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Abstract.

The way in which the relationships between beliefs, goals, and
intentions are captured by a formalism can have a significant impact
on the design of a rational agent. In particular, what Rao and Georgeff
underline about the relationships between goals and beliefs is that
it is reasonable to require a rational agent not to allow goal-belief
inconsistency, while goal-belief incompleteness can be allowed.

We study a theoretical framework, grounded in possibility the-
ory, which (i) accounts for the aspects involved in representing and
changing beliefs and goals, and (ii) obeys Rao and Georgeff’s re-
quirement. We propose a formalization of a possibilistic extension
of Bratman’s asymmetry thesis to hold between goals and beliefs.
Finally, we show that our formalism avoids the side-effect and the
transference problems.

1 Introduction

The need of adapting the traditional BDI (Beliefs, Desires and Inten-
tions) agent model, based on the concept of practical reasoning [4],
to make it more suitable to represent (i) the changing world prop-
erties, (ii) the fact that available information is often partial, and
(iii) the fact that uncertainty is omnipresent in realistic domains, is
not new. Much work extending the BDI model has been proposed.
Parsons and Giorgini [14] proposed to treat beliefs as degrees of
evidence. They developed a system based upon an existing formal
multi-context-based model of the agent’s mental attributes in order
to permit beliefs, desires, and intentions to admit degrees. The multi-
context component is also adopted by Casali and colleagues [5], who
proposed a general model for graded BDI agents and an architecture
able to model the agent’s graded mental attitudes. Like Casali, Blee
and colleagues [3] introduce levels in all the mentalistic notions of
BDI, as well as using numeric, possibilistic-type functions in its se-
mantics. The difference between the two is that Blee’s framework,
unlike Casali’s, uses a common syntax for the agent’s mental atit-
tudes. All these proposals are only focused on the formal aspects of
the representation of the graded mental attitudes. How these degrees
arise and the fact that desire/goal degrees are not always independent
of the degrees of beliefs are not considered.

We study the properties of a general possibilistic framework re-
cently proposed by us [8]. That formalism considers the cognitive
relationships between beliefs and goals [6] and represents beliefs
and desires as possibility distributions following [11]. In addition,
the agent’s desires and its utility degrees are generated by means of
rules.

The asymmetry thesis was originaly formulated by Bratman [4],
who stated that, in a formalism for representing rational agents,
beliefs and actions should be asymmetrical with respect to direct
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voluntary control. Rao and Georgeff extended the thesis to hold in
belief-goal and in goal-intention relationships. We show that the for-
malism under study obeys the possibilistic extension of Rao and
Georgeff’s Asymmetry Thesis for belief-goal relationships. Finally,
we also prove that the formalism avoids the side-effect and the trans-
ference problems.

2 Possibilistic Representation

In this section, we review the possibilistic representation of beliefs
and desires proposed in [8].

2.1 Possibility Theory

Possibility theory is a mathematical theory of uncertainty that relies
upon fuzzy set theory [19], in that the (fuzzy) set of possible values
for a variable of interest is used to describe the uncertainty as to its
precise value. The membership function of such set, π, is called a
possibility distribution and its range is [0, 1].

A possibility distribution for which there exists a completely pos-
sible value (∃v0 : π(v0) = 1) is said to be normalized.

Definition 1 (Possibility and Necessity Measures) A possibility
distribution π induces a possibility measure and its dual necessity
measure, denoted by Π and N respectively. Both measures apply to
a crisp set A and are defined as follows:

Π(A) = max
s∈A

π(s); (1)

N(A) = 1 − Π(Ā) = min
s∈Ā

{1 − π(s)}. (2)

Another interesting measure that can be defined based on a possi-
bility distribution is guaranteed possibility [11].

