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Abstract. A performance mark of a BDI agent is how fast it can
react to and process incoming event sequences. To the best of our
knowledge, few papers have been published about predicting an
agent’s average response time for an event sequence before the agent
is applied in a real project. In this paper, we first introduce a simula-
tion method. In simulation, a sequence of events with attributes, such
as priorities and amounts of time needed to process the events, is in-
put to the agent at designed insertion time. The events are processed
by the agent according to the attributes. The statistics of processing
time can be recorded. Then we make some theoretical analysis to es-
timate the average response time when an agent processes a sequence
of events based on probability and queueing theory. Comparison ex-
periments show that the results from analysis are quite matching with
the results from simulation experiments. The analysis suggests a way
to quickly estimate the performance of an agent if the attributes of the
incoming event sequence are known in advance. The predicted aver-
age response time can help construct efficient BDI agents for various
environments.

1 INTRODUCTION

The BDI (belief-desire-intention) model is well understood as an
agent architecture to support goal oriented behaviour in intelligent
agents. It provides a folk psychological way by simulating the hu-
man way of making decisions. The mental attitudes of belief, desire
and intention represent the information, motivational, and delibera-
tive states of the agent respectively (see [2] and [9]). The processing
of an event inside a BDI agent is in a sequential way: first, detect
action is executed, then deliberate action and finally execute action.
This popular approach has been used in many agent systems (see [4],
[6], [9] and [12]).

How to rationally allocate computation resources to the three ac-
tions (detect, deliberate and execute) in a BDI agent is a big problem
when designing the agent. A defective mechanism for BDI agent will
induce low responsiveness and waste of resources in the agent (see
[8] and [11]). So it will be helpful if the responsiveness of the agent
with a designed resource allocation mechanism could be known be-
fore the agent is applied in a real project. Currently few researches
have been performed about predicting the responsiveness of an agent
in different situations.

Simulation is a way to predict the performance of a BDI agent be-
fore it is implemented in real application (see [13]). A sequence of
events with attributes, like priorities and amounts of time which are
needed in the three processes (detect, deliberate and execute) of the
agent, will be input to the agent at insertion time of the events. After
receiving an event, the agent spends time on the event according to
the attributes. The time from the moment when the event occurs to
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the moment when the processing of the event is completed can be
recorded. Finally, the average response time for a sequence of events
can be calculated. For different environments, event sequences with
different attribute settings could be constructed. How the event at-
tributes are designed depends on the specific environmnet. The re-
sponsiveness of the agent in different environments can be gotten
through simulation experiments with the respective event sequences.

In this paper, we will first introduce how our simulation experi-
ments are designed. Then we show a theoretical analysis of the pro-
cessing time when a BDI agent is processing a sequence of events.
The analysis is performed in a way like queueing network (see [3]
and [7]). Based on some prior known attributes of the network and
incoming events, queueing theory enables mathematical analysis of
several performance measures including the average waiting time in
the queues of a system, the number of tasks waiting or receiving ser-
vice, and the probability of encountering the system in certain states.
An application of queueing network to reduce waiting times in hos-
pitals can be seen in [5]. Our analysis is performed based on the prior
known average attributes of the incoming events, which represent the
characteristics of the specific environment where the agent is work-
ing. Then the average waiting time for detection, deliberations (A
deliberation is defined as the process to deliberate about a goal and
generate an action plan), and intentions (An intention is defined as
the process to execute the action plan) in the queues will be gotten
through the analysis. This provides an alter-native and quick way to
estimate the responsiveness of agents without performing simulation
experiments.

The rest of this paper is organized as follows. We first introduce the
queueing networks for BDI agents and simulation experiment design
in the next section. Then theoretical analysis of average waiting time
in BDI agents is shown in section 3. In section 4, comparisons of the
results from analysis and simulation are demonstrated and explained.
A way to design BDI agents with best performance is discussed in
section 5. Finally a conclusion is given.

