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Abstract. Computation of the Most Probable Explanation (MPE)
when probabilistic knowledge is expressed as a factored distribu-
tion is a classical AI reasoning problem: complete evidence is avail-
able about the values of some of the variables which are observed,
and the problem consists in finding the most probable assignment of
the remaining variables given the evidence. However, optimising the
choice of the variables to observe (the sample) in order to maximise
the MPE probability is a less classical and more difficult problem.
In this article we tackle this question of optimal sampling in struc-
tured problems under limited budget, within the framework of Hid-
den Markov Random Fields (HMRF). The value of a sample (which
we seek to optimise) is the expectation, over all possible sample out-
puts (observations), of the MPE probability. The contributions of this
article are: i) an original probabilistic model for optimal sampling in
HMRF ii) computational complexity results about this problem, lead-
ing in particular to approximability/inapproximability results and iii)
an exact solution algorithm and two approximate solution algorithms
of decreasing time complexity, which we empirically evaluate on a
problem of spatial sampling for occurrence map restoration.

1 INTRODUCTION

The computation of the most probable assignment of a subset of vari-
ables given complete evidence on the complement of that set when
probabilistic knowledge is expressed as a factored distribution is a
classical (but still difficult) generic AI reasoning problem [17]. In
the graphical models community it corresponds to the Most Proba-
ble Explanation (MPE) problem: the values of a subset of the vari-
ables are observed and the most probable value of the remaining
ones is computed. It is also known as the computation of the Maxi-
mum a Posteriori (MAP) problem in image analysis, when variables
are organised as pixels and one seeks for image restoration given
noisy observations. In many real-life situations, the set of variables
on which information is acquired is not fixed, even though its size is
limited by a budget constraint. The question is then to select this set
in order to achieve a high confidence in the values of the remaining
variables, i.e. high MPE/MAP value. The variable assignment with
highest probability is a restoration of the set of unobserved variables.
The optimisation of the sample set is a less classical and more diffi-
cult problem than MPE/MAP, especially when observations are noisy
and costly. A generic formulation as well as a study of its computa-
tional complexity and development of solution algorithms are still
to be done. In this article we tackle this question of optimal sam-
pling under limited budget for MPE/MAP maximisation, within the
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framework of Hidden Markov Random Fields (HMRF) [4, 9, 14]. A
HMRF is a non-oriented graphical model, classically used in image
restoration, where variables are of two types: hidden variables (to re-
construct) and observed variables (which are noisy observations of
the hidden variables). The sampling set must be chosen among the
set of observed variables. The value of a sample (which we seek to
optimise) is defined as the expectation, over all possible observations
of the sample set, of the conditional probability of the most probable
hidden variables assignment. The advantage is that selection of the
sample set and restoration of the unobserved variables are achieved
using the same criterion. We describe an original framework for op-
timal sampling in HMRF aiming at MPE/MAP restoration (Section
2). Then we establish computational complexity results about this
problem, leading in particular to approximability/inapproximability
results (Section 3). An exact solution algorithm and two approximate
solution algorithms of decreasing complexity are proposed (Section
4). We empirically evaluate their performance on the problem of spa-
tial sampling for occurrence map restoration: the graph of the HMRF
is a regular grid and all variables are binary (presence/absence and
detection of the phenomenon). Since false negative observations are
possible, observations are noisy (Section 5).

2 OPTIMAL SAMPLING FOR HMRF
RESTORATION

2.1 Hidden Markov Random Fields

Markov Random Fields (MRF) are a family of undirected probabilis-
tic graphical models [12] allowing to concisely model probability
distributions over factored state spaces where dependencies between
variables are local. The dependence structure is represented by a
graph, G = (V, E), with n vertices representing variables and edges
help showing the conditional dependence between the variables: any
variable in V is conditionally independent of other variables given
those sharing an edge with it.

If a positive factored probability distribution exhibits such inde-
pendence property, it can be expressed as a product of positive clique
functions, i.e. functions of subsets of variables which indices form
cliques of the graph G (Hammersley-Clifford theorem) [4]:

Definition 1 (Markov Random Fields) Let X = {X1, . . . , Xn}
be random variables taking values in {0, ..., k − 1} each and let
P be a probability distribution over X = {0, ..., k − 1}n. Let also
G = (V, E) with |V | = n and C be the set of cliques of graph G.