Definition 2 (Guaranteed Possibility Measure)

Given a possibility distribution π, and a crisp set A, a guaranteed
possibility measure, noted Δ, is defined as:

Δ(A) = min
s∈A

π(s); (3)

A few properties of possibility, necessity, and guaranteed possi-
bility measures induced by a normalized possibility distribution on
a finite universe of discourse Ω are the following. For all subsets
A, B ⊆ Ω:

1. Π(A ∪ B) = max{Π(A), Π(B)};
2. Π(A ∩ B) ≤ min{Π(A), Π(B)};
3. Π(∅) = N(∅) = 0; Π(Ω) = N(Ω) = 1;
4. N(A ∩ B) = min{N(A), N(B)};
5. N(A ∪ B) ≥ max{N(A), N(B)};
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6. Π(A) = 1 − N(Ā) (duality);
7. N(A) > 0 ⇒ Π(A) = 1; Π(A) < 1 ⇒ N(A) = 0;
8. Δ(A) ≤ Π(A); N(A) ≤ Π(A);
9. Δ(A ∪ B) = min{Δ(A), Δ(B)};

10. Δ(A ∩ B) ≥ max{Δ(A), Δ(B)}.

A consequence of these properties is that max{Π(A), Π(Ā)} = 1.
In case of complete ignorance on A, Π(A) = Π(Ā) = 1.

2.2 Language and Interpretations

A classical propositional language may be used to represent informa-
tion for manipulation by a cognitive agent.

Definition 3 (Language) Let A be a finite2 set of atomic proposi-
tions and let L be the propositional language such that A∪{
,⊥} ⊆
L, and, ∀φ, ψ ∈ L, ¬φ ∈ L, φ ∧ ψ ∈ L, φ ∨ ψ ∈ L.

As usual, one may define additional logical connectives and con-
sider them as useful shorthands for combinations of connectives of
L, e.g., φ ⊃ ψ ≡ ¬φ ∨ ψ.

We will denote by Ω = {0, 1}A the set of all interpretations on A.
An interpretation I ∈ Ω is a function I : A → {0, 1} assigning a
truth value pI to every atomic proposition p ∈ A and, by extension,
a truth value φI to all formulas φ ∈ L.

Definition 4 [φ] will denote the set of all models of a formula φ ∈ L,
[φ] = {I ∈ Ω : I |= φ}. By extension, if S ⊆ L is a set of formulas,
[S] = {I ∈ Ω : ∀φ ∈ S, I |= φ} = φ∈S [φ].

2.3 Representing Beliefs and Desires

Beliefs and desires of a cognitive agent describe situations in the
past, present, and future and are represented thanks to two different
possibility distributions π and u respectively. While π is normalized
because an agent’s beliefs are supposed to be consistent, u does not,
since desires may very well be inconsistent.

A description of how desires arise is given in terms of desire-
generation rules, which are a possibilistic extension of van Riems-
dijk’s “desire-adoption” rules [18].

Definition 5 (Desire-Generation Rule) A desire-generation rule R
is an expression of the form βR, ψR ⇒+

D φ, where βR, ψR, φ ∈ L.
An unconditional desire-generation rule has the form α ⇒+

D φ, with
α ∈ (0, 1].

The intended meaning of a conditional desire-generation rule is:
“an agent desires every world in which φ is true at least as much as
it believes βR and desires ψR”, or, put in terms of qualitative utility,
“the qualitative utility attached by the agent to every world satisfying
φ is greater than, or equal to, the degree to which it believes βR and
desires ψR”. The intended meaning of an unconditional rule is that
the qualitative utility of every world I |= φ is at least α for the agent.

Given a desire-generation rule R, we shall denote with rhs(R) the
formula on the right-hand side of R.

A belief is regarded as a necessity degree induced by a normalized
possibility distribution

π : Ω → [0, 1], (4)

which represents a plausibility order of possible states of affairs:
π(I) is the possibility degree of interpretation I.

2 Like in [2], we adopt the restriction to the finite case in order to use stan-
dard definitions of possibilistic logic. Extensions of possibilistic logic to
the infinite case are discussed for example in [9].

Definition 6 (Graded Belief) Let N be the necessity measure in-
duced by π, and φ be a formula. The degree to which the agent be-
lieves φ is given by:

B(φ) = N([φ]) = 1 − max
I�|=φ

{π(I)}. (5)

2.4 Mental State

The mental state of an agent consists of its beliefs and the rules
that define the deliberation mechanism whereby desires are gener-
ated based on beliefs.

