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Abstract. Jason is a platform for agent-based software develop-
ment that is characterised both by being based on a programming
language with formal semantics as well as having many language and
platforms features that are very useful for practical programming, but
not fully formalised. In this paper, we make significant progress in
the direction of formalising the aspects of the variant of AgentSpeak
that is interpreted by Jason that were not included in previous work
on giving formal semantics to AgentSpeak. In particular, we give se-
mantics to the plan failure handling mechanism which is unique to
Jason, and also for some of the predefined internal actions that can
alter an agent’s mental state. Such internal actions are essential for
some aspects of BDI-based programming, such as checking or drop-
ping current goals or intentions, and therefore need to be formally
defined within the operational semantics of the language.

1 Introduction

The Jason platform for the development of multi-agent systems
has become one of the most popular platforms based on agent-
oriented programming in the Agents community. It has over 500
downloads a month on average (over the last couple of years), with
some months being particularly busy — during March 2009 there
were over a thousand downloads. Jason is also used in 15 differ-
ent countries (that we are aware of) for teaching of under or post-
graduate courses. It has been used in various academic projects too
(see http://jason.sf.net).

In our opinion, the reasons for Jason’s popularity are first because
it is based on a simple, elegant, and intuitive programming language,
and second because it has, on top of such a language, additional fea-
tures that make programming easier and more efficient. There has
been many additions in Jason to the original AgentSpeak language
proposed by A.Rao [16]. Not just the language, but many features
have been added to the platform over the years, often by request of
the user base, which have led to the formal semantics lagging be-
hind some of those extra features we have included in Jason to make
programming more practical and pleasant. Although most of them
were clearly described in [6], they have never been formally defined,
a problem we address in this paper.

Besides hindering the precise understanding of the language, the
lack of semantics is a problem more generally, for example for the
work on formal verification of multi-agent systems reported in [4, 5]
that could potentially be used for Jason too but, of course, only for
the features formally defined; besides, the formal semantics can be
used for proving properties of the agent language. It has been argued
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(e.g., at the ProMAS Technical Forum) that agent programming lan-
guages can be divided into those that have a very strong formal basis
such as 2APL [8] and GOAL [11], and those that have had more
industrial use such as Jadex [15] and JACK [20]. Jason has been
somewhat a compromise between these two territories, and there is
ongoing work aiming to approximate Jason to both territories. This
paper in particular contributes to reducing the gap in Jason’s formal
basis.

We here concentrate on the semantics of some of the Jason fea-
tures currently not formalised. Jason uses a peculiar plan failure han-
dling mechanism, quite different from other agent languages as has
been discussed in the literature, for example [18, 21]. The fact that
it is different from the other approaches increases the need for it to
be unambiguously defined. The approach in Jason is to use the -!
and -? triggering events that were part of the original AgentSpeak
syntax but never used in any formal or informal accounts of the se-
mantics to allow users to write contingency plans [6] (even though it
is possible that such events were meant to be used with a completely
different meaning when AgentSpeak was conceived). Being different
from other approaches and possibly using a syntax originally meant
for a different purpose are good motivations to formalise it here, but
there is another very good reason. The plan failure handling mecha-
nism of Jason, together with special internal actions also formalised
here, was absolutely essential in allowing the work on using plan
patterns for the programming of sophisticated notions of goals not
originally available in AgentSpeak [13].

Another feature that often is unclear to Jason users is the different
interpretation for test goals (i.e., events of type +?) in Jason as op-
posed to its original definition. In Jason, if a normal test goal fails,
we try generating an event that can trigger user-defined plans allow-
ing complex queries or agents acting further so as to obtain the miss-
ing information. The difference to achievement goals then becomes
rather subtle, so again it is important to put this into a more formal
basis. However, this was already done in the formal semantics of
AgentSpeak used in [19], from which we start in this paper.

