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Abstract. Social recommendation, that an individual recommends
an item to another, has gained popularity and success in web appli-
cations such as online sharing and shopping services. It is largely
different from a traditional recommendation where an automatic sys-
tem recommends an item to a user. In a social recommendation, the
interpersonal influence plays a critical role but is usually ignored in
traditional recommendation systems, which recommend items based
on user-item utility. In this paper, we propose an approach to model
the utility of a social recommendation through combining three fac-
tors, i.e. receiver interests, item qualities and interpersonal influ-
ences. In our approach, values of all factors can be learned from
user behaviors. Experiments are conducted to compare our approach
with three conventional methods in social recommendation predic-
tion.Empirical results show the effectiveness of our approach, where
an increase by 26% in prediction accuracy can be observed.

1 INTRODUCTION

Social recommendations are common activities in daily life, where
a person (sender) recommends an item to another person (receiver).
For example, a professor recommends a reference book to his stu-
dent. Recently, social recommendations have also gained great suc-
cess on online sharing and shopping services, such as the online shar-
ing website Douban.com allowing users to recommend interesting
books, movies and music to their friends and being favored by mil-
lions. As Sinha [26] points out, social recommendations with inter-
personal influence are more appropriate than traditional recommen-
dations. Social recommendation is becoming a popular online recom-
mendation scheme beyond the traditional recommendation, where an
automatic system recommends items to users.

As we can see, a social recommendation can be represented as a
triple (sender, receiver, item), while the traditional recommendation
focuses on the pair of (receiver, item). The involvement of sender and
receiver brings interpersonal influence into a social recommendation,
which makes it largely different from a traditional recommendation.
Interpersonal influence actually plays a critical role. For example, a
girl might not pick a dress recommended by her mother, but would
say yes if her boyfriend likes it. Therefore, how to model the utility
of social recommendations, the recommendations with interpersonal
influence, becomes a natural question. With this problem addressed,
we will not only be able to understand social recommendation ac-
tivity better, but also investigate new applications in the future, e.g.
to automatically recommend a product to a potential costumer by re-
minding him that his friend has already bought it.

However, existing approaches cannot be directly applied to ad-
dress this problem as they only capture partial factors of a social
recommendation. Standard recommendation approaches [16, 1, 21,
2, 17] focus on modeling utility of the pair (receiver,item), ignor-
ing the factor of the sender. Trust-based recommendation approaches
[5, 14, 7] also focus on the utility of the pair (receiver,item) by in-
corporating interpersonal trust. Those trust are obtained from either
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manual assignment[5, 14], which limits the scalability, or the corre-
lations between (receiver,item) pairs[7], which do not actually reflect
the interpersonal factor. Besides, innovation diffusion approaches
[12, 6, 8, 9] focus on modeling the adoption propagation through
the pairs of (sender,receiver), without taking items into account.

Inspired by the studies over traditional recommendations and in-
novation diffusion, we first introduce social utility of a social recom-
mendation, which measures the usefulness of the item, recommended
by the sender, to the receiver. Here we consider that the social utility
is mainly affected by three kinds of factors, i.e. receiver interest, item
quality and interpersonal influence. The first two factors describe the
attributes of the receiver and the item, while the third describes the
relation between the sender and the receiver. In this way, we define
a social utility function to map those three factors to a real number.
Specifically, we represent the three factors with vectors. Each vector
contains same number of elements, and each element represents an
aspect like topic or genre. The social utility is given by the norm of
Hadamard product of the interest of receiver, the quality of item and
the influence between sender and receiver.

Empirically we find that the tendency for a receiver to accept a so-
cial recommendation increases with its social utility. Therefore, we
propose an approach to model social utility in the social recommen-
dation data set, where each recommendation is labeled either “ac-
cepted” or “refused”. We estimate factors by maximizing social util-
ities of accepted recommendations and minimizing those of refused
ones. With all factors estimated, we can then predict social utility of
an incoming social recommendation automatically.

