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Abstract. Controller synthesis consists in automatically building
controllers taking as inputs observation data and returning outputs
guaranteeing that the controlled system satisfies some desired prop-
erties. In system specification, these properties may be safety proper-
ties specifying that some conditions must always hold. In planning,
they express that the evolution of the controlled system must termi-
nate in a goal state. In this paper, we propose a generic approach
able to synthesize memoryless or finite-memory controllers for both
safety-oriented and goal-oriented control problems. This approach
relaxes some restrictive assumptions made by existing work on con-
troller synthesis with non-determinism and partial observability and
is shown to induce potentially significant gains. The proposed “Sim-
ulate and Branch” algorithm consists in exploring the possible evo-
lutions of the controlled system and in adding new control elements
when uncovered states are discovered. The approach developed is
constraint-based in the sense that control problems are formulated us-
ing the flexibility of constraint programming languages and that our
implementation uses the Gecode constraint programming library.

1 INTRODUCTION

Controller synthesis consists in automatically building controllers
that take as inputs observation data from a system to be controlled
and return as outputs actions to be executed that guarantee that the
controlled system satisfies some desired properties.

In system specification, these properties may be safety properties
specifying that a condition must hold at any step over an infinite
horizon. The associated synthesis problem can be hence referred to
as safety-oriented control. More general properties expressed using
temporal logic [4] are not considered in this paper.

In planning, the properties to be satisfied express that the con-
trolled system must reach a goal state and halt in that state. The asso-
ciated synthesis problem can be referred to as goal-oriented control.
Related planning frameworks are contingent and conformant plan-
ning [2] for non-deterministic domains, and completely or partially
observable Markov Decision Processes (MDP/POMDP) [9, 6] for
stochastic domains.

When all attributes of the system to be controlled are observ-
able, the controllers synthesized take the form of memoryless con-
trollers mapping the last observation to an action. Otherwise, when
some attributes remain unobserved, controllers take the form of full-
recording controllers, mapping the belief state (the set of states
consistent with all past observations) to an action [2, 1]. In goal-
oriented contexts, these controllers can be transformed into condi-
tional plans [1]. Intermediate approaches between memoryless and
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full-recording controllers were proposed for POMDP [7, 8] and re-
cently for planning with non-determinism [3]. The principle is to
synthesize finite-memory controllers, also referred to as finite-state
controllers, which use a size-limited memory to record information
related to the past. Compared to belief-state controllers, finite-state
controllers are more reactive because they do not require any on-
line maintenance of the belief state. Compared to full-recording con-
trollers in general, they may be more compact.

In this paper, we propose a generic approach able to synthesize
memoryless or finite-memory controllers for both safety-oriented
and goal-oriented control problems in non-deterministic and partially
observable domains. Compared to existing work in non-deterministic
planning, we relax restrictive assumptions present in [3]: we do not
assume that actions have no preconditions or that action effects are
deterministic, and the controllers synthesized are guaranteed to ter-
minate in a goal state, and not only to reach a goal state.

The search algorithm used, called Simulate and Branch, consists
in exploring the possible evolutions of the system controlled (simu-
lation phase) and in adding decisions when states uncovered by the
policy are discovered (branching phase). The approach proposed is
compared with [3] and with the MBP planner [1].

Last, the underlying models and algorithms defined are constraint-
based. The idea is to use the expressiveness of a constraint program-
ming framework to ease the modeling task, and the efficiency of as-
sociated algorithms to speed the search. The algorithms developed
use the Gecode constraint programming library [5]. The techniques
introduced are however not restricted to constraint-based models.

The paper is organized as follows: we first define control problems
considered (Sections 2-3), then present the Simulate and Branch al-
gorithm (Section 4), and last give experimental results (Section 5).

2 CONTROLLER SYNTHESIS FRAMEWORK

In this paper, the attributes of the controlled system are modeled by
a finite set S of variables. The outputs of the controller are similarly
modeled by a finite set C of variables. All variables v ∈ S ∪ C are
assumed to have a finite domain of values denoted d(v). Given a set
of variables V , d(V ) denotes the Cartesian product of the domains
of the variables in V (assuming an order on the variables in V so that
this Cartesian product is well defined). Each element s (resp. c) in
d(S) (resp. d(C)) is called a state (resp. a control).