P is a Markov Random Field defined by (G,X , Ψ) if Ψ is a set of
positive functions Ψ = {ψc}c∈C, ψc(xc) > 0, ∀xc, such that:

P (X = x) = PΨ(x) =
1

Z

Y
c∈C

ψc(xc),∀x ∈ X , (1)
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where Z is a normalising constant ensuring that P sums to 1.

(Here and in the following, ∀A ⊂ V , notation xA represents {xi, i ∈
A})

Now, let us consider the case where the variables X are not ob-
served directly, but random variables Y = {Y1, . . . , Yn} taking val-
ues in Y = Y1 × . . . × Yn are observed instead, and each Yi is
conditionally independent of all other variables given Xi. The con-
ditional parameterised probability is known and takes the following
form (with Θ = {θ1, . . . , θn} a set of parameters):

P (Y = y|X = x) = PΘ(y|x) =
Y
i∈V

Pθi
(yi|xi),∀x,∀y. (2)

A Hidden Markov Random Field (HMRF) is defined by the tuple
(G,X ,Y, Ψ, Θ). A typical problem in the HMRF framework is to
“restore” the hidden variables values {xi} given the observed vari-
ables values {yi} [9, 14].

However, observations may be incomplete, for example if observ-
ing requires to consume limited resources (time, people, etc.). In the
following, we will be interested in the problem of choosing a sam-
ple, i.e. a subset σ ⊆ V of sites which will be actually observed in
order to restore the hidden field x. The result of a sample σ is a a
sample output yσ. From yσ , we can define a posterior probability
conditioned on a sample output:

Definition 2 (Posterior probability) Let PΨ(x) and PΘ(y|x) be
defined from a HMRF (G = (V, E),X ,Y, Ψ, Θ). Let σ ⊆ V be
a sample and yσ be a sample outpout. Then, the posterior probabil-
ity conditionned on sample output yσ is defined as:

PΨ,Θ(x|yσ) ∝ PΘ(yσ|x)PΨ(x),∀x ∈ X . (3)

2.2 Decision-theoretic HMRF sample optimisation

So, the problem we face is that of, given a HMRF and limited sam-
pling resource, choosing a good sample σ ⊆ V . This choice should
be based on the posterior probability distribution over hidden vari-
ables, PΨ,Θ(x|yσ), defined in equation (3). However, since the sam-
ple output yσ resulting from a sample σ is unknown when the choice
of σ is made, the “quality” of the sample, denoted UΨ,Θ(σ), has to
be computed as the expectation of the information values resulting
from all potential sample outputs. In fact, we will consider a slightly
generalised measure, in order to account for possibly different costs
associated to the different sample locations. So, the decision crite-
rion will include an additive sample cost function, γ : 2V → R

+:
γ(σ) =

P
i∈σ γi, where the γi are positive.

Definition 3 (Decision-theoretic sample quality measure)

UΨ,Θ(σ) = −γ(σ) +
X
yσ

PΨ,Θ(yσ)VΨ,Θ(σ, yσ), (4)

where VΨ,Θ measures how informative PΨ,Θ(x|yσ) is.

γ(σ) measures the “cost” of σ, and its unit is homogeneous to
VΨ,Θ(σ, yσ). The sample quality measure (4) corresponds to a
decision-theoretic information value criterion [11], often used when
the sampling problem precedes an actual decision choice, which util-
ity depends on the hidden state of the process. This kind of criterion
is thus used in problems of fault diagnosis and repair, detection and
eradication of invasive species, etc...

In this article, our goal is to find the sample set which maximises
(in expectation) the probability of the most probable assignment of

X according to PΨ,Θ(x|yσ). This maximisation problem is known as
the Most Probable Explanation problem (MPE). In image analysis, it
is also known as the Maximum a Posteriori (MAP)3 criterion [14]. It
has the advantage to be associated with a restoration procedure (the
assignment maximising the conditional distribution is returned).