Some might confuse the interpersonal influence with user similar-
ity. However, they come with totally different mechanism. User sim-
ilarity is content-dependent. Two people with similar tastes would
buy same books on their own choice independently. In contrary, in-
fluence is content-free. The influence phenomenon relies on social
relation rather than item content. Given that a person can affect an-
other’s action, they are not necessarily similar in interests, e.g. a fan
is willing to buy whatever advertised by his idol.

We conduct experiments to demonstrate the effectiveness of our
approach over social recommendation prediction. Three conven-
tional methods are considered as baselines, i.e., standard and trust-
based recommendation systems, and an innovation diffusion model.
Empirical results show that our approach can obtain improved per-
formance in social recommendation prediction, by increasing 26% in
prediction accuracy compared with the baselines.

The rest of this paper is organized as follows. Related research
work is introduced in section 2. A qualitative analysis on data is in
section 3. Our model is formulated in section 4 and empirical results
are reported in section 5. Conclusion comes in section 6.

2 BACKGROUND

2.1 Recommendation systems

Targeting at recommending to users items they might appreciate, a
traditional recommendation system is required to solve the core prob-
lem formulated as follows. Consider the set U of all users and the set
A of all items, a utility function f : U × A→ R must be built to mea-
sure how useful an item is to a user, where R is a simply ordered set,
e.g. real or integer values in a given range. Then the recommending
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task for a certain user u ∈ U is to pick an item a ∈ A to maximize
f (u, a). In most actual scenarios, values of f (u, a) are accessible only
on a subspace of U × A, e.g., seldom a user rates all restaurants in a
city. Thus a recommendation system has to extrapolate f (u, a) values
based on the known subspace.

As an early representative method, a content-based method rep-
resents items with content vectors and calculates similarity between
a new coming item a′ and all items a user u preferred to estimate
f (u, a′) [1, 21]. The method requires items in a form of explicit con-
tent that can be parsed automatically, and thus limits the system from
scenarios where items are difficult to parse, like music and movies.

Differently, collaborative filtering techniques are developed to
calculate similarity with rating history rather than understanding of
content. Such a system can be either user-based[2, 17] or item-
based[23, 3]. Take the user-based systems for example. A user-based
system recommends to a user u items preferred by similar users.
User similarity can be calculated by a variety of approaches, includ-
ing vector cosine between two users’ history vector whose elements
represent previous ratings on commonly viewed items [2, 17], and
widely-used Pearson’s correlation coefficient [19, 25] as follows,

sim(u, v) =
∑

a∈A(u,v)(ru,a − r̄u)(rv,a − r̄v)√∑
a∈A(u,v)(ru,a − r̄u)2∑

a∈A(u,v)(rv,a − r̄v)2
(1)

where A(u, v) indicates the set of items that both users u and v
have rated, ru,a is the rating u made on item a which can be valued
binary (acceptance/refusal), integer or real , and r̄u is the average
rating u made on all items. The larger similarity two users have, the
stronger tendency they have to act like each other. The utility f (u, a′)
is estimated as the predicted rating r̂(u, a′) with Resnick’s formula
[19] as follows

r̂(u, a′) = r̄(u) +
∑

v sim(u, v)(r(v, a) − r̄v)
|∑v sim(u, v)| (2)

More directly related to the problem issued in this paper are sev-
eral recent research works on collaborative filtering techniques to in-
corporate user trust to replace or combine with user similarity to
serve as weights in rating aggregation.

Golbeck [5] uses explicit interpersonal trust in an online social
network to replace user similarity. Jamali and Ester [10] run a ran-
dom walk algorithm on an explicitly expressed trust network to find
proper items for each customer. Since trust values are manually input
and thus suffer from sparsity problem, Ma et al [14] use matrix factor-
ization to estimate missing trust values with user node degrees, while
Massa and Avesani [15] estimates with trust propagation. However,
all of above approaches heavily rely on manually assigned trust val-
ues, which severely limits their scalability.

O’Donovan and Smyth [18] calculate trust for each user by the
average accuracy of using one’s rating to predict another’s. As we can
see, the trust value actually reflects one’s global authority on items
rather than interpersonal influence.