At a given step, the current state of the controlled system may be
only partially known. We consider that the set S of state variables is
partitioned into a set O of observable variables and a set S \ O of
unobservable variables. Each element o in d(O) is called an obser-
vation. Given a state s, o(s) denotes the assignment of the variables
of O in s, that is the observation associated with s.
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We consider a framework involving non-determinism both in the
initial state and in the possible effects of the controller outputs. This
non-determinism is modeled by two relations: an initialization rela-
tion I , which contains assignments s corresponding to possible ini-
tial states, and a transition relation T , which contains triples (s, c, s′)
such that s′ is a possible successor of s when control c is performed.

Last, preconditions can be imposed on controller outputs. These
preconditions may depend on both observable and unobservable at-
tributes. They express that in a given situation, a controller output is
physically impossible or forbidden by the modeler. Such precondi-
tions are modeled using a feasibility relation F , which contains pairs
(s, c) such that control c is feasible in state s.

In the models developed, relations I , T , and F are expressed as
sets of constraints. In the following, given a relation R over a set of
variables V , “v ∈ R” is also denoted “R(v) = true”. We hence
use I(s) = true , T (s, c, s′) = true , and F (s, c) = true to denote
s ∈ I , (s, c, s′) ∈ T , and (s, c) ∈ F respectively.

The only assumption made on the previous elements is that a
feasible control cannot block the evolution of the system: ∀s ∈
d(S), ∀c ∈ d(C), F (s, c) → (∃s′ ∈ d(S), T (s, c, s′)). Such an
assumption is undemanding since, if it does not hold, it suffices to
replace relation F by {(s, c) |F (s, c) ∧ (∃s′ ∈ d(S), T (s, c, s′))}.
All previous elements are gathered in the notion of control model.

Definition 1 A control model is a tuple (S,O,C, I, T, F ) such that:

• S is a finite set of finite-domain variables called state variables;
• O ⊂ S is a set of observable state variables;
• C is a finite set of finite-domain variables called control variables;
• I ⊂ d(S) is the initialization relation;
• T ⊂ d(S)× d(C)× d(S) is the transition relation;
• F ⊂ d(S)× d(C) is the feasibility relation;
• ∀s ∈ d(S), ∀c ∈ d(C), F (s, c) → (∃s′ ∈ d(S), T (s, c, s′)).

We then define a decision policy Π for a control model as a mem-
oryless controller, mapping the last observation made o ∈ d(O) to a
control c ∈ d(C). Π(o) = c means that the output of the controller
is c when observation o is made. Such policies are functional since
they specify a unique possible output for each observation. A pol-
icy can be partial in the sense that Π(o) can be undefined for some
o ∈ d(O). Partial policies are useful to define the controller behavior
only on the set of reachable states of the system.

Definition 2 A policy for a control model (S,O,C, I, T, F ) is a
partial function Π : d(O) → d(C). The domain of a policy Π is
defined as d(Π) = {o ∈ d(O) |Π(o) defined}.

Policies introduced in Definition 2 are memoryless since all past
observations, but the current one, are not considered to determine a
controller output. An opposite approach considers belief-state based
policies Π : 2d(S) → d(C) associating a controller output with
a set of possible current states computed from all past observa-
tions. As shown in [3], an intermediate approach considers finite-
state controllers. Such controllers maintain an internal state number
q ∈ [1..N ], with N a fixed integer. They are defined by mappings
(o, q) → (c, q′) expressing that when the controller makes observa-
tion o and is in internal state q, it outputs control c and changes its
internal state to q′. Thanks to internal memory q ∈ [1..N ], the con-
troller may record features concerning past observations, and some
problems which do not admit memoryless controllers admit finite-
state controllers.