Definition 4 (Most Probable Explanation (MPE) criterion)

V MPE
Ψ,Θ (σ, yσ) = max

x∈X
PΨ,Θ(x|yσ),∀yσ. (5)

The MPE criterion involves a maximisation over x and in this way
provides a way to compute a restoration, xMPE , of the hidden pro-
cess:

xMPE(yσ) = arg max
x∈X

PΨ,Θ(x|yσ), (6)

V MPE
Ψ,Θ (σ, yσ) is thus the probability of the most likely restoration,

xMPE(yσ), of the hidden process given the observations.
Several other choices can be classically made for VΨ,Θ: the en-

tropy criterion [6] or the Maximum Posterior Marginals (MPM) cri-
terion [4]. Note that the solution algorithms which we will propose
in the following can be easily adapted to the MPM criterion, even-
though the theoretic complexity class of the problem would be differ-
ent. Regarding entropy, this criterion is not associated with a restora-
tion procedure.

Now, we are able to describe the HMRF sample optimisation prob-
lem. It consists in finding a sample σ∗ ⊆ W ⊆ V , of size bounded
by a constant K, which maximises UMPE

Ψ,Θ , associated to V MPE
Ψ,Θ .

The set W ⊆ V is the subset of sites which we are allowed to sam-
ple (sites in V \ W are not accessible to sampling).

Definition 5 (Decision-theoretic sample optimisation problem)
Let HMRF (G = (V, E),X ,Y, Ψ, Θ) be given, together with an
integer K ≥ 0, a set W ⊆ V of sites available for sample and costs
γi ≥ 0,∀i ∈ W . Then, the HMRF sample optimisation problem
O(UMPE

Ψ,Θ ) is defined as:

Find σ∗ = arg max
σ⊆W,|σ|≤K

UMPE
Ψ,Θ (σ). (7)

In the following section, we will study the computational com-
plexity of this problem, as well as its approximability properties in
the “small sample” case. For this, it is useful to note that UMPE

Ψ,Θ (σ)
takes the following form, which can be easily shown, using equations
(5) and (4) and applying Bayes’ theorem:

Proposition 1 (MPE sample value criterion)

UMPE
Ψ,Θ (σ) = −γ(σ) +

X
yσ

max
x

PΘ(yσ|x)PΨ(x). (8)

In the following, we note QMPE
Ψ,Θ (σ, yσ) = maxx PΘ(yσ|x)PΨ(x).

3 COMPUTATIONAL COMPLEXITY
CONSIDERATIONS

3.1 Tree representation of the MPE sample
optimisation problem

Solving the sample optimisation problem (7) intuitively amounts to
explore the three-level tree shown in Figure 1. The top level is a |W |-
depth binary tree, where vertices correspond to the vertices in W

3 In the graphical models community, “MAP” stands for a more general prob-
lem, where one is looking for a maximum probability assignment of a sub-
set of variables, given a partial assignment of the remaining variables [17].
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and outgoing edges determine whether the vertex is selected into the
sample or not. A branch in the top tree thus represents a sample σ.
Then, from each valid branch (i.e. containing at most K selected
vertices), a second l-ary tree (l is the size of the domains of the Yi) of
depth |σ| ≤ K is issued, where a branch is an assignment yσ . Finally,
a k-ary tree (k is the size of the domains of the Xi) of depth |V | is
issued from any branch corresponding to a valid assignment (σ, yσ).
A branch of this third level tree corresponds to an assignment x.

su
mtre

e

max
tre

e

max
tre

e

σ

all y σ

of

Sum over

Selection

Computation
σof Q(  , y  )σ

Figure 1. Tree representation of the MPE sample optimisation problem,
with W = V , |V | = 4, K = 2 and l = k = 2.

It is easy to see that for any valid assignment (σ, yσ), xMPE(yσ)
and QMPE

Ψ,Θ (σ, yσ) can be computed through exploration of the bot-
tom max-tree. Then, once QMPE

Ψ,Θ (σ, yσ) is known for all valid as-
signments, UMPE

Ψ,Θ (σ) can be computed for any valid sample, by
exploring the second level sum-tree. Finally, σ∗ can be obtained
through exploration of the upper-level max-tree.