He and Chu [7] calculate three factors to predict customer rating,
including user preference, item’s general acceptance and influence
from social friends. However, their model still focuses on estimating
the utility of a pair (receiver, item) rather than a social recommen-
dation triple (sender, receiver, item). Furthermore, their influence is
defined as a probability that two friends rate like each other. Thus it
might be difficult for the model to distinguish the two phenomenons:
(1) two users act similarly because of similar interest, and (2) a user
has strong faith on his friend so he copies opinions from that friend.
Note that the latter case shows right the power of interpersonal influ-
ence which will be addressed in our work.

2.2 Innovation diffusion models

Richardson and Domingos mine the mechanism in viral marketing
[4, 20] that customers can differently influence their social contacts

to buy same products. The customers with high social influence are
preferred when a merchant delivers trial products to start a viral
marking. Typical innovation diffusion models like Linear Thresh-
old Model [6] and Independent Cascade Model [8, 9] are developed
to model the dynamics that how information spread through social
networks. In the spread of an innovation, an individual node is con-
sidered in either of two states, active or inactive, corresponding to
adopting that innovation or not.

The Linear Threshold Model [6] assumes that each node v defines
a set of normalized weights b(u, v) on all of its in-edges (u, v) to in-
dicate neighbor importance. It becomes active if the sum of weights
from active neighbors is beyond a certain threshold θv, and keeps still
otherwise. The Independent Cascade Model [8, 9] defines a proba-
bilistic process in which each node u, after it is activated, has one
chance to activate its inactive neighbor v with a probability pu,v,
which is defined on the edge (u, v) and independent from history.

Lescovec [13] measures actual recommendation diffusion on a
person-to-person network. Pointing out that products of different cat-
egories are differently preferred, however, he does not go further to
analyze attributes of single products and single users.

Innovation diffusion models are proven to reach accurate perfor-
mance in simulating and predicting the propagation of innovation
through social networks. However, most innovation diffusion models
focus only on external motivations but ignore internal motivations,
i.e. the attributes of users and items (e.g. item quality). Thus they
cannot easily explain the cases that social recommendations on dif-
ferent items end with different results even through the same sender
and receiver. Therefore, those models are rarely directly applied for
recommendation systems.

3 PRELIMINARY STUDIES

3.1 Data collection

Before we dive into the technique details, we first conduct some pre-
liminary studies on the social recommendation data set. We collect
data from the online sharing website Douban.com, where a user can
declare friendship with or become a fan of another user, collect in-
teresting movies, books and music albums, or recommend them to
his friends and fans. We crawled relationships and activities of all
unique users in the hottest 15 discussion groups. If a user v is a fan of
another user u, we build a directed edge (u, v) between them to indi-
cate u could recommend items to v. If u and v are friends, two edges
with opposite directions are built. When a user recommends a book,
movie or music album to his friends or fans, we consider it as a so-
cial recommendation to them. We label the social recommendation
“accepted” if the receiver collects that item later, or “refused” oth-
erwise. We assume that all social recommendations are independent
from each other, thus when a user gets multiple recommendations of
an item before he collects it, we simplify the case as that the receiver
refuses all earlier recommendations and accepts the latest one. Some
statistics of the crawled data are described in table 1.

Table 1. Data description

Value Description
35,211 number of users
231,600 number of directed edges
7,987 number of items

1,174,627 number of social recommendations
62,451 number of accepted social recommendations

3.2 Factor analysis

We qualitatively analyze the factors that might determine whether a
social recommendation will be accepted. As is sufficiently discussed
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in earlier works, receiver interests and item qualities, which are usu-
ally combined as the utility of a pair (receiver, item), are believed to
affect the recommendation result. However, it is still unclear how the
interpersonal influence affects. Therefore, we design an experiment
to gain some intuitive perception. For each social recommendation
triple (sender u, receiver v, item a) in data, we calculate the tradi-
tional utility of pair (v, a) with average cosine similarity [22] between
a and A(v), the set of items that v has collected before.