Definition 7 (Mental State) The state of an agent is completely de-
scribed by a pair S = 〈π,RJ〉, where

• π is a possibility distribution which induces the agent’s beliefs B;
• RJ is a set of desire-generation rules which, together with B, in-

duce a qualitative utility assignment u.

Example Dr. A. Gent has submitted a paper to ECAI 2010 he has
written with his co-author I. M. Flaky, who has promised to go to
Lisbon to present it if it is accepted. Dr. Gent knows that, if the paper
is accepted, publishing it (which is his great desire), means to pay the
conference registration (for his co-author or for himself) and then be
ready to go to Lisbon to present it, in case I. M. is unavailable.

If the paper is accepted (a), Dr. Gent is willing to pay the registra-
tion (r); furthermore, if the paper is accepted and Dr. Flaky turns out
to be unavailable (q), he is willing to go to Lisbon to present it (p).
Finally, if he knows the paper is accepted and wishes to present it, he
will desire to have a hotel room (h) and a plane ticket reserved (t).

Dr. Gent has some a priori beliefs about this situation, namely that
if the hotels are full (f ), he will not succeed in booking a hotel room;
similarly, he believes that if the planes are all booked out (b), he will
not succeed in reserving a flight, although this is not necessarily true,
if he puts himself in the waiting list and a reservation is cancelled.
Finally, he believes the organizers will enforce the rule whereby his
paper will be presented only if it is accepted and a registration is paid.

The set of atomic propositions is then A = {a, b, f, h, p, r, t, q}.
Dr. Gent’s RJ may be described by the following desire-

generation rules:

R1 : a, p ⇒+
D t ∧ h,

R2 : a ∧ q, 
 ⇒+
D p,

R3 : a, 
 ⇒+
D r.

2.5 Updating Beliefs

Agents update their possibility distribution π in light of new informa-
tion φ ∈ L coming from a source trusted to a certain extent τ ∈ [0, 1]
by means of the following belief change operator.

Definition 8 (Belief Change Operator) The possibility distribution
π′ which induces the new belief set B′ after receiving information φ
is computed from possibility distribution π relevant to the previous
belief set B (B′ = B∗ τ

φ
, π′ = π∗ τ

φ
) as follows: for all interpretation

I,

π′(I) =

π(I)
Π([φ])

, if I |= φ and B(¬φ) < 1;

1, if I |= φ and B(¬φ) = 1;
min{π(I), (1 − τ)}, if I �|= φ.

(6)

C. da Costa Pereira and A.G.B. Tettamanzi / Belief-Goal Relationships in Possibilistic Goal Generation642



The second case in Equation 6 provides for the revision of beliefs
that contradict φ. In general, the operator treats new information φ
in the negative sense: being told φ denies the possibility of world sit-
uations where φ is false (third case of Equation 6). The possibility
of world situations where φ is true may only increase due to the first
case in equation 6 or revision (second case of Equation 6). If infor-
mation from a fully trusted source contradicts an existing proposition
that is fully believed, then revising with the above operator leads the
agent to believe the more recent information and give up the oldest
to restore consistency.

It has been proved [8] that the belief change operator ∗ of Defini-
tion 8 obeys a possibilistic formulation of the AGM revision ratio-
nality postulates K∗1–K∗8 [12].

It is easy to verify that the ∗ operator is a generalization of the
possibilistic conditioning operator of Dubois and colleagues [10].

¬p ¬p p p p
¬r r r

¬t t ¬t t
¬a,¬b,¬f 1 1 0 0 0

¬a,¬b, f,¬h 1 1 0 0 0
¬a, b,¬f 1 0.1 0 0 0

¬a, b, f,¬h 1 0.1 0 0 0
a,¬b,¬f 1 1 0 1 1

a,¬b, f,¬h 1 1 0 1 1
a, b,¬f 1 0.1 0 1 0.1

a, b, f,¬h 1 0.1 0 1 0.1
f, h 0 0 0 0 0

Figure 1. Dr. Gent’s initial possibility distribution. Interpretations have
been grouped together where possible, due to lack of space: when no literal
appears for a given atom in a row or column heading, it is understood that

the row or column applies for both truth assignments.