One of the most practical features of Jason programming is that
it allows the use of internal actions anywhere where a predicate or
an action appears in the context or body of plans (respectively). They
can be used by programmers to have access to legacy code, but have
had a variety of uses in Jason’s interaction with other aspects of
agent-based development (such as Environment infrastructures [17])
and Jason applications (e.g., [12]). An important point about internal
actions is that they have been used to provide a number of functional-
ities in Jason, often addressing limitations of the original language or
providing efficient implementations of functionalities often required
by programmers, in the form of predefined internal actions. These
are internal actions available in a library that is distributed with Ja-
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son. That library of predefined internal actions includes some inter-
nal actions that – together with the other feature formalised in this
paper, that of plan failure – are very important for advanced goal-
based programming in Jason [13, 6] and very special in the sense
that, unlike most other internal actions, they alter the mental state of
an agent as reflected in the configuration of the transition system giv-
ing operational semantics to AgentSpeak. Given that the beginning
the implementation of Jason started closely from that operational se-
mantics, so it is absolutely essential to give formal semantics to any
internal action that can access or alter such structure (i.e., the transi-
tion system configuration). Examples of actions that do so are those
that check or drop current desires or intentions of the agent. These are
the other main extensions of the semantics introduced in this paper.

The remainder of this paper is structured as follows. Section 2
gives a brief description of the AgentSpeak language, and Section 3
provides the preliminaries for the operational semantics. Section 4
then extends the existing semantics of AgentSpeak to account for: (i)
the plan failure handling mechanism; (ii) Jason’s action execution
model whereby actions can fail (which is one of the reasons for plans
failing thus requiring a failure handling mechanism) and intentions
suspended while agent effectors execute the actions; and (iii) internal
actions for checking and dropping desires and intentions as well as
forcing success or failure of particular goals. Section 5 concludes the
paper and discusses future work.

2 The AgentSpeak Language

The AgentSpeak programming language was introduced by Rao
[16]. It can be understood as a natural extension of logic program-
ming for the BDI agent architecture, and provides an elegant abstract
framework for programming BDI agents. The BDI architecture is, in
turn, perhaps one of the best known approaches to the implementa-
tion of rational practical reasoning agents.

The syntax of an AgentSpeak agent program ag is defined by the
grammar in Figure 1. In AgentSpeak, an agent program is simply
given by a set bs of beliefs and a set ps of plans. The beliefs bs define
the initial state of the agent’s belief base (i.e., the state of the belief
base when the agent starts running), and the plans ps form the agent’s
plan library. The atomic formulæ at of the language are predicates,
where P is a predicate symbol and t1, . . . , tn are standard terms of
first-order logic. A belief is an atomic formula at with no variables;
we use b as a meta-variable for beliefs.

ag ::= bs ps
bs ::= b1 . . . bn (n ≥ 0)
ps ::= p1 . . . pn (n ≥ 1)
p ::= te : ct ← h
te ::= +at | −at | +g | −g
ct ::= ct1 | T
ct1 ::= at | ¬at | ct1 ∧ ct1 |
h ::= h1;T | T
h1 ::= a | g | u | h1;h1

at ::= P(t1, . . . , tn) (n ≥ 0)
a ::= A(t1, . . . , tn) (n ≥ 0)
g ::= !at | ?at
u ::= +b | −at

Figure 1. Syntax of AgentSpeak

A plan in AgentSpeak is given by p above, where te is the trigger-
ing event, ct is the plan’s context, and h is sequence of actions, goals,
or belief updates (which should be thought of as “mental notes” cre-
ated by the agent itself). We refer to te : ct as the head of the plan,
and h is its body. The set of plans of an agent is given by ps. Each
plan has as part of its head a formula ct that specifies the conditions
under which the plan can be chosen for execution.

A triggering event te can be the addition or the deletion of a be-
lief from an agent’s belief base (denoted +at and −at, respectively),
or the addition or the deletion of a goal (+g and −g, respectively);
the occurrence of such events might trigger the execution of plans
with matching te part. For plan bodies, we assume the agent has at
its disposal a set of actions and we use a as a meta-variable ranging
over them. Actions are written using the same notation as predicates,
except that an action symbol A is used instead of a predicate symbol.
Goals g can be either achievement goals (!at) or test goals (?at). Fi-
nally, +b and −at (in the body of a plan) represent operations for
updating (u) the belief base by, respectively, adding or removing in-
ternal beliefs; recall that an atomic formula must be ground if it is to
be added to the belief base (this is not quite true in Jason but we will
not deal with this extension in this paper).

3 Operational Semantics of AgentSpeak

In this section, we present part of the preliminaries of the operational
semantics of AgentSpeak as given in [7, 19], as we use a similar basis
in the new semantic rules given in the next section. The reader un-
familiar with AgentSpeak might benefit from looking at the existing
semantic rules, which are assumed to be exactly as in [19]. Unfor-
tunately, it would not be feasible to reproduce them all in a paper
of this length, but it should be noted that the rules presented in this
paper either replace or should be added to the existing ones so that
together they give semantics to the Jason variant of AgentSpeak.