In order to model finite-state controllers with N internal states
for a control model M = (S,O,C, I, T, F ), it actually suffices to
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Figure 1. Robot control problem

consider a new control model M ′ = (S′, O′, C′, I ′, T ′, F ) where
S′ = S∪{qs}, O′ = O∪{qs}, C′ = C∪{qc}, I ′ = I∧{qs = 1},
and T ′ = T ∧ {qs′ = qc}, and where qs and qc are new variables
of domain [1..N ]. The idea is to introduce a new observable state
variable qs and a new control variable qc. Given the definitions of O′

and C′, decision policies in M ′ take the form Π : d(O)× d(qs) →
d(C) × d(qc). As the value of qs is directly controlled thanks to
transition constraint qs′ = qc, it is then as if the controller contained
mappings of the form (o, qs) → (c, qs′). Initialization constraint
qs = 1 sets arbitrarily the first internal state.

In the following, we consider that control models always contain
one variables qs ∈ O and one variable qc ∈ C, both of domain
[1..N ]. N is the maximum memory of the controller. It equals 1 for
memoryless controllers (a unique possible internal state).

Given a policy Π, it is possible to define the set of trajectories
and the set of reachable states induced by Π. We are also interested
in applicable policies which specify only feasible decisions. These
elements are formalized below.

Definition 3 Let Π be a policy for a control model
(S,O,C, I, T, F ). A trajectory induced by Π is a sequence
[s0, . . . sn] such that (i) I(s0) = true , (ii) for all i ∈ [1..n],
o(si−1) ∈ d(Π) and T (si−1,Π(o(si−1)), si) hold, and (iii)
o(sn) /∈ d(Π) if n < +∞. When n < +∞ (resp. n = +∞),
the trajectory is said to be finite (resp. infinite). The set of reach-
able states associated with Π, denoted A(Π), is the set of states
appearing in at least one trajectory induced by Π.

Definition 4 A policy Π for a control model (S,O,C, I, T, F ) is
said to be applicable if and only if for every reachable state s ∈
A(Π), (o(s) ∈ d(Π)) → F (s,Π(o(s))).

To illustrate the controller synthesis framework, let us consider the
example of a robot in a grid given in Figure 1. Initially, the robot is
in one of the two positions of x-coordinate 2. At each step, it can
observe the presence of walls around its current cell and move north,
south, east, or west. To model this problem, we introduce the set
of state variables S = {x, y, wN , wS , wE , wW , qs} where x, y are
variables of domains d(x) = [1..3] and d(y) = [1..2] represent-
ing the current xy-coordinates, wN , wS , wE , wW are boolean vari-
ables representing the presence of walls on the north, south, east, and
west respectively, and qs is a variable of domain d(qs) = [1..N ]
representing the internal state of the controller. Position (x, y) is
not directly observable, hence the set of observable variables is
O = {wN , wS , wE , wW , qs}. The set of control variables is C =
{m, qc}, where m has domain d(m) = {mN ,mS ,mE ,mW } and
represents the move performed at each step (north, south, east, or
west), and qc has domain d(qc) = [1..N ] and commands the evo-
lution of the controller internal state. Note that even if all decisions
have a deterministic effect in this example, we do not make such an
assumption in the general framework.

The initialization relation (I), the relation transition (T ), and the
feasibility relation (F ) are given by the following set of constraints,
in which a primed variable represents the value of that variable at the
next step (after the control):
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I
{

x = 2, wN , wS ,¬wE ,¬wW , qs = 1

T

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x′ = x+ (m = mE)− (m = mW )
y′ = y + (m = mN )− (m = mS)
w′

N ↔ (y′ = 2 ∨ (y′ = 1 ∧ x′ = 2)), w′
E ↔ (x′ = 3)

w′
S ↔ (y′ = 1 ∨ (y′ = 2 ∧ x′ = 2)), w′

W ↔ (x′ = 1)
qs′ = qc

F

{
wN → (m �= mN ), wS → (m �= mS)
wE → (m �= mE), wW → (m �= mW )

An example of memoryless policy (N = 1) is Π1 defined by:

Π1 : wN , wS , qs = 1 → m = mW , qc = 1
wN , wW , qs = 1 → m = mE , qc = 1
wS , wW , qs = 1 → m = mN , qc = 1

We omit negative literals. So, the first line corresponds to
wN , wS ,¬wE ,¬wW , qs = 1 → m = mW , qc = 1. An exam-
ple of finite-memory policy (with N = 2) is Π2 defined by:

Π2 : wN , wS , qs = 1 → m = mE , qc = 1
wN , wE , qs = 1 → m = mW , qc = 2
wS , wE , qs = 1 → m = mN , qc = 1

3 CONTROL PROBLEMS

Given a control model, several requirements can be imposed on the
possible evolutions of the controlled system. In this paper, three kinds
of control problems are considered: goal-oriented control problems,
safety-oriented control problems, and a combination of these two.
Other problems could be considered, such as goal reachability in a
bounded number of steps.