2 PROBLEM DEFINITION

In this section, a BDI agent is illustrated in the form of queueing
networks, and then the design of event sequences for the networks is
explained, finally, we introduce the performance mark for the agents,
which will be analyzed in following section.

2.1 BDI agents configuration

There are 3 basic computational components in a BDI agent, the
belief manager which detects the changes in the environment to
generate new beliefs, the intention generator which deliberates on
the beliefs to generate intentions, and the intention executor which
schedules execution of the intentions. The processing inside the BDI
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agents can be seen as an open queueing network. Events enter the
agent and are processed by the agent as shown in Figure 1.

Figure 1. BDI agents in form of queueing network

In Figure 1, a BDI agent’s computation is an iteration of three
actions: detect, deliberate and execute. An incoming event is inserted
in the event queue when it is the time for the event to occur. In the
agent, when it is the turn for detect action, the events are fetched
and organized as deliberations in the deliberation queue. When it
is the turn for deliberate action, the agent will deliberate about the
deliberations in the deliberation queue and save the output intentions
in the intention queue. Finally, the intentions in the intention queue
will be executed when it is the turn for execute action. The lengths of
all the queues in Figure 1 are infinite.

The architecture shown in Figure 1 is a basic model behind many
BDI agent systems (see [6], [9] and [12]). In real systems, some de-
tails may be different but the basic processing is the same.

2.2 Simulation experiment design

In the simulation, we assume that the smallest time unit is 1 and
the system clock starts from 0. A sequence of incoming events is
designed. The smallest interval between two events is 1 tick of a
simulated clock. The attributes of an event include:

• Priority : importance of the event.
• Insertion time : the time when the event occurs.
• S1 : detection time. Service time needed to detect and organize

the event to generate a deliberation. We assume it equals to the
smallest time unit of 1.

• S2 : deliberation time. Service time needed to complete the delib-
eration.

• S3 : execution time. Service time needed to execute the intention.

The priority value of an event is used to decide the importance
of the intention which is generated according to the event. The pri-
ority value has no effect on detect or deliberate actions because the
agent cannot decide the importance of an event before the delibera-
tion about the event is accomplished. The generated intention is as-
signed with the priority value. An intention with bigger priority value
should be executed earlier. In this paper, the priorities of events are
uniformly distributed in [1, Pmax], where Pmax is the maximum
priority value.

In the experiments, the operations of BDI agents are simulated. A
BDI agent must allocate its computation resources to the three ac-
tions rationally. In the following experiments and analysis, we will
adopt the ”fixed time” allocation mechanism as used in Touringma-
chines (see [1]). Each action is assigned with fixed computation time.
When the time for one action is used up, the next action will start. A

little improvement is that a task (deliberation / intention) can be sus-
pended and resumed in next cycle if the current remaining time is not
sufficient for completing the task. In Touringmachines, the remaining
time will be wasted if it is not big enough to complete a task.

Then, for a BDI agent, we define the following variables:

• t1: time allocated for detect action.
• t2: time allocated for deliberate action.
• t3: time allocated for execute action.
• t = t1+t2+t3: total time in a cycle.
• R2 = t2/t: the ratio of deliberate time in a cycle.
• R3 = t3/t: the ratio of execute time in a cycle.

During the running of a simulation experiment, a sequence of
events is input to the BDI agent at the insertion times and processed
according to the attributes of the events. The time to process each
event will be recorded. Thus the average responsiveness of the agent
to the event sequence can be gotten.

2.3 Performance mark

The agent performance is evaluated by the average response time
(ART) for the events in a sequence. Response time for an event is de-
fined as the period between the time when the event is inserted and
the time when the response to the event is completed. A smaller ART
indicates that the agent can process the events quicker. Our objec-
tive is to estimate the ART of the agent in an environment which is
specified by a sequence of events.

Given the sequence of events, we can get the following values:

• N - number of events in the sequence;
• interval - average length of intervals between events;
• S1 - average detection time of the events;
• S2- average deliberation time of the events;
• S3- average execution time of the events.

