
On the (Un-)Decidability of Model Checking
Resource-Bounded Agents

Nils Bulling1 and Berndt Farwer2

Abstract. The verification and modelling of multi-agent systems is
an important topic that has attracted much attention in recent years.
Resources, however, have only recently been studied as simple ex-
tensions to well-known logics. Trying to find a set of useful fea-
tures while retaining essential properties for practical use, we ex-
plore the question: Where are the limits of what can be verified about
resource-bounded agents? We try to answer this question by consid-
ering several natural logic-based settings that may arise and prove
that verification is usually undecidable apart from bounded or oth-
erwise restrictive settings. Most interestingly, we identify various
factors that influence the (un-)decidability and provide grounds for
future research on more promising constraints leading to decidable
fragments.

1 Introduction

Verification of multi-agent systems, in particular the model-checking
problem (i.e. whether a given property holds in a given model), has
attracted much attention in recent years [9, 10, 4, 13, 15, 12]. Most
of these results focus on well-established logics like the computation
tree logics or alternating time temporal logics [10, 4]. Just recently
these logics have been extended to verify various aspects of rational
agents [8, 7]. However, the basic idea of rational agents being au-
tonomous entities perceiving changes in their environment and acting
according to a set of rules or plans in the pursuit of goals does not
take into account resources. But many actions that an agent would
execute in order to achieve a goal can – in real life – only be carried
out in the presence of certain resources. Without sufficient resources
some actions are not available, leading to plan failure. The analysis
and verification of agent systems with resources of this kind is still in
its infancy; the only work we are aware of in this direction is [5, 2, 1].

In this paper we investigate the boundaries of what can and cannot
be verified about resource-bounded agents. It turns out that the han-
dling of resources is harder than it may seem at first sight: we prove
that in many settings the model-checking problem is undecidable.

The paper is structured as follows. In Section 2, we introduce the
general language and semantics, as well as some restricted variants.
Section 3 presents one of the main contributions of this paper; we dis-
cuss the model-checking problems for various settings of our logic.
Finally, we conclude the paper with a discussion of related and future
work.

1 TU Clausthal , Germany, email:bulling@in.tu-clausthal.de
2 Durham University, UK, email:berndt.farwer@durham.ac.uk

2 Resource-Bounded Agent Logic

This section introduces the logic RAL∗ (Resource-Bounded Agent
Logic), Resource-Bounded Models (RBMs), and restricted variants
of the logic. In the following we assume that Agt = {1, . . . , k} is a
finite set of agents, Q is a finite set of states, Res = {R1, . . . , Ru}
is a finite set of resource types or just resources, and Props =
{p, q, . . . } is a set of propositions. We often use “a, b, . . . ” and
“A, B, . . . ” to refer to agents (i.e. a, b ∈ Agt) and groups of agents
(i.e. A, B ⊆ Agt), respectively.

We use an endowment function η : Agt × Res → N
∞
0 to model

the amount of resources an agent is equipped with3: η(a, r) is the
amount of resource r agent a possesses. The set of all endowments
is denoted by En. We also write ηa for η(a). The quantity “∞” is
used to equip an agent with an infinite amount of resources. This
allows us to ignore specific resource types for that agent. We define
the endowment η∞ as the constant function that maps every resource
for every agent to ∞. Finally, we use a resource-quantity mapping
(rqm) ρ : Res → Z

∞ to model the currently available resources (in
the system); that is, ρ(r) denotes to availability or lack of resource r.

The Language. From the syntactic perspective the logic RAL∗,
introduced in the following, is not much different from the
alternating-time temporal logic ATL∗ [4]. Cooperation modalities
come in two versions: 〈〈A〉〉B and 〈〈A〉〉ηB where A, B ⊆ Agt. For
both modalities it is assumed that agents in A∪B require resources.
The reading of 〈〈A〉〉ηBγ is that agents A have a strategy compati-
ble with the endowment η to enforce γ. The operator 〈〈A〉〉Bγ reads
similarly but the strategy must be compatible with the resources cur-
rently (implicitly) available to the agents. That is, the former operator
equips the agents with a fresh amount of resources.

Definition 1 (Language LRAL∗) The language LRAL∗ is defined as
follows4: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Bγ | 〈〈A〉〉ηBγ where γ ::=
ϕ | ¬γ | γ ∧ γ | ϕU ϕ | �ϕ, A, B ⊆ Agt, p ∈ Props, and5 η ∈
En. Formula ϕ (resp. γ) is called state formula (resp. path formula).
Moreover, we use 〈〈A〉〉η (resp. 〈〈A〉〉) as an abbreviation for 〈〈A〉〉ηA
(resp. 〈〈A〉〉A).

