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Abstract. In this paper, we analyse how traders select marketplaces
and bid in a setting with multiple competing marketplaces. Specifi-
cally, we use a fictitious play algorithm to analyse the traders’ equi-
librium strategies for market selection and bidding when their types
are continuous. To achieve this, we first analyse traders’ equilibrium
bidding strategies in a single marketplace and find that they shade
their offers in equilibrium and the degree to which they do this de-
pends on the amount and types of fees that are charged by the mar-
ketplace. Building on this, we then analyse equilibrium strategies for
traders in competing marketplaces in two particular cases. In the first,
we assume that traders can only select one marketplace at a time.
For this, we show that, in equilibrium, all traders who choose one
of the marketplaces eventually converge to the same one. In the sec-
ond case, we allow buyers to participate in multiple marketplaces at
a time, while sellers can only select one marketplace. For this, we
show that sellers eventually distribute in different marketplaces in
equilibrium and that buyers shade less and sellers shade more in the
equilibrium bidding strategy (since sellers have more market power
than buyers).

1 Introduction
Exchanges, in which securities, futures, stocks and commodities can
be traded, are becoming ever more prevalent. Now, many of these
adopt the double auction market mechanism which is a particular
type of two-sided market with multiple buyers (one side) and multi-
ple sellers (the other side). Specifically, in such a mechanism, traders
can submit offers at any time in a specified trading round and can be
matched by the marketplace at a specified time. The advantages of
this mechanism are that traders can enter the marketplace at any time
and they can trade multiple homogeneous or heterogeneous items in
one place without travelling around several marketplaces. In addi-
tion, this mechanism provides high allocative efficiency [4]. These
benefits have led many electronic marketplaces to also use this for-
mat. For example, Google offers DoubleClick Ad Exchange, which
is a real-time double auction marketplace enabling large online ad
publishers, on one side, and ad networks and agencies, on the other
side, to buy and sell advertising space. However, because of the glob-
alised economy, these marketplaces do not exist in isolation. Thus
they compete against each others to attract traders and make prof-
its. For example, stock exchanges compete to attract companies to
list their stocks in their marketplaces and Google’s DoubleClick Ad
Exchange competes against other ad exchanges, such as Microsoft’s
AdECN and Yahoo!’s Right Media. Thus such competition is becom-
ing an increasingly important area of research. Specifically, for such
contexts, there exist two key research challenges. The first is how
traders behave in the competing marketplaces environment, which
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includes how traders select marketplaces and how they bid in them.
Then given the traders’ behaviour for selecting marketplaces and bid-
ding, the second issue is how competing marketplaces should set
their fees to maximise their profits, while at the same time maintain-
ing market share at a good level. In this paper, we address the first
problem and use fictitious play to analyse the trader’s equilibrium
behaviour when a trader can choose to trade in multiple double auc-
tion marketplaces. We also analyse how market fees can affect this
equilibrium. The insights from this analysis will be useful to guide a
marketplace to set its fees.

A number of existing empirical and theoretical works analyse
competing marketplaces. In this context, an annual Market Design
Competition (CAT) was introduced as part of the Trading Agent
Competition (TAC) [5]. Here, entrants need to design effective mar-
ket policies and set appropriate fees to attract traders and so make
profits. However, work in this area is still largely empirical in nature.
On the other hand, a number of theoretical models have been pro-
posed to analyse two-sided competing marketplaces (e.g. [1, 6, 7]).
However, these works do not consider auction mechanisms to match
traders and set transaction prices. Instead, they assume that traders
only select marketplaces based on the number of other traders in
the marketplace. In doing so, they assume that all traders are ho-
mogeneous (i.e. have the same preferences), and the marketplace has
complete information about the preferences (also called the types)
of traders. In real-world auction marketplaces, however, traders are
usually heterogeneous and they are likely to have privately known
preferences. Moreover, transaction prices are usually set according
to the marketplace’s pricing policy, which is affected by current de-
mand and supply. To tackle these limitations, in our previous work
[2], we proposed the first game-theoretic framework to analyse the
competing double auction marketplaces, in which traders have dif-
ferent types (i.e. preferences). However, in this work we introduced
a number of simplifying assumptions. First, we only considered a re-
stricted number of discrete types. Second, we assumed that traders
bid truthfully. However, in real-world marketplaces, traders often
shade their offers in order to extract more profits from transactions.
Furthermore, we only considered traders who can participate in a sin-
gle marketplace at a time (so-called single-home trading), in contrast
to the more generic multi-home trading where traders can participate
in multiple marketplaces at a time.