Then the ART can be calculated by:

ART = WT1 + S1 +WT2 + S2 +WT3 + S3 (1)

where the various symbols denote,
WT1: the average waiting time between the moment an event occurs
and the moment it gets detected;
WT2: the average waiting time between the moment a deliberation
is inserted to the deliberation queue and the moment it gets serviced;
WT3: the average waiting time between the moment an intention is
inserted to the intention queue and the moment it gets executed.

After the values of the average waiting time are estimated, the ART
can be calculated by combining them with the values of average ser-
vice time. We will analyze the values of average waiting time in next
section.

3 THEORETICAL ANALYSIS

Because the processing time is decided by the bottleneck of the three
actions in an agent, the total time needed to process all the N events
can be roughly estimated by

T = N ∗max
(
t ∗ S1

/
t1, t ∗ S2

/
t2, t ∗ S3

/
t3, interval

)
.

In the following, we will analyze the values of average waiting
time, WT1, WT2, and WT3.
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3.1 Average Waiting Time for Detection

When an event occurs, the probability that the agent is not detect-
ing is calculated by Pro(agent is not detecting) = (t2+t3)/t. If an
event occurs when the agent is deliberating or executing, the event
will not be detected until it is the turn for detect action. The event
can occur at any time in the period of deliberate and execute ac-
tions. We assume that the chance is uniformly distributed. Thus,
the waiting time before the event is detected can be estimated by

1
t2+t3

∗∑t2+t3
i=1

(t2 + t3 − i+ 1).
The average waiting time for detection of any event is:

WT1 = Pro(agent is not detecting) ∗ waiting time

= t2+t3
t

∗ 1
t2+t3

∗∑t2+t3
i=1

(t2 + t3 − i+ 1)

= (t2+t3)∗(t2+t3+1)
2∗t

(2)

We can see that with a fixed time for a cycle, the agent puts more
time on deliberate and execute actions, and the average waiting time
before an event gets detected is longer.

3.2 Average Waiting Time for Deliberation

First, the average number of events which occur in a cycle can be
estimated by Nc = t

/
interval. The number of events that the agent

can deliberate in a cycle is t2/S2. According to whether the agent can
complete deliberations about all the new events in a cycle in which
the events occur, two cases are considered.
Case 1: Nc ≤ t2/S2

Theoretically, the agent can deliberate about all Nc events which
occur in a cycle. Then the average waiting time can be estimated by:

WT2 = ( 1
Nc

∗∑Nc

i=1
((i− 1) ∗ S2

= S2
2

∗
(

t

interval
− 1

) (3)

It can be seen that with bigger interval, smaller S2, WT2 will be
smaller. If t≤interval, WT2will be 0.
Case 2: Nc > t2/S2

In this case, the agent cannot deliberate about all Nc events which
occur in a cycle. When an event numbered by k occurs, the number of
the remaining deliberations in the deliberation queue for the previous
(k-1) events can be estimated by:

Nr2(k) = k − 1− k ∗ interval ∗R2

S2

(4)

Because there are no priorities for the deliberations, the waiting

time for the deliberation k is: Nr2(k)∗ S2
R2

− 1.
So the average waiting time for deliberations is:

WT2 = 1
N

∗∑N

i=α

[
Nr2(i)∗ S2

R2
− 1

]
= N−α+1

N
∗
[
(N+α)

2
∗
(

S2
R2

− interval
)
− S2

R2
− 1

] (5)

Where, α is a minimum integer value satisfying Nr2(α) ≥ 0. α
can be calculated by:

α =
S2

S2 − interval ∗R2

(6)

3.3 Average Waiting Time for Execution

Two cases are discussed according to whether the agent can complete
executing all new intentions in a cycle in which the intentions are
generated.
Case 1: t2/S2 ≤ t3/S3

In this case, the agent can complete more intentions (t3/S3) than
deliberations (t2/S2) in a cycle. So the average waiting time for exe-

cution is: 1
m

∗∑m

i=1
(i− 1) ∗ S3= S3

2
∗ (m− 1), where m = t2/S2.