Utility(v, a) =
1
|A(v)|

∑
a′∈A(v)

|Ca ∩Ca′ |√|Ca| · |Ca′ |
(3)

where Ca is the set of users that have collected item a. The above
utility comes from the average similarity of item a to all items a′
that user v collects. We also calculate the recommendation success-
ful ratio from user u to user v to roughly estimate the interpersonal
influence of (u, v),

In f luence(u, v) =
|Acc(u, v)|
|Rec(u, v)| (4)

where Rec(u, v) is the set of social recommendations that u has
sent to v, and Acc(u, v) its subset of accepted ones.

We analyze the relationship between recommendation results and
the two factors, i.e. utility and influence. To avoid linear correlation
between the recommendation results and the influence, we conduct
an open test. We randomly select 90% of social recommendations as
the training set to calculate utility and influence, and the rest are held
out as the testing set. For each social recommendation in testing set,
we plot it as a point w.r.t. its utility and influence in figure 1. Accepted
recommendations are denoted as big blue circles while refused ones
small red. Besides, we show the average values of utility (0.22) and
influence (0.17) as dash lines to divide the figure into four sections,
and report the acceptance ratio in each corner. As we see from the re-
sult, the acceptance ratio increases with influence, i.e. from 0.0985 to
0.2077 and from 0.1105 to 0.4000, indicating that larger influence en-
courages the receiver to accept a social recommendation. Especially,
the acceptance ratio in the zone of high utility and low influence is
relatively small, implying that a social recommendation is less likely
to be accepted with low influence, even if it brings high utility. There-
fore, we might conclude that with utility only we cannot sufficiently
explain whether a social recommendation will be accepted. We need
to leverage interpersonal influence to complete the mechanism.

Figure 1. Utility and influence

4 OUR APPROACH

In this section, we propose an approach to model the utility of a social
recommendation, named social utility, to represent the extent how a
receiver will be willing to accept a social recommendation. In this
way, we build our model based on the social recommendation data
set, where each recommendation is labeled “accepted” or “refused”,
and predict the social utility for any incoming social recommenda-
tion.

First we introduce the social utility of a social recommendation.
As we can see, a social recommendation is an activity where a per-
son (sender) recommends a certain item to another person (receiver),
which can be denoted by a triple (sender, receiver, item). Similar as
that in the traditional recommendation scenario, we can also define
a utility for the social recommendation, named as social utility. So-
cial utility measures the usefulness of the item, recommended by the
sender, to the receiver. Formally, consider the set U of all users and
the set A of all items that might be recommended, the task to ob-
tain the social utility then becomes to define the mapping function as
f : U × U × A → R, where R is a simply ordered set, such as real
numbers with a certain range. Note that in traditional recommenda-
tion, the utility function is defined as f : U × A→ R.

To build up the social utility function, let us consider a typical
social recommendation scenario first. As a big fan of drama and fan-
tasy movies, Alice heard that a drama and thriller movie Twilight
had gained a box office record recently. Since she was not quite sure
whether it was worth watching, Alice hesitated in making a decision
to watch it until her friend Brown came to recommend it to her. Given
that Brown had recommended several wonderful drama movies be-
fore, Alice was quite confident of his taste on movies of that genre
and finally accepted his recommendation.

Reviewing this scenario, we find that three major factors con-
tribute to the social utility of a social recommendation, which lead
to Alice’s final acceptance. First, Alice had interests in drama and
fantasy movies. Second, the box office record showed the movie had
high quality in drama and thriller, suggesting it worth watching for
the fans of those genres. Third, Alice believed Brown’s taste on dra-
mas, whose interpersonal influence brought more confidence of the
movie. Finally, the overlapped part (drama) of the three factors re-
sulted in a high social utility which encouraged her final acceptance.

As we can see from the above analysis, the social utility func-
tion should be defined with three factors, i.e. receiver interest, item
quality and interpersonal influence. The first two factors describe the
attributes of the receiver and the item respectively, while the third
describes the relation between the sender and the receiver. Moreover,
each factor could be measured in different aspects, e.g. book topics
or movie genres such as drama, fantasy and thriller.