Example (continued) Dr. Gent’s a priori beliefs may be modeled
by assuming Dr. Gent at some point had no beliefs at all (π is 1
everywhere), and then was “told”:

• f ⊃ ¬h with certainty 1 (i.e., f ⊃ ¬h by a fully trusted source),
• b ⊃ ¬t with certainty 0.9 (i.e., b ⊃ ¬t by a source with trust

τ = 0.9),
• ¬(r ∧ a) ⊃ ¬p with certainty 1,

which yields the possibility distribution shown in Figure 1.
At this point, the following happens:

• 1/a: Dr. Gent receives the notification of acceptance of his paper:
the source is the program chair of ECAI, whom Dr. Gent trusts in
full;

• 0.75/q: soon after learning that the paper has been accepted, Dr.
Flaky rushes into Dr. Gent’s office to inform him that he is no more
available to go to Lisbon; as always, Dr. Gent does not completely
trust what Dr. Flaky tells him, as he is well-known for changing
his mind very often;

• 0.2/f : a few weeks later, Dr. Gent meets a colleague who tells him
he has heard another colleague say someone on ECAI’s organizing
committee told her all the hotels in Lisbon are already full; Dr.
Gent considers this news as yet unverified; nevertheless, he takes
notice of it.

Dr. Gent’s beliefs are now represented by the possibility distribu-
tion shown in Figure 2.

¬p ¬p ¬p ¬p p
¬r ¬r ¬r ¬r r r r r ¬r
¬t ¬t t t ¬t ¬t t t
¬q q ¬q q ¬q q ¬q q

¬a 0 0 0 0 0 0 0 0 0
a,¬b,¬f 0.25 0.8 0.25 0.8 0.25 0.8 0.25 0.8 0

a,¬b, f,¬h 0.25 1 0.25 1 0.25 1 0.25 1 0
a, b,¬f 0.25 0.8 0.1 0.1 0.25 0.8 0.1 0.1 0

a, b, f,¬h 0.25 1 0.1 0.1 0.25 1 0.1 0.1 0
a, f, h 0 0 0 0 0 0 0 0 0

Figure 2. Dr. Gent’s final possibility distribution. Interpretations have been
grouped together where possible, due to lack of space: when no literal

appears for a given atom in a row or column heading, it is understood that
the row or column applies for both truth assignments.

2.6 Updating Desires

The set of the agent’s justified desires, J , is induced by the assign-
ment of a qualitative utility u, which, unlike π, needs not be normal-
ized, since desires may very well be inconsistent.

Definition 9 (Justified Desire) Given a qualitative utility assign-
ment u (formally a possibility distribution), the degree to which the
agent desires φ ∈ L is given by

J (φ) = Δ([φ]) = min
I|=φ

u(I). (7)

Intuitively, a desire is justified to the extent that all the worlds in
which it is fulfilled are desirable. Interpreting J (φ) as a degree of
membership defines the fuzzy set J of the agent’s justified desires.

In turn, a qualitative utility assignment u is univocally determined
by the mental state of the agent as explained below.

Definition 10 (Rule Activation) Let R = βR, ψR ⇒+
D φ be a

desire-generation rule. The degree af activation of R, Deg(R), is
given by Deg(R) = min{B(βR),J (ψR)}. For an unconditional
rule R = αR ⇒+

D φ, Deg(R) = αR.

Here, we assume commensurability between belief degrees and
desire degrees in order to make a direct comparison possible between
belief and desire degrees.

Let us denote by RI
J = {R ∈ RJ : I |= rhs(R)} the subset of

RJ containing just the rules whose right-hand side would be true in
world I. Given a mental state S = 〈π,RJ〉, the following algorithm
computes the corresponding qualitative utility assignment, u.