Then we get:

WT3 =
S3

2
∗
(

t2

S2

− 1

)
(7)

If t2≤S2, this means that the agent cannot generate a new inten-
tion in a single cycle. The agent can always complete the previous
intention before the next one is generated. Thus we get WT3=0.
Case 2: t2/S2 > t3/S3

The agent can generate more intentions than it can execute in a
cycle. Two sub cases are considered.
Case 2.1: Nc ≤ t2/S2

In this case, the agent can complete deliberations about all new
events in a cycle in which the events are detected. Two more sub
cases are here.
Case 2.1.1: Nc ≤ t3/S3

In this sub case, the agent can complete execution of all new in-
tentions generated in the cycle. Thus the WT3 is:

WT3 =
(

1
Nc

∗∑Nc

i=1

(
(i− 1) ∗ S3

))
= S3

2
∗
(

t

interval
− 1

) (8)

If t≤interval, WT3will be 0.
Case 2.1.2: Nc > t3/S3

In this sub case, the agent cannot execute all new intentions gen-
erated in the cycle.

For a new intention numbered by k, the number of previous re-
maining intentions in the intention queue can be estimated by:

Nr3(k) = k − 1− k ∗ interval ∗R3

S3

(9)

Because the priorities are uniformly distributed, the highest prior-
ity of the remaining intentions can be estimated as:

Phigh =
Nr3(k)

k − 1
∗ Pmax (10)

An intention with highest priority is executed immediately. Thus,
we can see that the probability that the intention k can be executed
immediately is:

Pro(Pk > Phigh) = 1− Phigh/Pmax

= k
k−1

∗ interval∗R3

S3

(11)

Where, Pk is priority of intention k.
The waiting time for the intention k can be shown as:

WT3(k) = Pr o (Pk ≤ Phigh) ∗ blocktime(k) (12)

Where, the blocktime(k) is the time needed to execute the inten-
tions with a higher priority value than intention k or intentions with
a same priority value but generated earlier than the intention k. A
blocked intention is expected to get executed after all the events in
the sequence are input.
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The number of remaining intentions when all the N intentions are
generated is:

Nr3(N) = N − 1−N ∗ interval ∗R3

S3

(13)

The average waiting time of the Nr3(N) intentions after all events
occur is calculated by:

1
Nr3(N)

∗ 1
R3

∗∑Nr3(N)

i=1
(i− 1) ∗ S3=Nr3(N)−1

2
∗ S3

R3
(14)

To calculate the blocktime(k), we also need to estimate the time
between the generation of intention k and when intentions for all
events are generated. Then blocktime(k) is calculated as:

blocktime(k) = (N − k) interval

−WT1 − S1 −WT2 − S2 +
Nr3(N)−1

2
S3
R3

(15)

With equations (12, 11, 15), we can calculate the average waiting
time by:

WT3= 1
N

∗∑N

k=α
WT3(k)

= 1
N

∗∑N

k=α

(
1− k

k−1
∗ interval∗R3

S3

)
∗ blocktime(k)

(16)

Where, α is a minimum integer value satisfying Nr3(α) ≥ 0. α
can be calculated by:

α =
S3

S3 − interval ∗R3

(17)

Case 2.2: Nc > t2/S2

In this case, in a cycle, the agent cannot complete deliberations
about all events in a cycle in which the events occur. Similar to the
previous case, we get:

Nr3(k) = k ∗
(
1− S2R3

R2S3

)
− 1 (18)

Pro(Pk > Phigh) = 1− Phigh/Pmax =
k

k − 1
∗ S2R3

R2S3

(19)

We can see that when t2/S2is very close to t3/S3, the probability
is close to 1, which means that the new intention can be executed
soon.