The temporal operators � and U have the standard meaning
‘in the next moment’ and ‘until’, respectively. As usual, one defines
� γ ≡ �U γ (eventually) and � γ = ¬� ¬γ (always from now
on).

3 N∞
0 (resp. Z∞) is defined as N0 ∪ {∞} (resp. Z ∪ {∞}).

4 Due to the lack of space, we also use semantic symbols in the object lan-
guage.

5 As we are mainly interested in decidability results in this paper the concrete
representation of η is irrelevant.

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-567

567

1 20
(1 1) (1 2) (2 2)(1 1)

p

Figure 1. A simple RBM Mwith Agt = {1, 2},
d1(q0) = d1(q1) = d2(q1) = {α1}, d1(q2) = d2(q2) = {α2},

d2(q0) = {α1, α2} and one resource R. Actions α1 costs one unit of R
and action α2 is cost-free; i.e. t(α1, R) = −1 and t(α2, R) = 0.

The Semantics. As models for our logic we take concurrent game
structures (CGS) form [4] and extend them by resources and a map-
ping t indicating how many resources each action requires or pro-
duces when executed.

Definition 2 (RBM) A resource-bounded model (RBM) is given
by M = (Agt,Q ,Props, π, Act, d, o,Res, t) where π : Q →
P(Props) is a valuation of propositions; Act is a finite set of ac-
tions; and function d : Agt × Q → P(Act) indicates the actions
available to agent a ∈ Agt in state q ∈ Q . We write da(q) instead of
d(a, q), and use d(q) to denote the set d1(q)× · · ·× dk(q) of action
profiles in state q. o is a serial transition function which maps each
state q ∈ Q and action profile �α = 〈α1, . . . , αk〉 ∈ d(q) (specifying
a move for each agent) to another state q′ = o(q, �α). Finally, the
function t : Act × Res → Z models the resources consumed and
produced by an action. We define prod(α, r) := max{0, t(α, r)}
(resp. cons(α, r) := −min{0, t(α, r)}) as the amount of resource
r produced (resp. consumed) by action α..

For �α = 〈α1, . . . , αk〉, we use �α|A to denote the sub-tuple con-
sisting of the actions of agents A ⊆ Agt and we use XM to refer to
an element X contained in M.

Example 1 Figure 1 shows a simple RBM.

Note that the tuple (Agt,Q ,Props, π, Act, d, o) is simply a con-
current game structure as introduced in [4]. We define Q≤ω :=
Qω ∪ Q+ (i.e. all infinite and finite sequences over Q). A path
λ ∈ Q≤ω is a finite or infinite sequence of states such that there is
a transition between two adjacent states. Intuitively, not all paths are
possible given limited resources. We define a resource extended path
λ as a finite or infinite sequence over Q×En such that the restriction
of λ to states (the first component), denoted by λ|Q, is a path in the
underlying model. Similarly, we use λ|Res to refer to the projection
of λ to the second component of each element in the sequence.

We also use the following notations introduced for paths. The
length of λ (where λ is a path or resource extended path), denoted
l(λ), is the number of states in the sequence; if λ ∈ Qω then
l(λ) = ∞. For i ∈ N0, we define λ[i] to be the (i + 1)-th sate
on λ or the last one if i ≥ l(λ). Moreover, λ[i,∞] refers to the infi-
nite subpath λ[i]λ[i+1] . . . of λ if l(λ) = ∞; or to the finite subpath
λ[i]λ[i + 1] . . . λ[l(λ) − 1] if l(λ) < ∞. The set of all paths in M

starting in a state q is defined by ΛM(q).
Ultimately, we are interested in the ability of groups of agents. We

are interested in the existence of a winning strategy for a group of
agents. A strategy is a function that fixes the behaviour of an agent;
that is, it determines an action for each ‘situation’ where we will
consider two types of situations. Once, agents can base their decision
on the current state only and once, on the whole previous history.

Definition 3 (R/r-strategy) A perfect-recall strategy for agent a (or
R-strategy) is a function sa : Q+ → Act such that sa(q1 . . . qn) ∈
da(qn). A strategy sa is called memoryless (or r-strategy) if
sA(hq) = sA(h′q) for all h, h′ ∈ Q∗ and q ∈ Q (such strategies
can be defined as functions Q → Act).