The operational semantics of AgentSpeak is given by a set of rules
that define a transition relation between configurations 〈ag, C, T, s〉
where:

• An agent program ag is, as defined above, a set of beliefs and a set
of plans.

• An agent’s circumstance C is a tuple 〈I, E, A〉 where:

– I is a set of intentions {i, i′, . . .}. Each intention i is a stack of
partially instantiated plans.

– E is a set of events {〈te, i〉, 〈te′, i′〉, . . .}. Each event is a pair
〈te, i〉, where te is a triggering event and i is an intention (a
stack of plans in case of an internal event or � representing an
external event, i.e., one originating from belief update follow-
ing environment sensing or from agent communication).

– A is a set of actions to be performed in the environment. An
action expression included in this set tells other architecture
components to actually perform the respective action on the
environment, thus changing it. In the extension presented here,
intentions can be suspended while an action is being executed;
so elements of A are in fact pairs 〈a, i〉 where a is an action and
i is an intention. This is similar to intentions being suspended
in original AgentSpeak when associated with events in E, be-
cause a plan needs to be found for achieving a subgoal in the
topmost plan body.

• It facilitates giving the semantics if we use a structure that keeps
track of temporary information required in subsequent stages
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within a single reasoning cycle. T is the tuple 〈R,Ap, ι, ε, ρ〉 with
such temporary information; the components are:

– R for the set of relevant plans (for the event being handled).

– Ap for the set of applicable plans (the relevant plans whose
context are true).

– ι, ε, and ρ keep record of a particular intention, event, and appli-
cable plan (respectively) being considered along the execution
of an agent’s reasoning cycle.

• The current step s within an agent’s reasoning cycle is symboli-
cally annotated by s ∈ {SelEv, RelPl, ApplPl, SelAppl, AddIM,
SelInt, ExecInt, ProcAct, ClrInt}, which stands for: selecting an
event from the set of events, retrieving all relevant plans, checking
which of those are applicable, selecting one particular applicable
plan (the intended means), adding the new intended means to the
set of intentions, selecting an intention, executing the selected in-
tention; the last one means clearing an intention or intended means
that may have finished in the previous step, while ProcActis a new
step in the reasoning cycle introduced later in this paper.

In order to keep the semantic rules succinct, we adopt the follow-
ing notation:

• If C is an AgentSpeak agent circumstance, we write CE to make
reference to component E of C. Similarly for all the other compo-
nents of a configuration. In the where part of rules, any component
not explicitly stated to change is assumed to remain unchanged in
that transition.

• We write i[p] to denote the intention that has plan p on top of
intention i.

We define some auxiliary syntactic functions to be used in the
semantics. If p is a plan of the form te : ct ← h, we define
Ctxt(p) = ct. That is, this projection function returns the context
of a given plan. We also define an auxiliary function that determines
the set of applicable plans for a certain event. Given a set of relevant
plans R and the beliefs bs of an agent, the set of applicable plans
AppPlans(bs, R) is defined as follows:

AppPlans(bs, R) = {(p, θ′ ◦ θ) | (p, θ) ∈ R and
θ′ is such that bs |= Ctxt(p)θθ′}.

4 Formal Semantics for the Jason Variant of
AgentSpeak

In this section, we show the semantic rules that were changed or
added to the semantics that appeared in [19], in order to account for
plan failure and other important features available in the variant of
AgentSpeak interpreter by Jason.

4.1 Changed Rules for Plan Failure

Rule Appl2 is the rule for the case where there are no applicable
plans. It previously simply discarded the whole intention. Now, it is
as formalised and explained below.

AppPlans(agbs, TR) = {} Tε = 〈te, i〉
〈ag, C, T, ApplPl〉 −→ 〈ag, C′, T, SelInt〉

where:

C′
E =

8<
:

CE ∪ {〈−%at, i〉} if te = +%at
with % ∈ {!, ?}

CE ∪ {Tε} otherwise

(Appl2)

The first part in the “where” clause generates a goal deletion if
the corresponding goal addition fails. Goal deletion events happen
whenever a plan fails, not only because there are no applicable plans
for a goal addition, but also when an action fails. This paper intro-
duces for the first time a semantics to the notion of goal deletion.
In the original definition, Rao syntactically defined the possibility
of goal deletions as triggering events for plans, but did not discuss
what they meant. Neither has this been discussed in further attempts
to formalise AgentSpeak [10], and the notion does not seem to exist
in dMars [9] (an implemented PRS-style BDI system that inspired
the creation of AgentSpeak). The choice in Jason was to use this as
some kind of plan failure handling mechanism, as formalised here.