Formally, we use u, v and a to denote the sender, receiver and item
in a social recommendation respectively. We represent the interest
vector of receiver v as Iv, the quality vector of item a as Qa, and the
influence vector from u to v as Tuv. Each vector contains D elements
to indicate different aspects. All elements can be valued positive real.
A greater value indicates higher interest, better quality or stronger
influence in corresponding aspect. Take the above case for example:
D = 3, IAlice = (1, 1, 0), QTwilight = (1, 0, 1), TBob,Alice = (1, 0, 0),
where the aspects are drama, fantasy and thriller. In this way, the
social utility function for the social recommendation (u, v, a) could
be defined as follows

f (u, v, a) = ||Iv ∗ Tuv ∗ Qa|| =
√√

D∑
d=1

(Iv,dTuv,dQa,d)2 (5)

where ∗ indicates the Hadamard product. The above definition
captures the intuition that a social utility increases with the aggre-
gation over all aspects, and in each aspect increases with the joint
value of the three vectors.

In order to constrain the result in a certain range of real numbers,
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we simply constrain that any element must be valued real in the range
[0, 1]. We further constrain ||Iv|| = 1 for every receiver v since its val-
ues indicate how v’s interests distributed over aspects. Therefore, we
ensure that social utility will be valued in the range [0, 1]. The social
utility will reach 1 if the influence and quality vectors maximize in all
aspects corresponding to non-zero elements in interest vector, and 0
if minimize. It captures the intuition that a receiver will be most will-
ing to accept a social recommendation if the most trustworthy friend
recommends the best item in his favorite genres, and vice versa.

4.1 Learning

To predict the social utility of any incoming social recommendation,
we need to first estimate values of all interest, quality and influence
vectors based on training data. Unfortunately, those vectors cannot
be simply explicitly extracted since all observations are results of
coupling variables. Instead, we consider those vectors as hidden vari-
ables and use a machine learning method to estimate their values. For
better scalability, no prior value are required.

Intuitively, a properly estimated model should simultaneously
maximize the social utilities of accepted recommendations and min-
imize those of refused ones. Thus we estimate interest, quality and
influence vectors by maximizing the product of f (u, v, a) of accepted
recommendations and 1 − f (u, v, a) of refused ones.

{Î, Q̂, T̂ } = arg max
{I,Q,T }

∏
(u,v,a)

f (u, v, a)δ(u,v,a)(1 − f (u, v, a))1−δ(u,v,a) (6)

where the indicator function δ(u, v, a) = 1 if user v accepts user
u’s recommendation of item a , and 0 otherwise. The product is
over all recommendation triples (u, v, a) in the training data. To avoid
floating-point overflow, we define the inference objective function as
the logarithm of the above expression.

L =
∑

(u,v,a)

(δ(u, v, a) ln f (u, v, a)+ (1−δ(u, v, a)) ln(1− f (u, v, a))) (7)

Values of all interest, quality and influence vectors are estimated
by maximizing L with respect to them. We run a gradient ascent al-
gorithm to gradually achieve maximum L. In each iteration, we cal-
culate partial differentials of L with respect to each element in hidden
variables as follows and update its value with a plus of that differen-
tial. The process ends when stable maximum L is reached.

∂

∂Iv,d
L =
∑

(u,v,a)

δ(u, v, a)Iv,dT 2
uv,dQ2

a,d

p2(u, v, a)
− (1 − δ(u, v, a))Iv,dT 2

uv,dQ2
a,d

f (u, v, a)(1 − f (u, v, a))
(8)

∂

∂Tuv,d
L =
∑

(u,v,a)

δ(u, v, a)I2
v,dTuv,dQ2

a,d

p2(u, v, a)
− (1 − δ(u, v, a))I2

v,dTuv,dQ2
a,d

f (u, v, a)(1 − f (u, v, a))
(9)

∂

∂Qa,d
L =
∑

(u,v,a)

δ(u, v, a)I2
v,dT 2

uv,dQa,d

p2(u, v, a)
− (1 − δ(u, v, a))I2

v,dT 2
uv,dQa,d

f (u, v, a)(1 − f (u, v, a))
(10)

The computational cost in the learning process increases with data
size since every social recommendation must be counted in each it-
eration. We may reduce the cost by using cache or investigating an
incremental algorithm in the future.

4.2 Prediction

For an incoming recommendation triple (u, v, a), our model calculate
its social utility with equation (5). A social recommendation will be

expected to be accepted if its social utility is larger than a certain
threshold μp , and refused if smaller.