In this paper, we address all of the above-mentioned shortcom-
ings. Given the high complexity of analysing this game purely theo-
retically (as evidenced by the fact that no theoretical equilibrium re-
sults exist even for single double auctions), we analyse this problem
by combining theory with a computational learning approach based
on fictitious play to derive pure Bayes-Nash equilibria for traders’
strategies in single and competing double auction marketplaces. We
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use this approach because it has been effectively applied to find equi-
libria in complex auction settings where traders’ types are continu-
ous [11]. We note that this is the first work that computes equilibria
of both selection and bidding strategies for competing double auc-
tion marketplaces. In doing so, this paper advances the state of the
art in the following ways. First, we formulate equations to calcu-
late the trader’s expected utility in our setting. Then we analyse the
equilibrium bidding strategies of traders in a single double auction
marketplace. We show empirically that the fictitious play algorithm
converges to a unique pure Bayes-Nash equilibrium. We then analyse
how market fees affect these strategies. By so doing, this is the first
work that derives the equilibrium bidding strategies of traders in dou-
ble auctions and analyses the effect of market fees on these strategies.
Building on this analysis, we go on to study competing marketplace
environments where we consider both the traders’ bidding and mar-
ket selection strategies. In particular, we analyse the traders’ equi-
librium strategies in two cases. In the first, traders are restricted to
trade in one marketplace at a time, and we find that all traders who
choose a marketplace eventually converge to the same one. We then
consider a case which often exists in practice. Specifically, we allow
one side (e.g. buyers) to choose multiple marketplaces, whereas the
other side (e.g. sellers) can only choose one marketplace at a time.
For this, we find that sellers converge to different marketplaces in
equilibrium and they have more market power than buyers.

The structure of the paper is as follows. In Section 2, we introduce
the basic setting of competing double auction marketplaces and de-
rive the equations to calculate the trader’s expected utility. In Section
3, we describe how to use fictitious play to derive the equilibrium of
traders’ strategies. Then, in Section 4, we analyse the traders’ equi-
librium strategies in detail. Finally, we conclude in Section 5.

2 Competing Double Auction Marketplaces
We first describe our basic setting for competing double auction mar-
ketplaces, before deriving equations for the trader’s expected utility.

2.1 Basic Settings
We assume that there is a set of buyers, B = {1, 2, ...B}, and a set
of sellers, S = {1, 2, ...S}. Each buyer and seller has a type2, which
is denoted as θb and θs respectively. We assume that the types of
all buyers are independently drawn from the same cumulative distri-
bution function F b, with support [0, 1], and the types of all sellers
are independently drawn from the cumulative distribution function
F s, with support [0, 1]. The distributions F b and F s are assumed
to be common knowledge and differentiable. The probability den-
sity functions are fb and fs respectively. In our setting, the type of
each specific trader is not known to the other traders of the market-
places, but the type distribution functions are common knowledge.
In addition, we assume that there is a set of competing marketplaces
M = {1, 2, ...M}, that offer places for trade and provide a matching
service between the buyers and sellers.

In our setting, we assume that marketplaces match buyers with
sellers according to the equilibrium matching policy. We consider
such a policy since it aims to maximise traders’ profits and thus max-
imises the allocative efficiency for the marketplace. In detail, this pol-
icy will match the buyer with v-th highest offer with the seller with
v-th lowest offer if the seller’s offer is not greater than the buyer’s
offer. Since we consider marketplaces to be commercial enterprises
that seek to make a profit, we assume they charge fees for their ser-
vice as match makers. The fee structure of a marketplace m is defined

2 The type of a buyer is its limit price, the highest price it is willing to buy the item
for, and the type of a seller is its cost price, the lowest price it is willing to sell the
item for.

as Pm = (pm, qm), pm ≥ 0 and qm ∈ [0, 1], where pm is a reg-
istration fee charged to traders when they enter the marketplace, and
qm is a percentage fee charged on profits made by buyers and sellers
(in the following, we refer to such fees as profit fees)3. Moreover,
we assume that traders will incur a small cost ε when they choose
any marketplace, so that they slightly prefer choosing no market-
place than choosing a marketplace and making no transaction (even
if pm = 0). Furthermore, the transaction price of a successful trans-
action in marketplace m is determined by a parameter km ∈ [0, 1]
(i.e. a discriminatory k-pricing policy), which sets the transaction
price of a matched buyer and seller at the point determined by km in
the interval between their offers.