The blocktime(k) is calculated by:

blocktime(k) = (N − k) ∗ S2

R2
+ ∗Nr3(N)− 1

2
∗ S3

R3
(20)

Similar to equation (16), we can calculate the average waiting time
by:

WT3 =
1

N
∗

N∑
k=α

(
1− k

k − 1
∗ S2R3

R2S3

)
∗ blocktime(k) (21)

Where, α is a minimum integer value satisfying Nr3(α) ≥ 0. α
can be calculated by:

α =
R2 ∗ S3

R2 ∗ S3 − S2 ∗R3

(22)

4 EXPERIMENT

In order to see how closely these equations are able to approximate
the real performance of the agents, we make the following compari-
son experiments.

The time allocation mechanism for the BDI agent is t1=1, t2=2,
and t3=4. Thus according to equation (2), the estimated WT1 is 3. A
total number of N=1000 events will be created. The detection time
of all events is 1 time unit. The priority value is selected randomly
from 1 to 5.

In the following we will design various experiments with different
settings for events deliberation time, execution time, and intervals.
The statistics gotten through simulation experiments will be com-
pared to the values estimated by using the equations in previous anal-
ysis.
Experiment 1: Events with same deliberation time, execution
time, and fixed intervals

In this case, all the events are assigned with the same deliberation
time (2 ticks) and execution time (4 ticks). The intervals between
events are a fixed value. We designed five sequences of events with
different intervals (1, 2, 4, 7, and 10 ticks). The sequences are in-
put to the agents separately. The average times gotten from analysis
and simulation are shown in Table 1. From the table, we can see
that in this case, the results from analysis are very close to the real
ART by simulation. For example, the ratio of difference between the
ART results to the value gotten from the simulation experiment is
only |3006-3004|/3004=0.0666%. The only noticeable difference is
shown in italic font. When the fixed interval is 7, for the agent, all
events will be inserted exactly before a new cycle is started and de-
tected in next time unit. Thus the events can be detected in next time
units and average waiting time for detection is 1. The response time
for every event is 8.

Table 1. Average time

* I: average interval between events.

Experiment 2: Events with random deliberation time and execu-
tion time, fixed intervals

In this case, the deliberation time of the events is chosen randomly
in [1, 3]. The execution time of the intentions is chosen randomly
in [1, 7]. The intervals are fixed. We still design 5 sequences like in
experiment 1. The results for the new sequences are shown in Table
2. It is noticed that the results from analysis are still very close to the
results from simulation when the agent is processing congested event
sequences.

Table 2. Average time
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When the fixed interval is 7, the agent is expected to deal with
the new event immediately after it is detected since the average time
needed to process an event (S1+S2+S3= 7.05) is around 7. However,
the deliberation about an event with deliberation time of 3 must be
performed in 2 cycles considering t2 = 2. Due to this, many delib-
erations about events cannot be processed in the same cycles as the
events occur. This induces a bigger WT2 in simulation than the ex-
pected WT2. For the similar reason, WT3 from simulation is also
larger than the value from analysis.
Experiment 3: Events with same deliberation time and execution
time, random intervals

In this case, all events have same deliberation time (2 ticks) and
execution time (4 ticks). The intervals between events will be cho-
sen randomly in [1, max interval]. We design 4 sequences with max
interval as 3, 7, 13, 19 respectively. Then the results are shown in
Table 3. It is shown in the table that the differences between the re-
sults from analysis and simulation are smaller than in last case. The
randomness of intervals is the reason for the differences. For exam-
ple, when average interval is 7.32, the agent is expected to complete
each event in each cycle in analysis. However, in simulation, half of
the intervals are smaller than 7 and the events cannot be processed in
time. This produces a bigger WT2.

Table 3. Average time

Experiment 4: Events with random deliberation time, execu-
tion time, and intervals

In this case, all the variables will be chosen randomly as in previ-
ous experiments. The results are shown in Table 4. The differences
are larger than in the last 2 cases due to a bigger extent of random-
ness.