Algorithm 1 (Deliberation)

1. i ← 0; for all I ∈ Ω, u0(I) ← 0;
2. i ← i + 1;
3. For all I ∈ Ω,

ui(I) ← maxR∈RI
J

Degi−1(R), if RI
J �= ∅,

0, otherwise,

where Degi−1(R) is the degree of activation of rule R calculated
using ui−1 as the qualitative utility assignment;

4. if maxI |ui(I) − ui−1(I)| > 0, i.e., if a fixpoint has not been
reached yet, go back to Step 2;

5. For all I ∈ Ω, u(I) ← ui(I); u is the qualitative utility assign-
ment corresponding to mental state S.
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It has been proved [8] that Algorithm 1 always terminates and

Proposition 1 ‖Img(u)‖ ≤ ‖RJ‖ + 1, where Img(u) = {α :
∃I u(I) = α}.

3 Goals

We can now turn to the properties of desires and goals. In particular,
it should be pointed out that, while desires may be inconsistent, goals
must be defined as a consistent subset of desires. We start by giving
the possibilistic version of desire specificity originally introduced by
Lang in [13]. Such a notion will be used for goal election.

Proposition 2 Let S ⊆ L be a set of formulas. Let φ1, φ2 ∈ S be
such that φ1 is more specific than φ2, i.e., [φ1] ⊆ [φ2]. Then,

J (φ2) ≤ J (φ1). (8)

Proof: [φ1] ⊆ [φ2] implies that ∃X ⊆ Ω such that [φ1] ∪ X =
[φ2]. From the properties of Δ (see Section 2.1), we have Δ([φ2]) =
min(Δ([φ1]), Δ(X)). Therefore, J (φ2) ≤ J (φ1). �

Corollary 1 If φ1 ≡ φ2, then,

J (φ1) = J (φ2). (9)

Proposition 3 If an agent desires φ1 ∧ φ2 ∈ L, this does not imply
that φ1 (or φ2) is also necessarily desired by the agent. Formally:

J (φ1 ∧ φ2) > 0 �⇒ J (φ1) > 0. (10)

Example (continued) Dr. Gent’s desires may now be determined,
based on the desire-generation rules R1, R2, and R3, and Dr. Gent’s
beliefs, represented by the possibility distribution shown in Figure 2,
by applying Algorithm 1, which stops at iteration i = 3 with the
qualitative utility distribution shown in Figure 3.

¬p ¬p p
¬r ¬r ¬r r
¬t t

¬h 0 0 0.75 1
h 0 0.75 0.75 1

Figure 3. Dr. Gent’s final qualitative utility distribution. Interpretations
have been grouped together where possible, due to lack of space: when no

literal appears for a given atom in a row or column heading, it is understood
that the row or column applies for both truth assignments.

As expected, J (r) = 1 and J (t ∧ h) = J (p) = 0.75, but
J (t) = J (h) = 0 (see Proposition 3). However, these are not all
of Dr. Gent’s desires. Other desires are justified under these condi-
tions, for instance J (¬a∧ p) = 0.75 and J (¬a∧ r) = 1, and even
J (¬r ∧ p) = 0, 75 and J (r ∧ ¬p) = 1. One may find some of
these desires naı̈ve or unrealizable; however, they are absolutely le-
gitimate and rational. Indeed, who wouldn’t want to present a paper
without having paid for it (¬r∧p)? Furthermore, who wouldn’t want
to present his/her paper, although rejected (¬a ∧ p)?

In particular, for all φ ∈ L,

φ |= r ⇔ J (φ) = 1,

φ |= ¬r ∧ (p ∨ (t ∧ h)) ⇔ J (φ) = 0.75,

φ |= ¬p ∧ ¬r ∧ ¬(h ∧ t) ⇔ J (φ) = 0.

Definition 11 The overall possibility of a set S ⊆ L of formulas is

Π([S]) = max
I∈[S]

π(I). (11)

The following definition extends J , the degree of justification of
a desire, to sets of desires.

Definition 12 The overall qualitative utility, or justification, of a set
S ⊆ L of formulas is

J (S) = Δ([S]) = min
I∈[S]

u(I). (12)

It follows from the properties of the minimum guaranteed possibility,
that

J (S) = Δ([S]) = Δ
φ∈S

[φ] ≥ max
φ∈S

{Δ([φ])} = max
φ∈S

{J (φ)}.