Now we describe how a trading round proceeds. First, all mar-
ketplaces publish their fees and pricing parameters. Second, based
on the observed fees and pricing parameters, traders select market-
places. Third, traders submit their offers. Finally, after all traders
have submitted their offers, the marketplaces match buyers and sell-
ers according to their matching policy and then execute the trans-
actions. The traders’ behaviour of bidding and market selection is
determined by their strategies, which map the set of types to a set of
actions. We can see that the way in which traders select marketplaces
and bid is important since this significantly affects market share and
market profits of the competing marketplaces. Given this, in the fol-
lowing, we present the traders’ behaviour of bidding and market se-
lection in more detail.

Specifically, we call the offers of the buyers bids and the of-
fers of the sellers asks. We assume that bids and asks are discrete
and the sizes of allowable bids and allowable asks are finite4. The
ranges of possible bids and asks constitute the bid space and ask
space respectively. For convenience, we further assume that buy-
ers and sellers have the same offer space, which is given by Γ =
{0, 1

D
, 2

D
, ..., D−1

D
, 1}∪{�}, i.e. the bid(ask) space comprises D+1

allowable bids(asks) and the action � means not choosing the mar-
ketplace. Given this, we can now define a trader’s action in terms
of bidding and market selection across multiple competing market-
places. Specifically, we use δ = (d1, d2, ..., dM ) to represent an
action, where the trader chooses marketplace m and offers dm in
this marketplace if dm �= �. The set of all possible actions con-
stitutes the action space. We consider two types of trading settings:
multi-home and single-home. In the former, traders can participate
in all marketplaces simultaneously and the action space is given by
Δmulti = ΓM . In the latter, traders are restricted to participate in
one marketplace and the action space is given by Δsingle = {δ ∈
Δmulti : ∃i ∈ M, ∀j �= i, di ∈ Γ and dj = �}. In what follows,
we use Δ as the general term for the action space.

2.2 The Trader’s Expected Utility

After defining the traders’ bidding and market selection actions,
we now derive the equations to calculate a trader’s expected util-
ity given its type and its own action, and given the probability dis-
tribution of actions played by other traders. Specifically, we use
Ωb =

(
ωb

1, ω
b
2, ..., ω

b
|Δ|

)
,
∑|Δ|

i=1
ωb

i = 1, to represent the proba-
bility distribution of (other) buyers’ actions, where the probability of
the action δb

i used by a buyer is ωb
i , and Ωs = (ωs

1, ω
s
2, ..., ω

s
|Δ|) for

the sellers’ actions. Furthermore, we use δb = (db
1, d

b
2, ..., d

b
M ) and

δs = (ds
1, d

s
2, ..., d

s
M ) to denote a buyer’s action and a seller’s action

respectively.

3 These two types of fees are common in the literature [1, 7]. Other types of fees,
such as information fees, transaction fees, have similar effects, and can easily be
incorporated in our setting.

4 The traders’ actions are always discrete in practice since the numeraire is discrete.
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In what follows, we derive the expected utility of a buyer, but
the seller’s is calculated analogously. Specifically, we calculate the
expected utility of a buyer with type θb adopting the action δb =
(db

1, d
b
2, ..., d

b
M ) given the other buyers’ action distribution Ωb and

the sellers’ action distribution Ωs. First, we introduce four support
functions5: hb

m(d) denotes the probability that the buyers’ bids are
strictly higher than d in marketplace m; lbm(d) denotes the proba-
bility that the buyers’ bids are strictly less than d in marketplace m
(when buyers do not select this marketplace, this is equivalent to bid-
ding less than d); similarly, hs

m(d) denotes the probability that the
sellers’ asks are strictly less than d in marketplace m and lsm(d) de-
notes the probability that the sellers’ asks are strictly higher than d
in marketplace m (when sellers do not select this marketplace, this is
equivalent to asking higher than d).