Goal-oriented control problems In such problems, the objective
is to find an applicable policy so that all trajectories terminate in a
goal state i.e., reach a goal state and stop. The goal is defined by a
goal relation G containing states s satisfying it. The distinction be-
tween “terminate” and “reach” matters when the goal relation holds
on non-observable attributes.

Definition 5 A goal-oriented control problem is a pair (M,G) with
M a control model and G ⊂ d(S) the goal relation. A solution to this
problem is an applicable policy Π for M such that all trajectories
[s0, . . . , sn] induced by Π are finite and verify G(sn) = true .

For the robot example, let us assume that the goal is to terminate
at position (2, 2) (marked G on the figure). The goal-oriented control
problem is then (M,G), with M the control model defined previ-
ously and G the goal relation defined by constraints x = 2 ∧ y = 2.

Policy Π1, previously defined, is not a solution to this problem
because, starting from initial state sa : (x = 2, y = 2, qs = 1),
it induces the infinite loopy trajectory (sa, sb, sa, sb, . . .) with sb :
(x = 1, y = 2, qs = 1). Intuitively, with Π1, the controller never
knows whether or not the goal state is reached. It can even be shown
that no memoryless controller is solution to this problem, since for
such a controller, positions (2, 1) and (2, 2) are always ambiguous.

Policy Π2, which has memory N = 2, is a solution. Indeed, it
induces two trajectories: t1 = [sa, sb, sc] and t2 = [sd, se, sb, sc],
with sa : (x = 2, y = 2, qs = 1), sb : (x = 3, y = 2, qs = 1),
sc : (x = 2, y = 2, qs = 2), sd : (x = 2, y = 1, qs = 1), and
se : (x = 3, y = 1, qs = 1). Both trajectories are finite and end
in a goal state. Informally, policy Π2 consists in moving east at the
beginning, and in setting qs to 2 as soon as a west move is performed
from position (3, 2).

Safety-oriented control problems In such problems, the objec-
tive is to find an applicable policy ensuring that the system is never
blocked and that some properties are satisfied at each step. These
properties are modeled by a safety relation R containing states s sat-
isfying them. R may hold on unobservable attributes.

Definition 6 A safety-oriented control problem is a pair (M,R)
with M a control model and R ⊂ d(S) the safety relation. A so-
lution to this control problem is an applicable policy Π for M such
that all trajectories induced by Π are infinite and all states involved
in these trajectories satisfy R.

Let us consider a safety relation R imposing that position (3, 1) is
never reached (marked R on the figure). The safety-oriented control
problem is (M,R), with M the control model defined previously and
R the safety relation defined by constraint ¬(x = 3 ∧ y = 1).

Memoryless policy Π1 is a solution to this problem: it induces
infinite trajectories which never reach position (3, 1). Policy Π2 is
not a solution for two reasons: first it induces finite trajectories, and
second one of these trajectories reaches position (3, 1).

The main difference between goal-oriented and safety-oriented
control problems is that, for the former, finite trajectories terminat-
ing in a goal state must be found whereas, for the latter, a control
over an infinite horizon is sought. Goal-oriented control can be seen
as a planning-like control, whereas safety-oriented control is rather
related to model-checking or system specification.

Goal and safety-oriented control problems In such problems,
the objective is to find an applicable policy so that all trajectories
terminate in a goal state and satisfy some properties at each step.