Table 4. Average time

Experiment 5: Events with exponential distributed intervals and
random deliberation and execution time

In this case, the intervals between events are exponential probabil-
ity distributed. The underlying physical process is memoryless. The
length of the time interval from the current time to the occurrence of
the next event does not depend upon the time of occurrence of the
last event (see [10]). This is a frequently used method to simulate the
independent events in queueing network research. The cumulative
distribution function is shown as:

cdf(t) = 1− e−λ∗t (23)

where, 1/λ is the mean; t is the time units.
cdf(t) shows the probability that the inter-arrival time between 2

events is less than t. So given a number of total events, sum, to be

used in our experiments, we can decide the number of the intervals
with length of t time units by:

G(t) = (cdf(t)− cdf(t− 1)) ∗ sum (24)

If the sum of the events (N) is provided, the numbers of the in-
tervals with different lengths can be decided. Then the intervals are
selected randomly for the events. The current time plus the interval
length is the arrival time of the next event.

When we set N as 1000 and 1/λ as 7, the numbers of intervals
with different lengths are shown in Figure 2. From the figure, we can
see that the number of intervals with same length decreases when
the length of the intervals increases. Many intervals (over 60%) are
smaller than the average interval, 7.08. This means that congestion
between events frequently happens. However in analysis, all events
are expected to occur in a fixed interval, 7.08. Thus the results from
analysis may be too optimistic compared to the results from simula-
tion.

Figure 2. Number of intervals with different lengths

The deliberation time of the events are chosen randomly in [1,
3]. The execution time is chosen randomly in [1, 7]. The results are
shown in Table 5. In this case, many events may come in crowd,
which raises the uncertainty in agent processing. Thus the differences
between the results from analysis and simulation are extended.

Table 5. Average time

From the experiments, we can see that the analysis can provide
quite good estimations when intervalis smaller than the total time
in a cycle of the agent.

However, when interval is bigger than the total time in a cy-
cle, the results from analysis are normally too optimistic compared
to the results from simulation. The differences are noticeable when
interval is closer to the total time in a cycle. It is because the
analysis is made based on the average attributes of the events. In
simulation, the waiting time is affected by the attributes of single
events. Simple average values cannot represent the characteristics of
the events in the sequence in a precise way.

5 DESIGN OF BDI AGENTS

In order to design an effective BDI agent, it is preferred to have
smaller ART. The values of the average waiting time should be
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smaller. The agent should be able to process all the incoming events
in a cycle. So from the analysis, we have the conditions:

S2 ∗ t

interval
≤ t2 ⇒ (t1 + t3)

interval

S2
− 1

≤ t2 (25)

t2 ≤ S2 (26)

t3 ≥ t2 ∗ S3

S2

(27)

Equation (2) shows that if t2 and t3 are decided, a bigger t1
will help decrease WT1. Considering equation (3), it is preferred
that t≤interval. From equation (7), a smaller t2 will help decrease
WT3. Thus an optimal mechanism to allocate resources is:

t2 = S2 (28)

t3 = S3 (29)

t1 = interval − t2 − t3 (30)

We can see that the mechanism will ensure that the BDI agent
processes an event in a cycle. At the same time, the agent can spend
as much time as possible on detecting.

6 CONCLUSION

In this paper, we present two ways for predicting the responsiveness
of BDI agents, simulation and analysis. By analysis, if the basic in-
formation of the event sequence and the settings of a BDI agent are
known, the average response time can be estimated using the equa-
tions. The results of the analysis provide a quick way to estimate
the agent performance without making simulation experiments. The
comparison of results from simulation and analysis shows that the
performances can be well estimated by analysis if the average in-
terval between events is smaller than the total time in a cycle. The
predicted average response time may help modulate the allocation
mechanism of a BDI agent for better performance. In another case, it
can help select one agent which has best performance for a specific
environment among several BDI agent candidates.

In future research, we will concentrate on the analysis when an
agent is expected to have sufficient time to process events immedi-
ately. The analysis will be made based on the unique characteristics
of single events, for example, the distribution function of the inter-
vals and how the deliberation and execution time are decided. It is
expected to give more precise estimations for such sequences.
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