Using this tree description of the problem, we can show that the

sample optimisation problem (7) belongs4 to NP
PP

NP

. However, the
computational complexity of the sampling problem depends on the
size of the intermediate “sum tree”, which depends on K. We are
now going to show that, when K is ”small”, i.e. independent of the
problem instance size, the decision problem associated to the sample
optimisation problem is NP-complete.

3.2 Small sample optimisation problem

The computation of Z in PΨ(x) is a difficult problem (#P-hard),
necessary to compute the value of UMPE

Ψ,Θ (σ). However, this compu-
tation becomes unnecessary when cost function γ is null and we are
only interested in finding the best sample, not its exact value. Fur-
thermore Z only has to be computed once for a given Ψ and does not
have to be recomputed when σ or yσ changes. From now on we will
assume that the partition function Z is known.

Definition 6 (Decision problem associated to UMPE
Ψ,Θ ) Let us de-

fine D(UMPE
Ψ,Θ ), the decision problem associated to UMPE

Ψ,Θ :
Input:

• HMRF (G = (V, E),X ,Y, Ψ,Θ), where Z is known,

4 See below for a definition of the complexity class PP and a proof of this
statement

• ∅ ⊆ W ⊆ V is the subset of sites available for sample, K ≤ |W |
is a fixed upper bound on the sample size, γ is an additive cost
function, μ ≥ 0.

Question: Does there exist σ ⊆ W, |σ| ≤ K s. t. UMPE
Ψ,Θ (σ) ≥ μ?

Proposition 2 (NP-hardness of D(UMPE
Ψ,Θ ))

The decision problem D(UMPE
Ψ,Θ ) is NP-hard.

Proof: We show that the decision problem for MAX 2-SAT [8] can
be polynomially reduced to D(UMPE

Ψ,Θ ). Let φ = {Clk} be a set of
2-clauses over boolean variables {x1, . . . , xn} and ν be a positive
integer. We define #SATφ(x) = |{Clk ∈ φ, xScope(Clk) |= Clk}|.
The decision problem for MAX 2-SAT is the following:

“Given ν > 0, is maxx #SATφ(x) ≥ ν?”

Let us define the corresponding problem D(UMPE
Ψ,Θ ) as:

• V = {1, . . . , n}, C = {(i, j) ∈ V 2,∃Clk ∈ φ, Scope(Clk) =
(i, j)}.

• ψij(xi, xj) = exp(mij),∀(i, j) ∈ C, where
mij = |{Clk ∈ φ, Scope(Clk) = (i, j) and (xi, xj) |= Clk}|.

• K = 0, W = V , γ = 0, Θ arbitrary and μ = eν/Z.

Then, we can easily check that:

UMPE
Ψ,Θ (∅) ≥ μ ⇔ max

x
#SATφ(x) ≥ ν, (9)

since UMPE
Ψ,Θ (∅) =

1

Z
exp

“
max

x
#SATφ(x)

”
.

From this, it results that MAX 2-SAT can be polynomially reduced
to D(UMPE

Ψ,Θ ), which is thus NP-hard. �

Now, we are going to show that the decision problem for UMPE
Ψ,Θ

belongs to NP when the sample size bound is “small”, where “small”
means “independent of the problem instance size”.

Proposition 3 (D(UMPE
Ψ,Θ ) is in NP )

When K is independent of the problem instance size, the decision
problem associated to the sample optimisation problem D(UMPE

Ψ,Θ )
belongs to NP .

Proof: To show the result, it is enough to exhibit a certificate for
D(UMPE

Ψ,Θ ) of polynomial size and which can be checked in polyno-
mial time. Note that to compute UMPE

Ψ,Θ (σ), we have to sum over l|σ|

terms, one for each yσ . Thus, a certificate for D(UMPE
Ψ,Θ ) will be a

tuple (σ, x1, . . . , xl|σ|

), where xj = arg maxx PΘ(yj |x)PΨ(x) =

xMPE(yj), if yj ∈ {0, . . . , l− 1}|σ| is the jth possible value of yσ.
Since xi is a length-|V | vector of integers between 0 and k − 1

and σ is a binary vector of |W | bits, the certificate size is bounded
by |W | + lK |V | log2 k, polynomial in the size of the problem (if K
is not allowed to vary with the problem instance size).