The condition “sa(q1 . . . qn) ∈ da(qn)” ensures that the pre-
scribed action is executable by the agent.

Actions require or produce certain amounts of resources (modelled
by t) that have to be present for an action to be executed. Agents
in a group A can cooperate and share their resources, as can the
opponents Agt\A. In the following, we formalise such ‘shares’ sh
with respect to an available endowment η for some rqm ρ.

Definition 4 ((A, η)-share for ρ) Let η be an endowment and let ρ
be an rqm. An (A, η)-share for ρ is a function sh : A ×Res → N0

such that:

1. ∀r ∈ Res : ρ(r) > 0 ⇒ P
a∈A sh(a, r) = ρ(r) (the share

equals the demand); and
2. ∀a ∈ A, r ∈ Res : ηa(r) ≥ sh(a, r) (each agent’s share must be

available).

A strategy sA restricts the possible paths in an RBM; moreover,
considering resource-extended paths, only those in which agents
have sufficiently resources available in each state are feasible. We
use the resource component to keep track of the available resources.

We define which extended paths λ are possible under a given en-
dowment η and strategy sA assuming agents A∪B require resources.

Definition 5 ((η, sA, B)-path, out(q, η, sA, B)) An (η, sA, B)-
path is a maximal resource-extended path λ ∈ (Q × En)≤ω such
that for all i = 0, . . . , l(λ) − 1 with λ[i] := (qi, η

i) there is an
action profile �α ∈ d(λ|Q [i]) such that

1. λ|Res [0] ≤ η (initially at most η resources are available)
2. sA(λ|Q [0, i]) = �α|A (A’s actions in �α are the ones prescribed

by strategy sA),
3. λ|Q[i + 1] = o(λ|Q[i], �α) (transitions are taken according to the

action profile �α),
4. ∀ a ∈ A∀r ∈ Res : (ηi+1

a (r) = ηi
a(r) +

prod(�α|a, r)− sh(a, r)) where sh : A×Res → N0 is an (A, η)-
share for r �→ P

a∈A cons(�α|a, r) (A’s resources change
according to some appropriate share),

5. ∀b ∈ B\A ∀r ∈ Res : (ηi+1
b (r) = ηi

b(r) + prod(�α|b, r) −
sh(b, r)) where sh : B\A×Res → N0 is an (B\A, η)-share for
r �→ P

b∈B\A cons(�α|b, r)) (B\A’s resources change according
to some appropriate share),

6. ∀a ∈ Agt\(A ∪ B) ∀r ∈ Res : (ηi+1
a (r) = ηi

a(r)) (available
resources remain unchanged for all agents not in A ∪ B),

7. ∀a ∈ Agt : (λ|Res [i]a ≥ 0 ⇒ λ|Res [i + 1]a ≥ 0) and
(λ|Res [i]a < 0 ⇒ λ|Res [i + 1]a ≥ λ|Res [i + 1]a (for each step
the required resources are available).

The η-outcome of a strategy sA against B in q, out(q, η, sA, B),
is defined as the set of all (η, sA, B)-paths starting in q.

Remark 1 (1) We require that a path is maximal, i.e., if a given path
can be extended (this is the case if sufficient resources are available)
then it must be extended. (2) After an action has been executed the
production of resources is added to the endowment of the action-
executing agent. (3) There are several (η, sA, B)-paths due to the
choices of the opponents and due to different shares in items 4 and 5.

Finally, we define four semantics for LRAL∗ over triples of an
RBM together with a state and a given endowment for the agents.

Definition 6 (|=R,|=r , |=∞
R , |=∞

r , RAL∗
R, RAL∗

r) Consider an
RBM M, a state q ∈ QM , and an endowment η. The R-semantics
is given by the satisfaction relation |=R defined as follows.

N. Bulling and B. Farwer / On the (Un-)Decidability of Model Checking Resource-Bounded Agents568

M, q, η |=R p iff p ∈ π(q)
M, q, η |=R ¬ϕ iff M, q, η �|=R ϕ
M, q, η |=R ϕ ∧ ψ iff M, q, η |=R ϕ and M, q, η |=R ψ
M, q, η |=R 〈〈A〉〉Cγ iff there is an R-strategy sA for A such that

M, λ, η |=R γ for all λ ∈ out(q, η, sA, C)
M, q, η |=R 〈〈A〉〉ζCγ iff there is an R-strategy sA for A such that