Intuitively, the idea is that a goal deletion is a “clean-up” plan that
is executed prior to “backtracking” a previous goal (i.e., attempting
another plan to achieve the goal for which a plan failed). One of the
things the programmer might want to do within such plan is to at-
tempt again to achieve the goal for which the plan failed. In contrast
to conventional logic programming languages, during the course of
executing plans for subgoals, AgentSpeak programs generate a se-
quence of actions that the agent performs on the environment so as
to change it. Therefore, in certain circumstances, one would expect
the agent to have to act further (in ways specific to its environment)
so as to reverse the effects of its previous actions before attempting
some alternative course of actions to achieve that goal, and this is pre-
cisely the practical utility of plans with goal deletions as triggering
events. It is important to observe that omitting possible goal deletion
plans for existing goal additions implicitly denotes that such goal
should never be backtracked, i.e., no alternative plan for it should be
attempted in case one fails. It is equally easy to specify that back-
tracking should always be attempted. It should be noted that we are
using the term “backtracking” for this, but it is not exactly the same
as backtracking in traditional logic programming.

The reason why not providing goal deletion plans in case a goal
is not to be backtracked works is because an event (with the whole
suspended intention within it) is discarded in case there are no rele-
vant plans for a generated goal deletion. So, for goal deletions (both
achieve and test), the lack of relevant plans is used to denote that
the programmer did not wish for the corresponding goal addition to
be backtracked, i.e., to be attempted again, thus the whole intention
needs to be dropped, as its topmost goal can no longer be achieved.
For normal events, an approach for what to do in case there are no
relevant plans for an event is described in [2]. It assumes that in some
cases, explicitly specified by the programmer, the agent will want to
ask other agents for recipes of what to do to handle such events. The
mechanism for plan exchange between AgentSpeak agents presented
in [2] allows the programmer to specify which triggering events
should generate attempts to retrieve external plans, which plans an
agent agrees to share with others, what to do once the plan has been
used for handling that particular event instance, and so on. See [1]
for an overview of how various BDI systems deal with the problem
of there being no applicable plans.

4.2 Action Execution with Plan Failure

AgentSpeak is a language used to define the high-level (practical)
reasoning component that goes as part of an overall agent architec-
ture. The relation of the other parts of the overall agent architecture
(such as sensors and actuators) to the AgentSpeak interpreter is not
essential in giving semantics to the abstract language. It suffices to
note that belief update from perception of the environment inserts
(external) events in the set CE (which is then used in the AgentSpeak
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interpretation cycle), whilst the effectors simply execute every action
that is included by the reasoner in the set CA. However, because ac-
tions can fail, and intentions need to be suspended until the result of
action execution attempts (through effectors) is known, we here need
to give some (partial, still somewhat abstract) account for this.

One of the main reasons for a plan to fail is when an attempt to
execute a basic action in the environment fails (another situation dis-
cussed above was related to the non-existence of relevant or applica-
ble plans). We give below an extra rule to be specific about the result
of the attempt to execute an action in the environment (or executing
an internal action, for that matter).

〈a, i〉 ∈ CA execute(a) = e

〈ag, C, T, ProcAct〉 −→ 〈ag, C′, T, ProcAct〉
where:

C′
A = CA \ {〈a, i〉}

C′
I = CI ∪ {i′[te : ct ← h]}, if e

C′
E = CE ∪ {〈−%at, i〉}, if ¬e ∧ (te = +%at)

with i = i′[te : ct ← a; h] and % ∈ {!, ?}.

(ExecAct)

CA = {} ∨ (¬∃〈a, i〉 ∈ CA . execute(a) = e)

〈ag, C, T, ProcAct〉 −→ 〈ag, C, T, ClrInt〉 (ExecDone)

We use execute() to refer to the architectural component of an
agent that takes care of the actual execution of actions. It is a Boolean
function, denoting the fact that actions may fail or succeed. Recall
that internal actions are run internally by the agent (it makes refer-
ence to any computation the agent is capable of performing inter-
nally, normally written in other programming languages, similarly to
native methods in Java), whereas the basic actions are those that ac-
tivate the agent effectors, which possibly change the environment in
which the agent is situated. For example, if a robot’s effectors attempt
to move the robot but its way is blocked, that action fails. All inter-
nal actions also have a Boolean value. In particular, execute(a) = e
in the premise of the rule above means that the execution of a has
finished (e.g., the environment gave feedback on the execution of an
action for a suspended intention) and e is either true or false depend-
ing on whether the action succeeded or failed.