(13)
Therefore, the addition of a desire to a set of desires can only lead

to an increase of the justification level of the resulting enlarged set of
desires.

Proposition 4 Let S ⊆ L be a set of desires. For all desire φ,

J (S ∪ {φ}) ≥ J (S); (14)

J (S) ≥ J (S \ {φ}). (15)

Proof: By Definition 4, [S ∪ {φ}] = [S] ∩ [φ]. Therefore, by the
properties of the minimum guaranteed possibility, we can write

J (S ∪ {φ}) = Δ([S] ∩ [φ]) ≥ max{Δ([S]), Δ([φ])}
≥ Δ([S]) = J (S).

The proof of Equation 15 is obtainend by replacing S with S′ \ {φ}
in Equation 14. �

Proposition 5 Let S ⊆ L be a set of formulas. Let φ1, φ2 ∈ S
be such that φ1 is more specific than φ2, i.e., [φ1] ⊆ [φ2]. Let us
consider S′ = S \ {φ1} and S′′ = S \ {φ2}. Then,

J (S′) ≤ J (S′′). (16)

Proof: [φ1] ⊆ [φ2] implies that [¬φ2] ⊆ [¬φ1]. [S′] = [S] ∩ [¬φ1]
and [S′′] = [S] ∩ [¬φ2]. Therefore, [S] ∩ [¬φ2] ⊆ [S] ∩ [¬φ1].
Thanks to Proposition 2 we have J (S′) ≤ J (S′′). �

Corollary 2 If φ1 ≡ φ2, we have J (S′) = J (S′′). Furthermore, if
S′ = S \ {φ1} or S′ = S \ {φ2}, we have J (S) = J (S′).

A rational agent will select as goals the set of desires that, besides
being logically “consistent”, is also maximally desirable, i.e., maxi-
mally justified. The problem with logical “consistency”, however, is
that it does not capture “implicit” inconsistencies among desires, that
is consistency due to the agent beliefs (I adopt as goals only desires
which are not inconsistent with my beliefs). Therefore, a suitable
definition of desire consistency in the possibilistic setting is required.
Such definition must take the agent’s cognitive state into account as
pointed out, for example, in [1, 7, 16].

For example, an agent desires p and desires q, believing that
p ⊃ ¬q. Although {p, q}, as a set of formulas, i.e., syntactically,
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is logically consistent, it is not if one takes the belief p ⊃ ¬q into
account.

We argue that a suitable definition of such “cognitive” consistency
is one based on the possibility of the set of desires, as defined above.
Indeed, a set of desires S is consistent, in the cognitive sense, if and
only if Π([S]) > 0. Of course, cognitive consistency implies logical
consistency: if S is logically inconsistent, Π([S]) = 0.

Proposition 6 Let S1, S2 ⊆ L be sets of desire formulas such that
S1 is more specific than S2, i.e., [S1] ⊆ [S2]. Then,

Π([S1]) ≤ Π([S2]), (17)

J (S2) ≤ J (S1). (18)

Proof: [S1] ⊆ [S2] implies that ∃X ⊆ Ω such that [S1] ∪ X =
[S2]. From the properties of Π and Δ described in Section 2, we
have Π([S2]) = max(Π([S1]), Π(X)) and J (S2) = Δ([S2]) =
min(Δ([S1]), Δ(X)) therefore Π([S1]) ≤ Π([S2]) and J (S2) ≥
J (S1). �

Corollary 3 If S1 is more specific than S2 and S2 is logically in-
consistent, then S1 is logically inconsistent.

We will take a step forward, by assuming a rational agent will se-
lect as goals the most desirable set of desires among the most possible
such sets.

Let D = {S ⊆ supp(J )}, i.e., the set of desire sets whose justi-
fication is greater than zero.

Definition 13 Given γ ∈ (0, 1],

Dγ = {S ∈ D : Π([S]) ≥ γ}

is the subset of D containing only those sets whose overall possibility
is at least γ.