Now, computing UMPE
Ψ,Θ (σ) for a given certificate requires to sum

l|σ| terms which are products of (|W |+ |C|) terms, then adding |W |
terms to the result. So, O(lK(|V | + |C|)) elementary operations
(additions, multiplications) have to be performed. �

From propositions 2 and 3, we get:

Proposition 4 (D(UMPE
Ψ,Θ ) is NP-complete)

When K is fixed, the decision problem associated to the sample op-
timisation problem D(UMPE

Ψ,Θ ) is NP-complete.

N. Peyrard et al. / Decision-Theoretic Optimal Sampling in Hidden Markov Random Fields 689



3.3 Approximability of the small sample
optimisation problem

The NP-completeness of the decision problem being established,
the next question that can be raised concerns the approximability
of the optimisation problem. Once again, building on approxima-
bility/inapproximability results concerning MAX 2-SAT, we obtain
corresponding results about the HMRF sample optimisation problem
O(UMPE

Ψ,Θ ) (Definition 5).
First, recall that NPO is the class of optimisation problems analo-

gous to NP [2]. The results of the preceding section imply that:

Proposition 5 (NPO-completeness)
The optimisation problem O(UMPE

Ψ,Θ ) is NPO-complete when Z is
known, γ = 0 and K is not allowed to vary with the problem instance
size.

Proof: O(UMPE
Ψ,Θ ) belongs to NPO since i) an instance is recog-

nisable in polynomial time, ii) valid solutions σ are polynomially
recognisable and iii) UMPE

Ψ,Θ (σ) can be computed in polynomial
time (if Z is known). Now, hardness is a direct consequence of the
fact that D(UMPE

Ψ,Θ ) is NP-hard. �

Recall that APX is the set of optimisation problems belonging to
NPO which admit a polynomial-time approximation algorithm with
approximation ratio bounded by a constant r ≥ 1 (i.e. m∗

m(x)
≤ r)

[2]. A natural question is to ask whether the optimisation problem
O(UMPE

Ψ,Θ ) belongs to APX. Unfortunately, we will show now that
it is not the case. Thus, it does not admit a polynomial-time approxi-
mation algorithm with constant approximation ratio, unless P = NP.

Proposition 6 (Non approximability)
O(UMPE

Ψ,Θ ) does not belong to APX.

Proof: Assume that O(UMPE
Ψ,Θ ) is polynomially approximable with

constant ratio ρ. Then, in particular, UMPE
Ψ,Θ (∅) is approximable with

ratio ρ. But then, using the same kind of transformation from #SAT
to UMPE

Ψ,Θ (∅) as in Proposition 2, we can associate to any 2-SAT
formula φ a pairwise HMRF (G,X ,Y, Ψ, Θ), such that

UMPE
Ψ,Θ (∅) =

1

Z
exp(max

x
#SATφ(x)).

Now, assume that Ũ = 1
Z

exp(#SATφ(x̃)) is a ρ-approximation
of UMPE

Ψ,Θ (∅). Then, Ũ ≥ 1
ρ
UMPE

Ψ,Θ (∅) ⇔ exp(#SATφ(x̃)) ≥
1
ρ

exp(maxx #SATφ(x)) ⇔ #SATφ(x̃) ≥ maxx #SATφ(x) −
log ρ.