In the rules above, note that various actions might be ready to
be handled (e.g., feedback from various previous requests were all
received from the environment in the last reasoning cycle). All are
dealt with by repeated applications of Rule ExecAct; when no fur-
ther action execution feedback has become available by the time the
reasoning cycle reaches the step where these rules are evaluated,
Rule ExecDone applies instead. To handle action execution in this
way, we add a new step in the semantics called ProcAct (as can
be seen in the rules above); accordingly, all rules of the original se-
mantics that have ClrInt as the next step of the reasoning cycle are
changed so that they first move to ProcAct which then proceeds to
step ClrInt.

Note that the whole intention is dropped if the triggering event
of the plan being executed was neither type of goal addition: only
these can be attempted to recover from failure using the goal deletion
construct (one cannot have a goal deletion event posted for a failure
in a goal deletion plan). In any other circumstance, a failed action,
and consequently a failed plan, means that the whole intention must
be dropped.

4.3 Semantics of Special Internal Actions

Before we present the new rules for the special internal actions, we
need definitions for what it means for an AgentSpeak agent to desire
or to intend a particular state of affairs. Fortunately, part of this work
was already done in [7], and used in the work on model checking
for AgentSpeak too [5]. The definitions below are adapted from that
work.

We first define an auxiliary function agls : I → P(Φ), where
I is the domain of all individual intentions and Φ is the domain of
all atomic formulæ. Recall that an intention is a stack of partially
instantiated plans, so the definition of I is as follows. The empty
intention (or true intention) is denoted by T, and T ∈ I. If p is a
plan and i ∈ I, then also i[p] ∈ I. The agls function below takes
an intention and returns all achievement goals in the triggering event
part of the plans in it:

agls(T) = {}
agls(i[p]) =

j {at} ∪ agls(i) if p = +!at : ct ← h
agls(i) otherwise

Because of changes we have made in this paper regarding plan
failure and action execution, we had to change the definition as given
in previous work so that suspended intentions are checked also in the
CA component, as intentions might be suspended there waiting for
environment feedback.

Definition 1 [Intentions] We say an AgentSpeak agent ag intends
ϕ in circumstance C if, and only if, it has ϕ as an achievement goal
that currently appears in its set of intentions CI , or ϕ is an achieve-
ment goal that appears in the (suspended) intentions associated with
events in CE or actions in CA. For an agent ag and circumstance C,
we have:

Int〈ag,C〉(ϕ) ≡ ϕ ∈
[

i∈CI

agls(i) ∨ ϕ ∈
[

〈te,i〉∈CE

agls(i)

∨ ϕ ∈
[

〈a,i〉∈CA

agls(i)

Note that we only consider triggering events that have the form of
additions of achievement goals. The atomic formulæ at within those
triggering events are the formulæ that represent (symbolically) prop-
erties of the states of the world that the agent is trying to achieve
(i.e., the intended states). Importantly, we need to consider also the
suspended intentions. Suspended intentions are precisely those that
appear in the set of events or, with the latest extensions formalised in
this paper, also in the set of actions to be executed.

Definition 2 [Desires] We say an AgentSpeak agent ag desires ϕ
in circumstance C if, and only if, ϕ is an achievement goal in C’s
set of events CE (associated with any intention i), or ϕ is a current
intention of the agent; more formally:

Des〈ag,C〉(ϕ) ≡ 〈+!ϕ, i〉 ∈ CE ∨ Int〈ag,C〉(ϕ)

It was argued in [7] that the desire modality in an AgentSpeak agent
is best represented by additions of achievement goals presently as
events in the set of events, as well as its present intentions. The goal
additions in events represent desires strictly, i.e., before they become
intentions (which will happen when the agent commits to a particular
course of action to achieve that goal). Given that semantics of desire,
this definition does not need changing with the extensions defined in
this paper.