Definition 7 A goal and safety-oriented control problem is a triple
(M,G,R) with M a control model, G ⊂ d(S) the goal rela-
tion, and R ⊂ d(S) the safety relation. A solution to this control
problem is an applicable policy Π for M such that all trajectories
[s0, . . . , sn] induced by Π are finite and verify G(sn) = true and
∀i ∈ [0..n], R(si) = true .

Note that a goal and safety-oriented problem (M,G,R) is equiv-
alent to the goal-oriented problem (M ′, G′), with M ′ resulting from
the addition of R to F in M (F ′ = F ∧R) and G′ = G∧R (safety
requirements added to the feasibilities and to the goal).

4 DEPTH-FIRST SIMULATE AND BRANCH

4.1 General description

In order to solve control problems, we use a Simulate and Branch
algorithm (SB). This algorithm performs the depth-first exploration
of two trees:

• one tree TB , called policy branching tree, which describes the pos-
sible decisions concerning the policy; each node n in TB is labeled
with an observation o and each branch coming out of n is labeled
with a decision “Π(o) = c”; each node n in TB can therefore
be seen as a partial policy defined by the union of the branching
decisions made on the path from the root to n;

• another tree TS , called system simulation tree, which gives the
possible evolutions of the controlled system given the current par-
tial policy Π; children of the root node correspond to all possible
initial states; each non-root node n in TS is labeled with a state s;
if o(s) /∈ d(Π), n is a leaf node; otherwise, the children of n are
the possible successors of s induced by Π i.e., states s′ such that
T (s,Π(o(s)), s′) holds.
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At each node in the policy branching tree, corresponding to a par-
tial policy Π, an exploration of the system simulation tree is invoked.
This exploration can return three different results:

1. a proof that policy Π is a solution to the control problem, when the
traversal of the whole simulation tree reveals no inconsistency;

2. a proof of incompleteness of policy Π, when the exploration of TS

detects a reachable state s not covered by Π;
3. a proof of incorrectness of policy Π, when it is proved that no

extension of Π can be a solution to the control problem.

In the first case, a solution policy is found. In the second case, a
new branching node, associated with control Π(o(s)), is introduced
in the policy branching tree. In the third case, a backtrack occurs
in the policy branching tree. The search terminates either when a
solution policy is returned, or when the whole policy branching tree
has been explored without finding a solution.

In order to save time in the exploration of TS , we record, each time
the exploration of TS ends due to an uncovered state, the current
search stack of the depth-first exploration of TS . In order to save
time in the exploration of TB , we record in TS the set D of decisions
involved in the current trajectory. This allows a kind of conflict-based
backjumping to be performed in TB in case of inconsistency of the
current trajectory (direct backtrack to the last decision involved in
D). Storing search stacks and trajectory justifications can be memory
consuming. If memory space is needed, both can be forgotten. The
algorithm still works but may re-explore branches in TS or backtrack
in TB on decisions not responsible for inconsistency.

Example Let us illustrate algorithm SB on the goal and safety-
oriented control problem (M,G,R) with M the control model in-
troduced in Section 2, G defined by (x = 2 ∧ y = 2), and R by
¬(x = 3 ∧ y = 1).

To answer this problem, algorithm SB uses the policy branching
tree given in Figure 2 and the system simulation trees given in Fig-
ure 3. In Figure 3, the node at which a simulation tree exploration
stops is represented by a plain line box. The nodes associated with
solved states (starting from these states, the current policy is a solu-
tion) are represented by a dotted box.

Search begins at the root of the policy tree. At this point, the cur-
rent policy is empty. The first step is to explore the possible evo-
lutions of the system. This corresponds to simulation tree SimuA.
The exploration of SimuA stops in initial state (x = 2, y =
2, wN , wS , qs = 1) which is not covered by the current empty pol-
icy. A decision to do nothing in this state (Π(wN , wS , qs = 1) = ε)
is made in the policy tree. Exploration of SimuB then reveals an
inconsistency since, in state s : (x = 2, y = 1, wN , wS , qs =
1), the current policy indicates to do nothing, but s is not a goal
state. Backtrack occurs in the policy tree and another decision
(Π(wN , wS , qs = 1) = (m = mE , qc = 1)) is tried. Exploration
of SimuC then shows that state (x = 3, y = 2, wN , wE , qs = 1)
is uncovered. A decision is made in the policy tree. Exploration of
SimuD reveals an inconsistency (loopy trajectory). Backtrack oc-
curs in the policy branching tree and another choice is made. Explo-
ration of SimuE detects an uncovered state, for which a decision is
made. An inconsistency is then revealed in SimuF since the current
policy can lead to the undesirable position (3, 1). Because this state
is reached in SimuF using only decision Π(wN , wS , qs = 1), a
backjump can occur in the policy tree directly to this decision. The
search continues until a solution policy is found.

