitable clauses to the ones of Table 1.

Theorem 16 FO2[N, =,<, s]≡ MPNL+.

Unfortunately, FO2[N, =, <, s] turns out to be undecidable.

Theorem 17 The satisfiability problem for FO2[N, =, <, s], and,
consequently, that for MPNL+, are undecidable.

Proof. [sketch] We use a reduction from the tiling problem for the
second octant of the integer plane, that is, the problem of establish-
ing whether a given finite set of tile types T = {t1, . . . , tk} can tile
O = {(i, j) : i, j ∈ N∧ 0 ≤ i ≤ j}. Using König’s lemma, one can
prove that a tiling system tiles O if and only if it tiles arbitrarily large
squares if and only if it tiles N×N if and only if it tiles Z×Z. The un-
decidability of the first one immediately follows from that of the last
one [5]. The reduction consists of three main steps: (i) the encoding
of an infinite chain to be used to represent the tiles, (ii) the encod-
ing of the above-neighbor relation by means of a relation denoted by
Corr, and (iii) the encoding of the right-neighbor relation, by means
of the successor function. Pairs of successive points are used as cells
to arrange the tiling: each pair of point of the type i, i + 1 is used
either to represent a part of the plane or to separate two consecutive
rows of the octant, each one represented by a relation denoted Id. In
the former case, the pair is labeled with the relation T ile, in the latter
case, it is labeled with the relation ∗. The encoding is given by the
following formulae:

∀x, y
V

P∈AP(P (x, y) ↔ P (y, x)) (1)

∀x, y(y = s(x) ↔ ∗(x, y) ∨ T ile(x, y)) (2)

∀x, y(∗(x, y) → ¬T ile(x, y)) (3)

y = s(x) ∧ ∗(x, y) ∧ ∀x∃y(y = s(x)) (4)

∃x(x = s(y) ∧ T ile(y, x) ∧ ∗(s(y), s(x))) (5)

∃y(y = s
2(x) ∧ Id(x, y)) (6)

∀x, y(Id(x, y) → ∗(y, s(y))) (7)

∀x, y(Id(x, y) → ∗(x, s(x))) (8)

∀x, y(∗(x, y) → ∃y(s(x) < y ∧ Id(x, y))) (9)

The above formulae define the infinite chains of T ile- and Id-
intervals. To complete the encoding, we introduce some auxiliary
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proposition letters, namely, Ide, Idb, and Idd, and we force them
to respectively hold over all (and only) the strict intervals ending,
beginning, and strictly contained in an Id-interval.

∀x, y(Id(x, y) → Ide(s(x), y)) (10)

∀x, y(Ide(x, y) ∧ s(x) < y → Ide(s(x), y)) (11)

∀x, y(Id(x, s(y)) → Idb(x, y)) (12)

∀x, y(Idb(x, s(y)) ∧ x < y → Idb(x, y)) (13)

∀x, y((Ide(x, s(y)) ∨ Idd(x, s(y))) ∧ x < y → Idd(x, y)) (14)

∀x, y((Idb(x, y) ∨ Ide(x, y) ∨ Idd(x, y)) → ¬Id(x, y)) (15)

∀x, y
V

ν,μ∈{b,d,e},ν �=μ(Idν(x, y) → ¬Idμ(x, y)) (16)

∀x, y(Id(x, y) → Corr(s(x), s(y))) (17)

∀x, y(Corr(x, y) → T ile(x, s(x)) ∧ T ile(y, s(y))) (18)

∀x, y(Corr(x, y) ∧ ∗(s(x), s2(x)) →

T ile(y, s(y)) ∧ T ile(s(y), s2(y)) ∧ ∗(s2(x), s3(x)))
(19)

∀x, y(Corr(x, y) ∧ ¬ ∗ (s(x), s2(x)) → Corr(s(x), s(y)))
(20)

∀x, y(Id(x, y) → ¬Corr(x, y)) (21)

∀x, y(T ile(x, y) →W
T∈T T (x, y) ∧

V
T,T ′∈T ,T �=T ′ ¬(T (x, y) ∧ T ′(x, y)))

(22)

∀x, y(T (x, y) ∧ T ile(s(x), s(y)) →W
T ′∈T ,right(T )=left(T ′) T ′(s(x), s(y)))

(23)

∀x, y(Corr(x, y) ∧ T (x, s(x)) →W
T ′∈T ,up(T )=down(T ′) T ′(y, s(y)))

(24)

Given any set of tiles T , the conjunction of the above formulae is
satisfiable if and only if T can tile O. The undecidability of the sat-
isfiability problem for FO2[N, =, <, s] immediately follows.

6 Concluding Remarks

The main results of the paper are the decidability of MPNL, its ex-
pressive equivalence to the fragment FO2

r[N, =, <, s] of FO2[N, =,

<, s], and the undecidability of FO2[N, =, <, s]. These results to-
gether position MPNL very close to the decidability/undecidability
border and it would be interesting to know whether it can be further
extended, syntactically or semantically, in a natural way, still pre-
serving decidability. In particular, the decidability of both MPNL in-
terpreted over the integers and the extension of MPNL with rational
constraints for interval lengths, interpreted over the rational numbers,
is natural to expect. Efficient model-checking for MPNL on natural
numbers is another technical challenge ahead.
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