For every given level of possibility γ, a rational agent will elect as
its goal set the maximally desirable of the γ-possible sets.

Definition 14 (Goal set) The γ-possible goal set is

Gγ =
arg maxS∈Dγ J (S) if Dγ �= ∅,
∅ otherwise.

We denote by γ∗ the maximum possibility level such that Gγ �= ∅.
Then, the goal set elected by a rational agent will be

G∗ = Gγ∗ , γ∗ = max
Gγ �=∅

γ. (19)

Our agents are thus supposed to be pragmatic and risk-averse.
Their policy is not just to choose the most justified set of desires
as goals, but the most justified among the most possible ones. This
way, the goal set may not correspond to the set with higher utility;
however, it will correspond to the set with the highest possibility to
be fulfilled.

Let Img(π) be the level set of possibility distribution π and
Img(u) be the level set of qualitative distribution u. Notice that
Img(u) is finite by Proposition 1; Img(π) is also finite, indepen-
dently of Ω being finite, if we assume every agent to be created with
a zero-knowledge possibility distribution π0 such that π0(I) = 1
for all I ∈ Ω and to have a finite history of belief changes, a very
reasonable assumption indeed.

By proposition 6, less specific desires have higher possibility to
be fulfilled; besides, more specific desires cannot be preferred less.
Therefore, if one manages to find the least specific desire with the
highest utility for a given level of possibility, it would be a loss of
time to look for more specific desires. This is the basic idea behind
the following two algorithms, that allow an agent to compute Gγ for
a given possibility lower bound γ, and the optimal goal set G∗.

Algorithm 2 (Computing Gγ for a given γ)

1. δ ← max Img(u);
2. determine the least specific formula φ such that J (φ) ≥ δ as

follows:

φ ←
u(I)≥δ

φI ,

where φI denotes the minterm of I, i.e., the formula satisfied by
I only;

3. if Π([φ]) ≥ γ, terminate with Gγ = {φ}; othervise,
4. δ ← max{α ∈ Img(u) : α < δ}, 0 if no such α exists;
5. if δ > 0, go back to Step 2;
6. terminate with Gγ = ∅.

Algorithm 3 (Goal Election)

1. γ ← max Img(π) = 1, since π is normalized;
2. compute Gγ by Algorithm 2;
3. if Gγ �= ∅, terminate with γ∗ = γ, G∗ = Gγ; otherwise,
4. γ ← max{α ∈ Img(π) : α < γ}, 0 if no such α exists;
5. if γ > 0, go back to Step 2;
6. terminate with G∗ = ∅: no goal may be elected.

Example (continued) To determine a consistent set of goals to
commit to, Dr. Gent must perform a goal election. Applying Algo-
rithm 3 in this case yields γ∗ = 1 and G∗ = {r}: Dr. Gent must pay
the registration, that is for sure; planning his trip is less urgent, for
Dr. Flaky, as far as Dr. Gent believes, might still change his mind.

4 Belief-Goal Interaction

Bratman pointed out in [4] that “we can consider irrational for an
agent to intend to do an act A and at the same time believe that it will
not do A. However, it is rational for the agent to intend to do A and
not believe that it will do A”. More precisely, it is irrational for an
agent to have beliefs which are inconsistent with its intentions, while
it is rational to have incomplete beliefs about its intentions. For Brat-
man, these two principles, intention-belief consistency and intention-
belief incompleteness, are referred to as the asymmetry thesis.

Rao and Georgeff [17] claim that the asymmetry thesis can be ex-
tended to the relationship between intentions and goals, and goals
and beliefs. Here, we will show that the proposed possibilistic for-
malism for representing a rational agent obeys the two principles of
belief-goal consistency and belief-goal incompleteness.