So, any polynomial-time approximation algorithm for UMPE
Ψ,Θ (∅)

with constant ratio ρ provides an approximation for MAX 2-SAT

with absolute precision log ρ. But, [10] has shown that MAX 2-SAT

is not absolutely approximable. So, UMPE
Ψ,Θ (∅) does not admit a

polynomial-time approximation algorithm with constant ratio and, a
fortiori, O(UMPE

Ψ,Θ ) does not belong to APX. �

Eventhough O(UMPE
Ψ,Θ ) does not belong to APX, we still can show

the following positive approximability result:

Proposition 7 (UMPE
Ψ,Θ (σ) approximation)

Let us consider a HMRF (G = (V, E),X ,Y, Ψ, Θ), with binary
variables and null cost function (Z known) and σ ⊆ V . Further-
more, assume Pθi

(yi|xi) > 0, ∀i, xi, yi. Then, UMPE
Ψ,Θ (σ) can be

approximated in polynomial time with an instance-dependent ap-
proximation ratio ρΨ,Θ,σ = κ0.23

Ψ,Θ,σ, where

κΨ,Θ,σ =

Q
c∈C maxxc ψc(xc)

Q
i∈σ maxxi,yi Pθi

(yi|xi)Q
c∈C minxc ψc(xc)

Q
i∈σ minxi,yi Pθi

(yi|xi)
.

If furthermore the HMRF is pairwise, ρΨ,Θ,σ = κ0.069
Ψ,Θ,σ.

Proof: Let us define

fΨ,Θ,σ,yσ(x) =
X
i∈σ

 
log PΘ(yi|xi) − min

x′
i
,yi

log PΘ(yi|x
′
i)

!

+
X
c∈C

„
log ψc(xc) − min

x′
c

log ψc(x
′
c)

«
.

The subscripts of f will be omitted for sake of simplicity. Then,
we use approximability results for WEIGHTED MAX SAT [1, 7],
which provide approximation ratios applicable to f . Note q(x) =
1
Z

exp(f(x)), then QMPE
Ψ,Θ (σ, yσ) ∝ maxx q(x).

If f is ρ-approximable, there is a polynomial time algorithm re-
turning for any instance an approximate solution x̃ such that f(x∗) ≤
ρf(x̃). Now,

q(x∗)

q(x̃)
=

exp(f(x∗))

exp(f(x̃))
≤

exp(f(x∗))

exp(f(x∗))
1

ρ

= exp(f(x∗))1−
1

ρ , but

f(x∗) ≤
X
i∈σ

 
max

xi

log PΘ(yi|xi) − min
x′

i
,yi

log PΘ(yi|x
′
i)

!

+
X
c∈C

„
max

xc

log ψc(xc) − min
x′

c

log ψc(x
′
c)

«

≤ log(κΨ,Θ,σ).

So, q(x∗) is approximable with κ
1− 1

ρ

Ψ,Θ,σ. And since this ratio is inde-

pendent of yσ, it also holds for QMPE
Ψ,Θ (σ, yσ) and UMPE

Ψ,Θ (σ).
In the case of binary variables (and arbitrary constraints), [1]

provided a constant approximation ratio ρ = 1.2987 for WEIGHTED

MAX SAT. When furthermore constraints are pairwise, ρ is de-
creased to ρ = 1.0741 [7]. These two ratios translate to the
instance-dependent ones mentioned in the proposition. �

3.4 Large sample optimisation problem

We have shown that when the sample size bound is independent of
the problem size, O(UMPE

Ψ,Θ ) belongs to NPO . In this section we
are going to show that, in the general case, the decision problem
D(UMPE

Ψ,Θ ) is much harder: it is PP-hard and this complexity bound
is likely to be a strict lower bound.

Recall first that PP is the probabilistic complexity class which
emblematic complete problem is MAJSAT:

Let φ be a 3-CNF over {x1, . . . , xn}. Is |{x, x |= φ}| > 2n−1 ?

In other terms, one asks whether more than half of the assignments
satisfy φ. Then, using reduction from MAJSAT to D(UMPE

Ψ,Θ ), we
show the following proposition:

Proposition 8 (PP-hardness of D(UMPE
Ψ,Θ ))

D(UMPE
Ψ,Θ ), where Z is assumed to be known is PP-hard.

Sketch of proof: Assuming that φ = Cl1 ∧ . . . ∧ Clm is a 3-CNF
over {X1, . . . , Xn}, we consider the following problem D(UMPE

Ψ,Θ ):

• V = {1, . . . , n}, W = V , X = Y = {0, 1}n, C =
{Scope(Clk)}k=1...,m and E is defined accordingly,

• ψScope(Clk)(xScope(Clk)) = 1 if xScope(Clk) |= Clk and 2−n−1

else, ∀k = 1, . . . , m,
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• K = n, Pθi
(yi|xi) = 1 if xi = yi and 0 else, μ = 2n−1

Z
,

γ(σ) = 0,∀σ ⊆ V .