R.H. Bordini and J.F. Hübner / Semantics for the Jason Variant of AgentSpeak (Plan Failure and Some Internal Actions)638



One of the important additions to BDI programming in Jason
through some special predefined internal actions is the ability to
check whether the agent currently desires (.desire(G)) or in-
tends (.intend(G)) to achieve a particular goal G. Note that in-
ternal actions can also be used in place of predicates in plan contexts,
so these two special internal actions give the ability for programmers
to decide on appropriate courses of actions not only based on current
beliefs of the agents (as already possible in original AgentSpeak), but
also on its current desires and intentions. Normal predicates in plan
contexts have a truth value which depends on whether they can be
unified against the belief base or not; similarly, internal actions are
always Boolean functions too.

The semantics of these internal actions in plan contexts is sim-
ilar to being able to unify a predicate against the belief base or
not, except that desires and intentions are checked instead. More
specifically, to give semantics to .desire it suffices to say that
execute(.desire(G)) = true if, and only if, Des〈ag,C〉(Gθ)
for some m.g.u. θ that is then used to further instantiate variable in
the substitutions that will make the plan applicable, and similarly for
.intend(G) and Int〈ag,C〉(Gθ). Note therefore that θ is a m.g.u.
unifying goal G in the internal action with one of the goals currently
desired/intended by the agent; this is also the case in the rules be-
low, unless otherwise stated. Finally, it should be noted that when
these actions appear in a plan body rather than context (although less
common), they are treated by specific semantic rules, as for the other
special internal actions formalised below.

We now give semantics to other special internal actions by provid-
ing one rule for each them, and all these rules should be interpreted
as exceptions to Rule ExecAct above. That is, these are tried first,
and ExecAct is only used if none of these apply. The rule mentioned
above for checking whether the agent has a particular desire in a plan
body is shown below; the rule for intention is very similar, as in the
case of they appearing in the plan context, as discussed above.

〈a, i〉 ∈ CA a = .desire(G)

〈ag, C, T, ProcAct〉 −→ 〈ag, C′, T, ProcAct〉
where:

C′
A = CA \ {〈a, i〉}

C′
I = CI ∪ {(i′[te : ct ← h])θ},

if Des〈ag,C〉(Gθ)
C′

E = CE ∪ {〈−%at, i′〉},
if ¬Des〈ag,C〉(Gθ) ∧ (te = +%at)

with θ a m.g.u., i = i′[te : ct ← a; h], and % ∈ {!, ?}.

(ExDes)

We now turn to the rule for the action that drops desires match-
ing a particular goal given as parameter. In Jason, the semantics of
.drop desire(G) is that intentions that have an intended means
to achieve a goal that unifies with G, or desires to achieve G, are
simply removed, with no plan failure events being generated.

〈a, i〉 ∈ CA a = .drop desire(G)

〈ag, C, T, ProcAct〉 −→ 〈ag, C′, T, ProcAct〉
where:

C′
A = (CA \ {〈a, i〉}) \ {〈b, j〉 |

Gθ ∈ agls(j)}
C′

I = (CI ∪ {(i′[te : ct ← h])θ}) \ {j ∈ CI |
Gθ ∈ agls(j)}

C′
E = (CE \ {〈+!Gθ, k〉 ∈ CE}) \ {〈e, j〉 |

Gθ ∈ agls(j)}
with θ a m.g.u. and i = i′[te : ct ← a; h].

(ExDropDes)

In the rule above, we remove intentions that have a goal uni-
fying with G whether they appear in the set of intentions or are
suspended in CE or CA. Note that in .drop desire we also
need to remove the matching events in CE for which no plan has
been found yet (these are current desires but not yet intentions). For
.drop intention, we need to check only the active and sus-
pended intentions.

〈a, i〉 ∈ CA a = .drop intention(G)

〈ag, C, T, ProcAct〉 −→ 〈ag, C′, T, ProcAct〉
where:

C′
A = (CA \ {〈a, i〉}) \ {〈b, j〉 |

Gθ ∈ agls(j)}
C′

I = (CI ∪ {(i′[te : ct ← h])θ}) \ {j ∈ CI |
Gθ ∈ agls(j)}

C′
E = CE \ {〈e, j〉 | Gθ ∈ agls(j)}

with θ a m.g.u. and i = i′[te : ct ← a; h].

(ExDropInt)

There are two more internal actions that change the mental state
of the agent and are also important, for example because they
were essential in the work on plan patterns [13] and only infor-
mally presented there. The internal action succeed goal is used
to drop goal instances in such a way as if plans to achieve those
goal instances had already been executed successfully, whereas
fail goal is used to force the plans to achieve instances of the
goal to immediately fail, activating the plan failure handling mecha-
nism.