4.1 Asymmetry Thesis

The two principles of the asymmetry thesis corresponding to the
belief-goal relation — the avoidance of belief-goal inconsistency
([BG-ICN]) and the belief-goal incompleteness ([BG-ICM]) — are
stated as follows in our possibilistic-based formalism:
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Theorem 1 (Avoidance of belief-goal inconsistency (BG-ICN)) If
the agent adopts φ as a goal (at a given level of possibility γ∗), then
the agent should not (somehow) believe ¬φ:

φ ∈ G∗ ⇒ B(¬φ) ≤ 1 − γ∗. (20)

Proof: φ ∈ G∗ ⇒ φ ∈ S∗ : Π([S∗]) ≥ γ∗; by the properties of Π,

Π([S∗]) = Π(
φ∈S∗

[φ]) ≤ min
φ∈S∗ Π([φ])

γ∗ ≤ Π([φ]) ⇒ B(¬φ) ≤ 1 − γ∗.

�

Theorem 2 (Belief-goal incompleteness (BG-ICM)) The agent
can adopt φ as a goal (at a given level of possibility γ∗), even
though it does not (somehow) believe φ:

φ ∈ G∗ �⇒ B(φ) > 1 − γ∗. (21)

Proof: We must prove that ∃γ∗ : (φ ∈ G∗) ∧ (B(φ) ≤ 1 − γ∗). If
γ∗ is such that 0 �= γ∗ ≤ Π([φ]) = α < 1, Π([¬φ]) = 1 (because
max(Π([φ]), Π([¬φ]))=1). Therefore, B(φ) = 0 ≤ 1 − γ∗. �

The way in which the relationships between beliefs and goals are
captured can have a significant impact on the design of a rational
agent [15]. In particular, it can lead to the side-effect problem and to
the transference problem. In the following, we show that our formal-
ism avoids such problems.

4.2 Side-Effect-Free Principle

The possibilistic counterpart of the Belief-Goal side-effect-free prin-
ciple states that,

Theorem 3 If an agent adopts φ as a goal, no matter how strongly
it believes φ ⊃ ψ, it should not be forced to adopt ψ as a goal as a
side-effect. Formally:

φ ∈ G∗ ∧ B(φ ⊃ ψ) > 1 − γ∗ �⇒ ψ ∈ G∗. (22)

Proof: We have to prove that there exists a mental state S such that
φ ∈ G∗ and B(φ ⊃ ψ) > 1− γ∗, but ψ /∈ G∗. Let A = {φ, ψ}: we
construct such an S by letting

π ¬φ φ

¬ψ x 0

ψ y 1
, RJ = {1 ⇒+

D φ}, �

u ¬φ φ

¬ψ 0 1

ψ 0 1
,

where x and y may be any possibility degrees in [0, 1]. Now, applying
Algorithm 3 yields γ∗ = 1 and G∗ = {φ}. Therefore, φ ∈ G∗ and
B(φ ⊃ ψ) = 1 > 1 − γ∗ = 0, but ψ /∈ G∗. �

An intuitive understanding of the above counterexample is that an
agent has some problems with its tooth. Even though it would like
to get its tooth fixed (φ), it would not like to feel the pain (ψ) that is
believed to inevitably follow.

4.3 Non-Transference Principle

The possibilistic counterpart of the non-transference principle can be
stated as:

Theorem 4 No matter how strongly an agent believes in a proposi-
tion φ, it should not be forced to adopt φ as a goal. Formally:

B(φ) > 1 − γ∗ �⇒ φ ∈ G∗. (23)

Proof: It is enough to consider a formula φ such that B(φ) > 1−γ∗

and J (φ) = 0, that is, � ∃I |= φ u(I) > 0. �

5 Conclusion

The properties of a full-fledged theoretical framework for goal gen-
eration in BDI agents have been investigated.

The formalism obeys two important principles of agent rational-
ity, namely the principles of belief-goal consistency and belief-goal
incompleteness. Furthermore, it has been proved that, while obeying
these principles, the formalism avoids two well-known design pit-
falls, namely the side-effect problem and the transference problem.

Therefore, a formal framework based on possibility theory, like the
one we have investigated in this paper, should be taken into account
as a serious candidate for a theoretical foundation of cognitive agents
that deal with uncertain information and partial trust.

Here we have defined belief-goal consistency in an atemporal
propositional setting through the hypothesis that beliefs and goals
can refer to situations in the past, present, and future. We plan to
generalize our formalism in order to explicitly deal with time.
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