In our setting, we assume that, if the trader participates in multi-
ple marketplaces, it can trade multiple items, i.e. its expected utility
in these marketplaces is additive6. Then the buyer’s expected utility
over all marketplaces is the sum of its expected utility in each mar-
ketplace, which is given by:

Ũ(θb, δb, Ωb, Ωs) =

M∑
m=1

Ũm(θb, δb, Ωb, Ωs)

where Ũm(θb, δb, Ωb, Ωs) is the expected utility of the buyer in mar-
ketplace m when it bids db

m, which is given by:

Ũm(θ
b
, δ

b
, Ω

b
, Ω

s
) ={

0 if db
m = �

B−1∑
z=0

B−1−z∑
x=0

ρb(z, x, db
m) ∗ Ũm(θb, δb, Ωb, Ωs|z, x) − pm − ε if db

m �= �

where

ρb(z, x, db
m) =

(
B − 1

z, x

)
∗ hb

m(db
m)z

∗
(
1 − hb

m(db
m) − lbm(db

m)
)x ∗ lbm(db

m)B−1−z−x

is the probability that there are exactly z bids strictly higher
than db

m, exactly x bids tying with db
m (excluding the bid it-

self), and exactly B − 1 − z − x bids strictly less than db
m, and

Ũm(θb, δb, Ωb, Ωs|z, x) is the buyer’s expected utility when this oc-
curs. Recall that pm is the registration fee charged to the buyer when
it enters the marketplace m and ε is the constant cost. We now calcu-
late Ũm(θb, δb, Ωb, Ωs|z, x), which is given by:

Ũm(θb, δb, Ωb, Ωs|z, x) =
1

x + 1
∗

z+x+1∑
v=z+1

Ũm(θb, δb, Ωb, Ωs, v)

Note that, at this moment, the position of the bid among all bids in
marketplace m, v, can be anywhere between z+1 and z+x+1. We
use a tie-breaking rule where each of these possible positions occurs
with equal probability 1/(x + 1). Now, Ũm(θb, δb, Ωb, Ωs, v) is the
buyer’s expected utility when its bid is v-th highest among all bids in
marketplace m, which is given by:

Ũm(θb, δb, Ωb, Ωs, v) =

|Δ|∑
j=1

Ũm(θb, δb, Ωb, Ωs, v, δs
j )

5 These are calculated by taking the sum of the probabilities of actions whose corre-
sponding offers in marketplace m satisfy the conditions defined by these functions.

6 In the future, we will look at the cases with substitutable and complementary items.

where Ũm(θb, δb, Ωb, Ωs, v, δs
j ) is the buyer’s expected utility when

it attempts to be matched with the ask ds
jm of action δs

j =
(ds

j1, d
s
j2, ..., d

s
jM ), which is given by:

Ũm(θ
b
, δ

b
, Ω

b
, Ω

s
, v, δ

s
j ) =⎧⎨

⎩
0 if db

m ≤ ds
jm or ds

jm = �

v−1∑
r=0

S−r∑
t=v−r

ρs(r, t, ds
jm) ∗ Ũm|j(θ

b, δb, Ωb, Ωs, v, δs
j ) if db

m > ds
jm (1)

where

ρs(r, t, ds
jm) =

(
S

r, t

)
∗ hs

m(ds
jm)r

∗
(
1 − hs

m(ds
jm) − lsm(ds

jm)
)t ∗ lsm(ds

jm)S−r−t

is the probability that there are exactly r asks strictly less than
ds

jm and exactly t asks equal to ds
jm (including the ask it-

self). Note that t should be at least equal to v − r in Equa-

tion 1, thus
v−1∑
r=0

S−r∑
t=v−r

ρs(r, t, ds
jm) actually gives the overall prob-

ability that the bid db
m is matched with the ask ds

jm. Finally,
Ũm|j(θ

b, δb, Ωb, Ωs, v, δs
j ) is the buyer’s expected utility when it is

matched with the ask ds
jm. This is given by:

Ũm|j(θ
b, δb, Ωb, Ωs, v, δs

j ) = θb−db
m+(db

m−ds
jm)∗km∗(1−qm)

where (db
m − ds

jm) ∗ km is the buyer’s share of the observed trading
surplus, which is the difference of the matched bid and ask, and qm

is the profit fee charged to traders.

3 The Fictitious Play Algorithm
In this section we describe how we can use fictitious play (FP) to
find the equilibrium market selection and bidding strategies of traders
in our setting. In the standard FP algorithm [10], opponents are as-
sumed to play a fixed mixed strategy. Then by observing relative
appearance frequencies of different actions, the player can estimate
their opponents’ mixed strategies, and take a best response. The ob-
served frequencies of opponents’ actions are termed FP beliefs. In
each round, all players estimate their opponents’ mixed strategies
and update their FP beliefs, and play a best response to their FP be-
liefs. All players continually iterate this process until it converges.
This algorithm has two types of convergence. First, it may converge
to the pure strategy, which means that after a number of iterations,
the best response strategy of each player is stable. At this moment,
all players’ best response strategies constitute a pure Nash equilib-
rium. Second, it may converge in FP beliefs. At this moment, the
converged FP beliefs constitute a mixed Nash equilibrium.