δ̂(u, v, a) =
{

1, f (u, v, a) ≥ μp,

0, f (u, v, a) < μp.
(11)

The value of μp should be carefully selected in order to best dis-
tinguish accepted and refused recommendations. In our model, the
value is selected when the model reaches the highest F1 measure in a
cross validation experiment. Besides, in later experiments, we might
also vary μp in the range [0, 1] to make predictions tighter or looser,
so as to access different precision-recall samples to draw a P-R curve.

5 EMPIRICAL RESULTS

We conduct experiments to compare performance of our model and
conventional methods with the data described in section 3.1. For each
method, 90% social recommendations are randomly selected as train-
ing set, and remaining are held out as testing set. Empirical results
show that our model could better predict social recommendations.

5.1 Learning process

As discussed in section 4.1, we implement an iteratively gradient as-
cent algorithm to estimate hidden variables of interest, quality and
influence vectors. We report L on training and testing set for every
10 iterations. As is shown in figure 2, L in the testing set increases
consistently until convergence after around 2, 000 iterations, indicat-
ing that our learning method has effectively and efficiently estimated
hidden vectors.
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Figure 2. Objective function in learning process

We also evaluate the model accuracy with F1 measure on the test-
ing set to check learning algorithm, which is the harmonic mean of
precision, the ratio of true positives among all “predicted success-
ful” recommendations, and recall, the ratio of true positives among
all “actual successful” recommendations. When predicting, we sim-
ply take μp =

1
2 . As is shown in figure 3, our learning algorithm

succeeds in increasing F1 measure before reaching convergence af-
ter 700 iterations.

F1 =
2 ∗ precision ∗ recall

precision + recall
(12)

To select a proper number of aspects, D, is another basic task in
our learning process. Too few aspects limit the model to well distin-
guish interests and qualities in different aspects, while too many as-
pects could lead to overfitting. We train several models with different
values of D and evaluate them by calculating their best F1 measure
among all possible values of μp respectively. As is shown in figure
4, a model allowing multiple aspects could better fit data than one
with single aspect, which could be considered as “do not distinguish
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Figure 3. F1 measure in learning process

aspects”. The single peak of F1 measure indicates the best value of
D, which we use in following experiments.
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Figure 4. Selecting the number of aspects

5.2 Baselines

Three typical baselines are chosen as described in section 2: standard
collaborative filtering method (represented as “Resnick” in legends),
trust-based collaborative filtering method and independent cascade
model. Firstly we prepare real ratings for the two collaborative fil-
tering methods: an “accepted” social recommendation is considered
with rating 1.0, and a “refused” one −1.0. For standard collabora-
tive filtering method, we calculate the utility of (receiver, item) with
Resnick formula equation (2), where similar users are selected ac-
cording to Pearson’s correlation equation (1). For trust-based col-
laborative filtering, we calculate the utility of (receiver, item) with
CItem strategy provided in [18]. For Independent Cascade model,
we estimate the acceptance probability of a social recommendation
with psender,receiver, the successful ratio among all social recommen-
dations through the edge (sender, receiver) in the training set. Real
predictions of those estimated models are finally turned into binary
predictions by being compared with a certain threshold respectively,
similar to equ (11).

5.3 Evaluation

We evaluate each model with the accuracy that it predicts whether
a social recommendation in testing set will be accepted. The accu-
racy is usually measured with mean absolute error(MAE) or mean
squared error(MSE) in recommendation systems. Since all recom-
mendation labels in our data are binary instead of real ratings, those
two metrics are both degenerated to zero-one loss, the ratio of incor-
rectly predicted recommendations. We also report precision, recall
and F1 measure, which is usually used in information retrieval work.
We make the predictions looser or tighter by varying thresholds of

each model, which are used to turn a real prediction (utility or prob-
ability) into a binary choice, in order to get a best F1 measure and
multiple precision-recall samples. The precision-recall curve shows
how flexible a model is, which could be required to focus on high
precision or high recall on request in various scenarios, for example,
a product recommendation system should perform high precision if
customers are impatient of advertisement, or high recall if customers
do not want to miss any coupon.