In the next two rules, we use some extra notation to help present
them. First, with some abuse of notation, we use ∀i ∈ C as a uni-
versal quantification over the finite set {i | 〈e, i〉 ∈ CE ∨ 〈a, i〉 ∈
CA ∨ i ∈ CI}, that is, all the intentions in the set of intentions but
also all the suspended intentions in CE , and with the extensions pre-
sented here, suspended intentions can appear in CA too. Similarly,
i �∈ C′ means that the components where intention i appeared in
C are changed so that i is removed from there in C′. Also, we use
C[i \ j] to denote the statement that j replaces the occurrence of in-
tention i in the previous state of configuration C. Variables i, j, and
k all range over intentions.

〈a, i〉 ∈ CA a = .succeed goal(G)

〈ag, C, T, ProcAct〉 −→ 〈ag, C′, T, ProcAct〉
where:

C′
A = CA \ {〈a, i〉}

C′
I = CI ∪ {(i′[te : ct ← h])θ}

with i = i′[te : ct ← a; h]
and:

∀j ∈ C . Gθ ∈ agls(j) → C′[j \ k]
with

j = j′[te : ct ←!G; h]j′′

k = j′[te : ct ← h]
and θ a m.g.u. of all matched goals.

(ExSuccGl)

Note how the top of the intention above a plan trying to achieve
G is lost: the idea is that all the work being done to achieve G is
no longer necessary (i.e., it has been successfully achieved already).
The last new rule we present here is used to flag that instances of a
goal can no longer be achieved, so the plan failure mechanism needs
to be activated.
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〈a, i〉 ∈ CA a = .fail goal(G)

〈ag, C, T, ProcAct〉 −→ 〈ag, C′, T, ProcAct〉
where:

C′
A = CA \ {〈a, i〉}

C′
I = CI ∪ {i′[te : ct ← h]θ}

with i = i′[te : ct ← a; h]
and:

∀j ∈ C . Gθ ∈ agls(j) → 〈−%at, j〉 ∈ C′
E

provided j = j′[+%at : ct ←!G; h]j′′

∀j ∈ C . Gθ ∈ agls(j) → j �∈ C′

provided j = j′[te : ct ←!G; h]j′′, (te �= +%at)
with θ a m.g.u. of all matched goals, and % ∈ {!, ?}.

(ExFailGl)

Note how the failed plan and those to achieve subgoals thereof
are kept below the contingency plan in the intention stack; this can
provide useful information for programmers (where again internal
actions could be used to access the state of the intention).

We do not present here the new ClrInt rules (similar to the ones
in the semantics reported elsewhere) which take care of removing
finished contingency plans and the failed plans that were kept in the
intention above the failed goal that triggered the respective goal dele-
tion.

5 Conclusions and future work

In this paper we have extended the semantics of AgentSpeak to ac-
count for some features of the variant of AgentSpeak interpreted by
Jason [6]. We addressed plan failure (including action execution fail-
ure and intention suspension while actions execute) and some im-
portant internal actions that access or alter the configuration of the
transition system giving semantics to AgentSpeak used in the Jason
interpreter (i.e., they alter the agent’s mental state). The semantics
formalised so far also includes the particular semantics in Jason for
plans triggered by test goals; that appeared in the semantics in [19]
where another important extension was presented, that of speech-act
based communication.

Having formal semantics is important for the precise understand-
ing of the language, for work on formal verification [4, 5], but also
for proving properties of the language. For example, with the seman-
tics given here, we could easily prove that action .desire(G) will
fail if it is executed in the next immediate reasoning cycle after an
instance of .drop desire(G) has been executed.

Future work includes giving semantics to other extensions in Ja-
son that are still not formalised, such as prolog-like rules in the be-
lief base, the rather sophisticated use of higher-order variables in
Jason [6], other internal actions, etc. Furthermore, it is still to be
done the combination of the various extensions of the semantics that
appeared in separate work (e.g., the one on communication men-
tioned above) and giving semantics to the complete agent architec-
ture in which an AgentSpeak interpreter sits. A more ambitious work
would be to give semantics to the interaction of Jason with plat-
forms for other levels of a multi-agent system; in particular, there
has been interesting recent work on combining MOISE+ [14] and
CArtAgO [17] with Jason which is likely to be very useful in prac-
tice and could benefit from formal semantics.
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