However, the standard FP algorithm is not suitable for analysing
Bayesian games in which there is incomplete information (i.e. where
the player’s type is not known to the other players). In such games,
a strategy is a function mapping a player’s type to an action. In the
standard FP algorithm, by observing the frequency of opponents’ ac-
tions, we cannot know the actual strategy of a player since we do
not know which type performs which action. To ameliorate this, in
[11], a generalised fictitious play algorithm was proposed to analyse
games with continuous types and incomplete information. Using this
algorithm, if the players’ action space is finite, when the FP beliefs
converge, they converge to a pure Bayes-Nash equilibrium7. More-
over, in such settings, it is known that a pure Nash equilibrium al-
ways exists. However, in [11], researchers only showed how to use

7 Or if they converge to beliefs, the equilibrium can be purified producing a pure
Bayes-Nash equilibrium [9].
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Figure 1. Piecewise linear expected utility functions.

this algorithm to analyse traders’ strategies in single-sided auctions.
Then in the following, given equations derived in Section 2.2, we ap-
ply this algorithm to find traders’ equilibrium strategies in the much
more complex competing double auction marketplaces environment.

Previously, we used Ωb and Ωs to denote the probability distribu-
tions of buyers’ and sellers’ actions respectively. In the FP algorithm,
we use them to represent FP beliefs about the buyers’and sellers’ ac-
tions respectively. Then given their beliefs, we need to compute the
buyers’ and the sellers’ best response functions. In the following,
we describe how to compute the buyers’ best response function σb∗,
where σb∗(θb) = argmaxδb∈ΔŨ(θb, δb, Ωb, Ωs). Considering the
equations to calculate the buyer’s expected utility in Section 2.2, we
note that the buyer’s expected utility Ũ(θb, δb, Ωb, Ωs) is linear in
its type θb for a given action. Now, the optimal utility that a buyer
with type θb can achieve is Ũ∗(θb) = maxδb∈ΔŨ(θb, δb, Ωb, Ωs).
Given that the expected utility for each action is linear, and given a
finite number of actions, the optimal function is the upper envelope
of a finite set of linear functions, and thus is piecewise linear. An ex-
ample with 4 actions, δb

1, δb
2, δb

3 and �, is given in Figure 1. Given
each action, the buyer’s expected utility with respect to its type is
shown by line1, line2, line3 and line� (i.e. x-axis) respectively.
The optimal utility achieved by the buyer is represented by the set
of thick piecewise linear segments. Each line segment corresponds
to a type interval, where the best response action of each type in this
interval is the same. In this figure, the best response action δb

i corre-
sponds to the interval ϕb

i (i = 1, 2, 3) and the best response action �

corresponds to ϕb
�

. More generally, we can create the set of distinct
intervals Ib, which constitute the continuous type space of buyers,
i.e.

⋃
ϕb∈Ib ϕb = [0, 1], which satisfy the following conditions:

• For any interval ϕb, if θb
1, θ

b
2 ∈ ϕb, then σb∗(θb

1) = σb∗(θb
2), i.e.

types in the same interval have the same best response action.
• For any distinct ϕb

1, ϕ
b
2 ∈ Ib, if θb

1 ∈ ϕb
1, θb

2 ∈ ϕb
2, then

σb∗(θb
1) �= σb∗(θb

2)

Now we have computed the best response function and also pro-
vided the set of intervals of types corresponding to the best response
actions. Based on this, we can calculate the inherent probability dis-
tribution of buyers’ actions, which is down as follows. We know that
given the buyers’ type distribution function F b and probability den-
sity function fb, the probability that the buyer has the type in the
interval ϕb is

∫
ϕb f(x)dx, denoted by F b(ϕb). When the best re-

sponse action corresponding to the interval ϕb
i is δb∗

i , the probability
that the action δb∗

i is used by buyers is ωb
i = F b(ϕb

i ). By calculating
the probability of each action being used, we obtain the inherent ac-
tion distribution of buyers, and we can then update the FP beliefs of
buyers’ actions, which is given by:

Ωb
(τ+1) =

τ

τ + 1
∗ Ωb

τ +
1

τ + 1
∗ Ωb

where Ωb
(τ+1) is the updated FP beliefs of the buyers’ actions for the

next iteration round τ + 1, Ωb
τ is the FP beliefs on the current itera-

tion round τ , and Ωb is the inherent action distribution of this round,
which is absorbed by Ωb

(τ+1) with the standard update rate 1
τ+1

. The
computation of the sellers’ best response function and belief updates
is analogous. In our setting, we need to update both buyers’ and sell-
ers’ FP beliefs simultaneously.