Note that UMPE
Ψ,Θ (V ) =

1

Z

X
x

Y
Clk

ψScope(Clk)(xScope(Clk)).

But,
Q

Clk
ψScope(Clk)(xScope(Clk)) = 1 if x |= φ and is less than

2−n−1 else. So,

UMPE
Ψ,Θ (V ) =

1

Z

„
|{x, x |= φ}| + ε

«
with 0 ≤ ε ≤

1

2
.

So,
1

Z
|{y, y |= φ}| ≤ UMPE

Ψ,Θ (V ) ≤
1

Z
(|{y, y |= φ}| +

1

2
)

and |{y, y |= φ}| > 2n−1 ⇔ UMPE
Ψ,Θ (V ) > 2n−1

Z
.

Since UMPE
Ψ,Θ is increasing with inclusion, we get the result. �

4 SAMPLING OPTIMISATION ALGORITHMS

From now on, we limit ourselves to the case where the cost func-
tion γ is null. This allows to avoid to compute Z (sample values are
thus determined up to a constant coefficient). However, the family of
variable elimination subroutines which are used in the “exact” and
“greedy” algorithm also apply to the computation of Z and the “be-
lief propagation” algorithm does not require to know Z.

4.1 “Exact” variable elimination

In the exact approach, we use a classical variable elimi-
nation algorithm (e.g. [12]) to compute the MPE solution
xMPE(yσ) = arg maxx PΘ(yσ|x)

Q
c∈C ψc(xc). Then, an optimal

sample σ∗(K) = arg maxσ⊆W,|σ|≤K UMPE
Ψ,Θ (σ) is computed re-

cursively, requiring to compute xMPE(yσ) for all valid pairs (σ, yσ).
Thus, it is easy to see that the time complexity of the algorithm

grows exponentially with the sample size bound K (note that since
UMPE

Ψ,Θ is increasing with inclusion, |σ∗(K)| = K).

4.2 “Greedy” algorithm

The greedy algorithm is a variation of the exact algorithm in which a
suboptimal sample is built incrementally:

• First, an optimal sample of size 1 is computed by the exact variable
elimination method.

• Then, given a current sample σ of size |σ| < K, all samples σi =
σ ∪ {i},∈ W \ σ are evaluated exactly and σ is replaced with the
best augmented sample.

• When the sample size has reached K, the corresponding “greedy”
suboptimal sample σG is returned.

Applying the greedy algorithm allows to replace a CK
|W | factor

(linked to the exhaustive exploration of {σ, |σ| = K}) with a poly-
nomial one (the number of samples evaluated by the greedy algo-
rithm is less than |W |K). Of course, the greedy algorithm still takes
exponential time to run: the variable elimination algorithm takes ex-
ponential time to run and, for a given σ, the set {yσ} also has expo-
nential size.

Now, one could ask whether the greedy algorithm provides bounds
on the loss of quality of the solution returned. Indeed, as far as sub-
modular set functions [16] are concerned, the existence of such a
bound on the quality of greedy solutions is known. However, even-
though UMPE

Ψ,Θ is an increasing set function, it is not submodular in
the general case. We will not develop here on this negative result.

4.3 “Belief propagation” algorithm

Belief propagation (BP) algorithms [20] use message passing up-
dates to compute approximate marginal probabilities bi(xi) for all
vertices of a Markov Random Field (G,X , Ψ). The belief propaga-
tion approximation for the sample optimisation problem consists in:

• Computing BP approximate marginals bi(xi) for the MRF
(G,X , Ψ) and

• choosing the K most “uncertain” sites belonging to W to sample,
i.e. the sites with the smaller values of maxxi bi(xi).

Note that this approximation algorithm does not take into account
sample outputs for choosing the sample. Thus, its time complexity is
roughly independent of K.