In practice, each time a new uncovered state is discovered, the
pending nodes in the depth-first exploration of the current simula-
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Figure 3. System simulation trees

tion tree are stored. For instance, SimuF is obtained starting from
SimuE. It must also be stressed that, due to partial observability,
an inconsistency revealed in a branch of a simulation tree can be in-
duced by a decision made in a completely different branch. See for
instance the inconsistency revealed in SimuF which is due to the
decision made for the uncovered state in SimuA.

4.2 Pseudo-code

Due to space limitations, proofs are omitted, and the pseudo-code
is presented in the context of goal-oriented control problems and
without backjumping. The main function in Algorithm 1 is SB. It
takes as inputs a policy Π, a function M associating with each state
s a mark M(s) ∈ {SOLVED,PROCESSING,NONE}, and a search
stack L. If M(s) = SOLVED, the current policy is a solution starting
from s. If M(s) = NONE, s has not been considered yet. Otherwise,
M(s) = PROCESSING. A search stack L is an ordered list of search
nodes which are pairs (s, U), where s is a state and U the set of im-
mediate successor states of s not explored yet (pending nodes).
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Function SB first calls function simulate to explore the simula-
tion tree, using current policy Π. If this exploration proves that Π is
a solution, then SB returns true and Π. If Π is not a solution and
no uncovered state has been revealed, it returns false . Otherwise, a
new branching choice is introduced for observation o(s) associated
with the uncovered state s, and SB is recursively called. When s sat-
isfies the goal, a possible branching choice is Π(o(s)) = ε. Such a
choice forces Π(o(s)) to be undefined. By convention, we consider
that T (s, ε, s′) is false for every s′.

Function simulate takes as input the same parameters as func-
tion SB does. It continues the depth-first simulation tree explo-
ration by calling function simuAllSucc for each search node
(s, U) in the search stack. Function simuAllSucc calls function
simuOneSucc to successively explore each state in U . When all
successors of s have been considered, s is marked SOLVED .

Function simuOneSucc takes as input current policy Π, current
marks M , and a single state s. If s is already solved, then the explo-
ration succeeds. If s is already processing, then a loop inducing an in-
finite trajectory is detected, hence inconsistency is returned. If o(s) is
not covered by Π, then simuOneSucc returns that s is uncovered.
When o(s) is covered by Π, but the associated decision is not feasi-
ble, an inconsistency is returned, as well as when the decision is ε,
but s is not a goal state. In other cases, s is marked PROCESSING
and the exploration of successors of s is triggered.

The initial call is SB(Π0,M0, L0) with Π0 the empty policy, M0

the function associating mark NONE with every state, and L0 the
search stack reduced to search node (·, {s ∈ d(S) | I(s)}) repre-
senting all possible initial states.

Proposition 1 SB is sound and complete: if the goal-oriented con-
trol problem has a solution, then initial call SB(Π0,M0, L0) returns
(true,Π) with Π a solution policy; otherwise, it returns (false,Π0).

Proposition 2 Computing SB(Π0,M0, L0) is time O(|d(S)|2 ·
|d(O)||d(C)|+1). When search stacks are forgotten, computing
SB(Π0,M0, L0) is space O(|d(O)| · |d(C)|+ |d(S)|2).

Algorithm SB is a pure search exploration procedure which uses
no classical planning heuristics. We however use three simple set-
tings in the policy branching tree when choosing a value for Π(o(s)):

• when G(s) holds, control ε (undefined policy) is tried first, in or-
der to build policies which halt trajectories as soon as possible;

• controls having qc as small as possible are tried first, in order to
obtain controllers as memoryless as possible;

• if qcmax denotes the maximum value used for qc in Π, then
branching choices where qc > qcmax + 1 are forbidden; this
allows to avoid exploring symmetric solutions by forcing the con-
troller to consider new internal states in an ascending order.