After introducing how to compute the best response function and
update FP beliefs, we now give the structure of the FP algorithm (see
Figure 2). In this algorithm, we measure the convergence in beliefs
by calculating the convergence error, which is given by:

CE = max

(
max

δb
i
∈Δ|ωb

i(τ+1)−ω
b
i(τ)|, maxδs

i
∈Δ|ωs

i(τ+1)−ω
s
i(τ)|

)
∗(τ+1)

If CE < 1
τ

, then the algorithm converges in beliefs, and a pure
Bayes-Nash equilibrium of traders’ strategies is reached.
Initial:

set iteration count τ = 0

set the initial beliefs Ωb
0 and Ωs

0

1. loop

2. Compute best response functions: σb∗(θb) and σs∗(θs)

Generate the interval ϕb
i corresponding to the best response action δb∗

i

Generate the interval ϕs
i corresponding to the best response action δs∗

i

3. Compute inherent action distribution of buyers and sellers:
Ωb = {ωb

i |ωb
i = F b(ϕb

i ), i = 1, 2, ..., |Δ|}
Ωs = {ωs

i |ωs
i = F s(ϕs

i ), i = 1, 2, ..., |Δ|}
4. Update beliefs:

Ωb
(τ+1)

= τ
τ+1

∗ Ωb
τ + 1

τ+1
∗ Ωb

Ωs
(τ+1)

= τ
τ+1

∗ Ωs
τ + 1

τ+1
∗ Ωs

5. if(Convergence precision reached), then

6. return Ωb
(τ+1)

and Ωs
(τ+1)

7. end if

8. Set τ = τ + 1

9. end loop

Figure 2. The fictitious play algorithm.

4 Equilibrium Analysis of Traders’ Strategies

In this section, we will use the FP algorithm to analyse the traders’
equilibrium strategies. We first do so in a single marketplace. We
then analyse the traders’ bidding and market selection strategies in
a competing marketplaces setting. In the following, for illustrative
purposes, we show our results in a specific setting with 5 buyers and
5 sellers, and 11 allowable bids(asks) unless mentioned otherwise.

4.1 For a Single Marketplace
Many bidding strategies for double auctions have been proposed in
the literature (such as AA [8], ZIP [3]). However, they all fail to an-
swer what exactly traders should bid in equilibrium. This is important
since how traders bid in a given marketplace will affect their expected
utilities and this in turn their selection of marketplaces. Thus we first
analyse a trader’s bidding behaviour in a single marketplace.

We first consider a setting with no fees and set the small cost
ε = 0.0001. We also assume that km = 0.5, i.e. the transaction price
is set in the middle of the matched bid and ask. Furthermore, we
assume that buyers’ types are independently drawn from a uniform
function, and the same for sellers. Then we use the FP algorithm to
analyse the traders’ equilibrium strategies, and find that starting from
different initial beliefs of traders’ actions, all traders who choose
the marketplace eventually converge to the same pure Nash equi-
librium bidding strategy, which is shown in Figure 3. The light gray
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Figure 3. Equilibrium strategies with the same number of buyers and sellers. Figure 4. Equilibrium strategies of traders with registration fees.

Figure 5. Equilibrium strategies of traders with profit fees. Figure 6. Equilibrium strategies with different numbers of buyers and sellers.

line with solid circles represents buyers’ bids in equilibrium and the
dark black line with squares represents sellers’ asks in equilibrium.
From this figure, we can see what traders will bid corresponding to
their types in equilibrium. We also find that when buyers’ types are
lower than a certain point and sellers’ types are higher than a certain
point, they will not enter the marketplace because of the constant
cost. These traders are called extra-marginal traders or poor traders
since they cannot make any transactions. We also see that buyers with
high types and sellers with low types (which we call intra-marginal
traders or rich traders) shade their offers by bidding less or asking
more in order to extract more profit from transactions.