Table 2. Prediction results

Method F1 measure Average 0-1 loss
Resnick 0.113 0.723

Trust-based 0.142 0.457
Independent Cascade 0.175 0.215

Influence-based 0.221 0.125
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Figure 5. Precision-recall curve

As is shown in table 2, our approach, represented as “influence-
based”, has performed significantly leading accuracy upon baselines.
The 0 − 1 loss of our model drops by 41% from the closest baseline,
and F1 measure increases by 26%. The precision-recall curve of our
model in figure 5 is beyond baselines almost everywhere, indicating
better accuracy on any requests, no matter tighter or looser.

Furthermore, to evaluate the distinguish ability of each model, we
analyze the real prediction of each testing recommendation, i.e., pre-
dicted social utility in our model, predicted probability in Indepen-
dent Cascade model, and predicted utility in two collaborative filter-
ing systems. A T-test is performed to report the statistics significance
between those real predictions of actually accepted and refused rec-
ommendations.

Table 3. Recommendation prediction statistics

As is shown in table 3, the average social utility of accepted recom-
mendations predicted by our model is clearly distinguishable from
that of refused ones. The highest T statistics supports that the our
model can best distinguish accepted social recommendations from
refused ones.

Those results lend solid support that social recommendations
could be better explained and predicted by taking into account all
three kinds of factors: receiver interests, item qualities and interper-
sonal influences.

72.6410.016(0.008)0.157(0.073)Influence-based
39.9500.047(0.032)0.159(0.080)Independent Cascade
8.324-0.525(0.609)-0.156(0.536)Trust-based

18.5330.456(0.525)0.177(0.061)Resnick
recommendationsrecommendations

refusedaccepted T-test
Average and variance of predictions

Method
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5.4 Case analysis

What is interesting in the data is that a user might receive several
recommendations of the same item from multiple friends. Taking a
case for example, the 62# user (let’s call him Adam) has been rec-
ommended the same movie Slumdog Millionaire by 4191# user (let’s
call him Bob) and 271# user (let’s call her Carol) in sequence. Adam
took no action in a month after Bob recommended it, but collected
the movie right after Carol made the same recommendation. That
case is difficult to explain with collaborative filtering methods, which
predict that Adam would always accept if the movie brings him util-
ity large enough, or never accept it otherwise. Our model could ex-
plain that the interpersonal influence from Carol to Adam (0.52) was
stronger than that from Bob (0.46), which made her recommendation
greater social utility (0.82) than Bob’s (0.65).

Table 4. A sample user Adam’s reactions

Item recommended Slumdog Slumdog Mad
Millionaire Millionaire Detective

Recommended by Bob Carol Carol
Adam’s reaction ignore accept ignore
Resnick utility 0.83 0.83 -0.27

Trust-based utility -0.52 -0.52 -0.49
Independent Cascade 0.22 0.66 0.66

probability
Influence-based 0.65 0.82 0.77

social utility

Though the above case could also be explained with innovation
diffusion models, they cannot perfectly explain the reason that Carol
recommended another movie Mad Detective to Adam a month later
but Adam refused it, since her two recommendations are undistin-
guishable with the same sender and receiver and thus should have
same acceptance probability. In contrast, our model could tell the
difference by item qualities and thus correctly predict the latter rec-
ommendation with a lower social utility (0.77) because the quality of
the latter movie (0.45) is lower than the former one (0.51).

6 CONCLUSIONS

This paper proposes an approach to model the social utility of a so-
cial recommendation triple (sender, receiver, item). We identify that
the social utility is mainly affected by three factors, i.e. receiver in-
terest, item quality and interpersonal influence. By learning on bi-
nary labeled data, we are able to predict the social utility of any in-
coming social recommendation. Empirical results show our model
improves recommendation prediction with an increase by 26% in
prediction accuracy upon conventional approaches, i.e., standard and
trust-based collaborative filtering techniques, and independent cas-
cade model.

As the future work, we will further analyze the mechanism among
those three major factors and try to turn our model into a practical
online system to check its prediction ability in real world.
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