Extension to Other Control Problems Algorithm SB is generic
and reusable for other control problems. When the goal holds only on
observable attributes, a faster algorithm can be obtained by removing
option ε from the branching choices and by replacing in function
simuOneSucc tests 34 and 40 by:

34’ (M(s) = SOLVED) ∨G(s)
40’ ¬F (s,Π(o(s)))
For safety-oriented control problems, loops inducing infinite

trajectories are allowed and it suffices to replace in function
simuOneSucc tests 34, 36, and 40 by:

34” (M(s) = SOLVED) ∨ (M(s) = PROCESSING)
36” ¬R(s)
40” ¬F (s,Π(o(s)))

Algorithm 1: SB algorithm for goal-oriented control problems

SB(Π,M,L) begin1

(M ′, L′) ← (M,L)2

(ok, s,M ′, L′) ← simulate(Π,M ′, L′)3

if ok then return (true,Π)4

else if s = null then return (false,Π)5

else6

M ′(s) ← PROCESSING7

Dc ← {c ∈ d(C) |F (s, c)}8

if G(s) then Dc ← Dc ∪ {ε}9

while Dc �= ∅ do10

choose c ∈ Dc; Dc ← Dc \ {c}11

Π′ ← Π ∪ {o(s) → c}12

Ds ← {s′ ∈ d(S) |T (s, c, s′)}13

(ok,Π′) ← SB(Π′,M ′, (s,Ds).L′)14

if ok then return (true,Π′)15

return (false,Π)16

end17

simulate(Π,M,L) begin18

while L �= ∅ do19

(s, U) ← first(L); delete first(L)20

(ok, uncov,M,L′) ← simuAllSucc(Π,M, s, U)21

if ¬ok then return (false, uncov,M,L′.L)22

return (true,null ,M, ∅)23

end24

simuAllSucc(Π,M, s, U) begin25

while U �= ∅ do26

choose s′ ∈ U ; U ← U − {s′}27

(ok, uncov,M,L′) = simuOneSucc(Π,M, s′)28

if ¬ok then return (false, uncov,M,L′.(s, U))29

M(s) ← SOLVED30

return (true,null ,M, ∅)31

end32

simuOneSucc(Π,M, s) begin33

if M(s) = SOLVED then34

return (true,null ,M, ∅)35

else if M(s) = PROCESSING then36

return (false,null ,M, ∅)37

else if o(s) /∈ DΠ then38

return (false, s,M, ∅)39

else if ¬F (s,Π(o(s))) ∨ (Π(o(s)) = ε ∧ ¬G(s)) then40

return (false, null,M, ∅)41

else42

M(s) ← PROCESSING43

Ds ← {s′ ∈ d(S) |T (s,Π(o(s)), s′)}44

return simuAllSucc(Π,M, s,Ds)45

end46

5 EXPERIMENTS

We ran our experiments on a Xeon processor 2GHz, 1GB RAM. The
solver implementing the SB procedure is called Dyncode and uses
the Gecode constraint programming library [5]. Models used were
directly written in a constraint-based form (they were not parsed from
PDDL). The different relations were expressed and handled as sets
of constraints and not as large tables. We used hash tables to record
decision policy Π, states marks M , and sets of unexplored states U
for each element (s, U) in a search stack L. The data structures used
are backtrackable in the sense that we record modifications made on
Π, M , and L, instead of copying these structures over and over.
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We first compared Dyncode with the planner defined in [3] for syn-
thesizing finite-state controllers, which we will refer to as BPG. This
planner solves contingent planning problems by translating them into
classical planning and by using classical planners. We did not rerun
BPG, which is not publicly available, but simply took the CPU times
given in [3], obtained on a Xeon 1.86GHz, 2GB RAM. For the com-
parison to be fair, we provided Dyncode with the minimum value of
N for each instance and searched for plans reaching the goal but not
necessarily halting in a goal state, as done by BPG. In the constraint-
based models used by Dyncode, a few preconditions easily express-
ible in PDDL are added, e.g. to forbid moves towards walls. BPG
cannot directly handle such preconditions. Table 1 shows that Dyn-
code always runs as fast or faster than BPG (the “as fast” statement
integrates the fact that CPU times for BPG have only one significant
digit). Some instances solved in tens of minutes by BPG are solved
by Dyncode in less than one second or in a few seconds. Several
explanations can be provided. First, with Dyncode, the few precon-
ditions added allow the search space to be pruned earlier. Second, the
translation approach used by BPG may hidden some features of the
problem to be solved, contrarily to the Simulate and Branch proce-
dure used by Dyncode which is directly suited for control problems.
Third, generic heuristics described at the end of Section 4 help Dyn-
code handling the controller memory part.