Now we consider how fees can affect the traders’ equilibrium bid-
ding strategies. First we consider that the marketplace charges a reg-
istration fee. For example, if we assume that it charges a 0.1 registra-
tion fee, then the traders’ equilibrium bidding strategies are shown
in Figure 4. We can see that, compared to the case where no fees are
charged (see Figure 3), there exists a bigger range of types of traders
not choosing this marketplace, even including some buyers(sellers)
whose types are higher(lower) than the equilibrium price of 0.5. This
is because the registration fee causes negative profits for them. In ad-
dition, we further find that when registration fees are charged, rich
buyers prefer to increase their bids, and thus increase the probability
of being matched. In contrast, the buyers, whose types are relatively
close to the equilibrium price 0.5, prefer to lower their bids in order
to keep more profits.

Then we consider the case where the marketplace charges a profit
fee. As an example, we assume that the marketplace charges a 50%
profit fee. The results are shown in Figure 5. We still find that com-
pared to the case where no fees are charged (see Figure 3), there ex-
ists a bigger range of types of traders not choosing the marketplace.
However, compared to the case where registration fees are charged
(see Figure 4), we can see that traders whose types are close to the
equilibrium price still choose the marketplace. This is because the
profit fee is a percentage fee charged on the observed trading surplus
(which is the difference of the matched bid and ask), and will not
cause negative profits for traders. Furthermore, we find that charging
profit fees drives traders to bid close to the equilibrium price. This
is because when profit fees are charged, marketplaces extract prof-
its from traders according to their observed trading surplus. Then in
order to keep more profits, the traders try to shade their offers by low-
ering bids or increasing asks to reduce the trading surplus observed
by the marketplace.

In the above, we considered the case with the same number of buy-
ers and sellers. We now analyse what happens to the traders’ bidding
strategies when there are different numbers of buyers and sellers. For
example, we consider the case with 8 buyers and 5 sellers. Then the
traders’ equilibrium bidding strategies are shown in Figure 6. Com-

pared to Figure 3, as can be expected, we see that because there are
more buyers than sellers, the competition between buyers is more se-
vere, and thus they have to raise their bids. For sellers, since they have
a higher probability of being matched, they raise their asks. At this
moment, sellers have more market power, and can therefore extract
more profit from their transactions.

4.2 For Competing Marketplaces
In the above, we analysed how traders will bid in a single mar-
ketplace in equilibrium. Now we analyse how traders select mar-
ketplaces and bid in the competing marketplaces environment. As
mentioned previously, there are two types of trading settings: single-
home and multi-home. Furthermore, we also consider a hybrid set-
ting where one side can only participate in one marketplace, where
the other side can participate in multiple marketplaces. Specifically,
we consider the case where buyers can participate in multiples mar-
ketplaces and sellers can only participate in one marketplace at the
same time. For example, a seller wants to sell one item through on-
line auctions. Once it chooses Amazon or Ebay, he is committed to
sell the item in this specific auction. He cannot choose other online
auctions at the same time. However, for buyers, they can place bids in
multiple online auctions at the same time to find the best deal. Note
that the results of the opposite case where sellers can choose multiple
marketplaces and buyers can only choose one are identical since the
marketplaces are symmetric.

4.2.1 Single-Home Trading
We now consider traders’ equilibrium strategies when there are two
competing marketplaces8. Other settings are the same as above. We
first consider the case where the marketplaces charge no fees to
traders. By using FP, we find that, except for the extra-marginal
traders choosing no marketplace, all other traders eventually con-
verge to one marketplace in equilibrium. Since the two marketplaces
are identical at this moment, the traders will eventually converge to
marketplace 1 or 2 with the same probability. In addition, we find
that the traders’ bidding strategies in the converged marketplace are
the same as the case with a single marketplace (i.e. Figure 3).

We now consider what happens to the traders’ behaviour when
they are charged fees. First we consider the cases where both mar-
ketplaces charge registration fees or both charge profit fees. We run
simulations with many possible initial beliefs, and find that traders
eventually converge to one marketplace, which depends on initial FP
beliefs and market fees. Since traders converge to one marketplace,
the equilibrium bidding strategies are the same as the case with a
single marketplace (i.e. Section 4.1).