5 EXPERIMENTS

We have tested the performance of the exact variable elimination
algorithm as well as the greedy and belief propagation algorithms
on a “map reconstruction problem” over a regular grid. Namely,
we considered a pairwise HMRF as represented in Figure 2, with
Xi = Yi = {0, 1}. The singleton potential values are specified on
the figure. The pair potential function are independent of i and have
value exp(1) = e for assignments (1, 1) and (0, 0) and 1 otherwise.
The sizes of the grid problems increase from 3 × 2 to 6 × 6.

Figure 2. HMRF examples (from 3 × 2 to 6 × 6 grids). White dots:
ψi(1) = 0.3. Grey dots: ψi(1) = 1. Black dots: ψi(1) = 3. ψi(0) = 1, ∀i

.

We have computed the exact values of (i) optimal sample, V ∗ (ii)
“greedy” sample, V G and (iii) “belief propagation” sample, V BP ,
for sample size bounds 1 to 4, for the eight subproblems of size 3×2

to 6× 6. The value ratios V G

V ∗ and V BP

V ∗ , as well as the logarithms of
the execution times of all three methods are shown in Figure 3. Note
that the exact method did not solve the 6 × 6 problem after 9 days
(exp(13) seconds).

Eventhough the greedy algorithm is far faster than the exact one
(up to 10 times faster for K = 2, 100 times faster for K = 3 and
500 times faster for K = 4), we observed that the computed so-
lutions are quite close to optimality for all configurations (at least
90% of the optimal). The computational gain when running the be-
lief propagation algorithm is from 10 to 50, compared to the greedy
algorithm. However, the ratio to optimality decreases below 80%.

Now, for larger problems, the exact optimal solution is out of
reach, and the greedy algorithm itself is limited in size, due to its
exponential time complexity. The belief propagation algorithm com-
plexity is only limited by the number of updates allocated and its
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Figure 3. Top: Ratio of values, greedy (left), belief propagation (right).
Middle and bottom right: Log-times of greedy, belief propagation and exact
algorithms. Bottom left: relative increase of optimal value wrt sample size.

time complexity is independent on K. The largest part of the time
needed to execute BP is devoted to the final exact computation of
the returned solution value.

6 CONCLUDING REMARKS, RELATED AND
FUTURE WORK

In this article, we propose an approach for optimal sampling in struc-
tured problems under limited budget, within the framework of Hid-
den Markov Random Fields (HMRF). The value of a sample is the
expectation, over all possible observation outputs, of the MPE proba-
bility. We have obtained computational complexity results about this
problem, leading in particular to approximability/inapproximability
results. We have designed exact and approximate solution algorithms
for this problem, which we have empirically evaluated on a problem
of spatial sampling for occurrence map restoration.

Several recent works have addressed the question of decision-
theoretic observation selection in graphical models. [13] have con-
sidered reliable observations and simple problem structures (chain
model, naive Bayes model or polytree). They have provided com-
plexity results and exact and approximate solution algorithms. In
this work, rewards are local. [18, 19] have considered the noisy
observations case, with simple problem structures (hidden Markov
chains, tree-shaped Bayesian networks) and easily computable local
rewards. On their side, [15] have considered general Bayesian net-
works and noisy observations, but with a very specific and easy to
compute non-local reward function.

The originality of our work is to consider a general HMRF model
structure, noisy observations and a non-trivially (NP-hard) com-
putable global reward function (based on MPE). Furthermore, we
focus on sample size, rather than on problem structure, in order to
exhibit “easier” sub-classes and to provide approximability results.

Future works will be turned towards the search for adaptive sam-
pling policies, breaking the sample set choice into successive steps,
where the next sample is chosen on the basis of the outputs of pre-
vious samples. This generalised problem is likely to be PSPACE-
complete. The similarities of this problem with the Partially Ob-
served Markov Decision Processes [5] are worth exploring in order
to design exact and approximate solution algorithms. In particular,
simulation-based Reinforcement Learning approximate solution al-
gorithms [3] will be investigated for this problem. These develope-
ments will be exploited to solve optimal spatial sampling problems
in ecology/epidemiology.
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