Problem Instance N CPU time (sec.)
BPG Dyncode Proof < N

Hall-A 1× 4 2 0.0 0.01 0.02
4× 4 4 5730.5 0.26 2.35

Hall-R 1× 4 1 0.0 0.01 0
4× 4 1 0.0 0.02 0

Prize-A 4× 4 1 0.0 0.02 0
Corner-A 4× 4 1 0.1 0.02 0
Prize-R 3× 3 2 0.1 0.03 0.03

5× 5 3 2.7 2.37 0.97
Corner-R 2× 2 1 0.0 0.01 0

5× 5 1 1.6 0.02 0
Prize-T 3× 3 1 0.1 0.05 0

5× 5 1 0.3 0.34 0
Blocks 6 2 0.8 0.02 0.02

20 2 34.8 0.04 0.02
Visual-M (8, 5) 2 1289.5 3.59 0.27
Gripper (3, 5) 2 4996.1 0.06 0.02

Table 1. Comparison Dyncode vs. BPG; N : min memory of a solution
policy; Proof< N : Dyncode proof that no solution with memory < N exists

We then compared Dyncode with MBP [1], a planner able to han-
dle non determinism and partial observability. Basically, MBP per-
forms a forward search in the space of belief states. It branches on
decisions when a new belief state is reached, and records marks on
belief states (instead of marks on states). MBP also uses BDDs to
limit state space explosion. It produces full-recording controllers rep-
resented as conditional plans. Experiments were performed on all
domains presented in [1]. The constraint-based models used by Dyn-
code contained the same knowledge as those used by MBP. Figure 4
gives the results obtained for domains Emptyroom, Maze, and Ring.
The minimum value of N is provided to Dyncode.2 Figure 4 shows
that in terms of CPU time, MBP clearly outperforms Dyncode. This
is due to the fact that MBP uses BDDs techniques and searches in
the space of belief states, whereas Dyncode explores all reachable
states individually. But in terms of memory size of the controllers

2 Emptyroom: N = 0; Maze: N = 2 for instances 3 to 7, N = 3 for
instances 9 to 13; Ring: N = k for instance k.
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Figure 4. Comparison Dyncode vs. MBP; first line: CPU time to
synthesize a solution controller (1h timeout); second line: controller size,

expressed for MBP as the number of arcs in the conditional plan it produces
and for Dyncode as the size of a BDD representing the controller produced

produced, Dyncode clearly outperforms MBP (for domain Empty-
room, the size of the controllers produced does not even depend on
the instance size). This is due to the fact that MBP computes full-
recording controllers which may record useless features (reasoning
on belief states is sufficient but not necessary to act in a non de-
terministic domain). As a result, with our algorithmic approach, the
price to pay for obtaining compact controllers is CPU time. For em-
bedded controllers, this price must however be paid only offline.

6 CONCLUSION

This paper presented an approach for synthesizing finite-state con-
trollers in non-deterministic and partially observable domains. This
approach uses a depth-first simulate and branch algorithm applica-
ble to several control problems, from goal-oriented control to safety-
oriented control. Compared to existing work, several hypotheses
were relaxed and significant gains were obtained in terms of either
CPU time, or memory size of the controllers produced. Future works
will concern ways to speed search, e.g. using planning heuristics or
BDDs, and the extension towards optimization or stochastic aspects.
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