8 We also considered the case with more than two competing marketplaces. However,
the results are similar to the case with two competing marketplaces and therefore
we omit them.
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Figure 7. Equilibrium strategies of traders with different types of fees. Figure 8. Equilibrium strategies of traders in marketplace 1 in the hybrid setting.

Figure 9. Equilibrium strategies of traders in marketplace 2 in the hybrid setting.

Now we consider the case where marketplace 1 charges a profit
fee and marketplace 2 charges a registration fee. For example, we
consider the profit and registration fees with a little extreme, where
marketplace 1 charges a very high profit fee of 0.9, and marketplace
1 charges a registration fee of 0.1. If initial beliefs are uniform (i.e.
all actions are equally probable), we find that all traders eventually
converge to marketplace 1, and the equilibrium bidding strategies are
shown in Figure 7. The reason of traders converging to marketplace
1, which seems more expensive, is as follows. When a high profit
fee is charged, the traders shade their offers more to keep profits (as
can be seen in Figure 7). However, shading has no effect in the case
of registration fees. Therefore, traders will prefer the marketplace
charging profit fees compared to registration fees.

We also run simulations with many other fee combinations. We
always find that all traders converge to one marketplace. This is be-
cause when traders split into different marketplaces, a trader’s prob-
ability of being matched decreases, which results in the loss of the
trader’s profit. Thus traders want to concentrate in one marketplace.

4.2.2 Multi-Home and Hybrid Trading
In the above, we analysed traders’ strategies when they can only se-
lect one marketplace at a time. When multi-home trading is allowed,
the competition between marketplaces is reduced. This is because
traders will choose both marketplaces if their expected profits in each
marketplace are positive. Since we assumed that the expected utili-
ties of different marketplaces are additive (Section 2.2), all traders,
except for the extra-marginal traders choosing no marketplace, will
choose both marketplaces. The analysis of their bidding strategies is
then identical to Section 4.1.

Now we consider a hybrid case where buyers can participate in
multiple marketplaces and sellers can only choose one marketplace
at a time. Considering the same setting as before and without fees, the
results are shown in Figures 8 and 9. From these figures, we can see
that sellers eventually split and place asks in different marketplaces
in equilibrium. Now two competing marketplaces co-exist. This co-
existence is caused by internal competition between sellers. In the
marketplace, the sellers have to compete with each other in order to
be matched with buyers and make transactions, and thus they prefer
those marketplaces with fewer sellers. Because identical buyers stay
in both competing marketplaces in this case, then the attractiveness
from the buyers to the sellers in both marketplaces is the same. At this
moment, the internal competition between the sellers takes effect,
which drives the sellers to stay in different marketplaces. Another
interesting phenomenon is that compared to the traders’ equilibrium
strategies in Figure 3, we find that buyers raise their bids and sellers
also raise their asks in this case. The reason is as follows. As the
sellers are split in two marketplaces, then in each marketplace the

number of sellers is less than the number of buyers. Thus as per our
previous analysis (see Figure 6), sellers have more market power than
buyers, and so buyers raise their bids in order to be matched and
sellers raise their asks to extract more profits from transactions.

5 Conclusions
In this paper, we used a FP algorithm to analyse the equilibrium
strategies of traders with continuous types in competing double auc-
tion marketplaces. Specifically, we first analysed traders’ equilib-
rium bidding strategies in a single marketplace, where we found that
traders shade their offers in equilibrium. We further analysed the ef-
fect of market fees on traders’ equilibrium bidding strategies. Then
in the competing marketplaces environment, we analysed the traders’
equilibrium strategies for market selection and bidding in two cases.
In the first, where traders can participate in one marketplace at a time,
we showed that traders eventually converge to one marketplace in
equilibrium. In the second case where buyers can participate in mul-
tiple marketplaces and sellers can only choose one marketplace at the
same time, we found that sellers will eventually converge to differ-
ent marketplaces. We also showed that in this case, sellers have more
market power than buyers.

In this paper, we have analysed how market fees can affect traders’
equilibrium strategies. In the future, we intend to analyse how com-
peting marketplaces should set their fees to make profits. Specifi-
cally, because traders shade their offers and will shade more when a
profit fee is charged, then the marketplace may not be able to obtain
the target profit even though it charges a very high profit fee. On the
other hand, charging a high registration fee may cause negative prof-
its for lots of traders, and thus drive them to leave the marketplace.
Given this, we would like to analyse what types of fees, or what
combinations of different types of fees, are effective at allowing the
marketplace to obtain the target profit.
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