M, λ, ζ |=R γ for all λ ∈ out(q, ζ, sA, C)
M, λ, η |=R ϕ iff M, λ[0], η |=R ϕ

and for path formulae

M, λ, η |=R ¬γ iff not M, λ, η |=R γ
M, λ, η |=R γ ∧ χ iff M, λ, η |=R γ and M, λ, η |=R χ
M, λ, η |=R

�γ iff M, λ[1,∞], λ|Res [1] |=R γ and l(λ) > 1
M, λ, η |=R γ U χ iff there is i < l(λ) such that

M, λ[i,∞], λ|Res [i] |=R χ and for all j with 0 ≤ j < i we have
M, λ[j,∞], λ|Res [j] |=R γ

The r-semantics (memoryless semantics) |=r is defined simi-
larly to the R-semantics but r-strategies are used instead of R-
strategies. Moreover, we introduce a variant that focuses on infi-
nite paths. Therefore, in the semantic clauses of the cooperation
modalities, we replace “λ ∈ out(q, η, sA, C)” with “infinite λ ∈
out(q, ζ, sA, C)”. The resulting semantic relations are denoted |=∞

R

and |=∞
r .

The logic RAL∗
R (resp. RAL∗

r) is defined as the language LRAL∗

together with R-semantics |=R (resp. r-semantics |=r).

The ‘infinite semantics’ is needed for some extended expressivity
and complexity results. The language LRAL∗ , however, is sufficiently
expressive to describe infinite paths by “� �� → . . . ”, so we can
state as a fact that the semantics focusing on infinite paths can be
simulated by LRAL∗ (for a proof, see [6]).

Proposition 1 Logic (LRAL∗ , |=x) subsumes (LRAL∗ , |=∞
x) for x ∈

{r, R}. This also holds for the proponent restrictive (pr) and re-
source flat (rf) variants of Definition 8.

Example 2 Recall the RBM from Example 1 and consider the fol-
lowing endowment η: η(1)(R) = 2 and η(2)(R) = ∞. Then, we
have M, q0, η �|=r 〈〈1〉〉� p and M, q0, η |=r 〈〈2〉〉� p; there are two
paths λ and λ′ in the outcome: λ|Q = q0(q2)

ω and λ′|Q = q0q1q1.
But note, that we have M, q0, η |=∞

r 〈〈1〉〉� p as the finite path λ′ is
disregarded.

Syntactically Restricted Variants. Following [10, 4], we define
(temporal) restrictions of LRAL∗ .

Definition 7 (Languages LRAL+ and LRAL) The language LRAL+

restricts LRAL∗ in such a way that path formulae are given by γ ::=
¬γ | γ ∧ γ | ϕU ϕ | �ϕ.
The language LRAL is given by

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉B �ϕ | 〈〈A〉〉B� ϕ | 〈〈A〉〉BϕU ϕ |
〈〈A〉〉BϕRϕ | 〈〈A〉〉ηB �ϕ | 〈〈A〉〉ηB� ϕ | 〈〈A〉〉ηBϕU ϕ |

〈〈A〉〉ηBϕRϕ

For the semantic interpretation we consider the ‘release’ operator as
the following macro: ϕRψ ≡ ¬((¬ψ)U (¬ϕ)). Differently, from
[10, 4] in the case of LCTL and LATLwe do also allow the ‘release’
operator R . Note that LRAL with the release operator is strictly more
expressive than it would be without it [14].

Next, we define variants of all languages that restrict the use of
resources. Operators 〈〈A〉〉B assume that the proponents A and op-
ponents B\A act under limited resources whereas 〈〈A〉〉 only restricts

the choices of the proponents A. In Section 3 we show that this in-
fluences the model checking complexity.

Another aspect of complexity is reflected by the two coopera-
tion modalities 〈〈A〉〉C and 〈〈A〉〉ηC . The former operator is com-
putationally harder to handle than the latter as one has to keep
track of resources. Note, that the expressiveness of the logic justi-
fies operators of the first kind. For example, consider the formula
〈〈A〉〉� (p∧〈〈B〉〉γ): agents A have to reach a state in which p holds
and in which B can ensure γ with the then remaining resources for
agents A ∩ B.

Both restrictions have interesting effects on the model checking
complexity and the number of agents needed to show undecidability.

Definition 8 (Proponent restrictiveness; resource flatness) Let L
be any of the languages introduced so far.

(a) The language pr -L, proponent-restricted L , is the sublanguage
of L allowing only operators 〈〈A〉〉 and 〈〈A〉〉η .

(b) The language rf -L, resource-flat L , is the sublanguage obtained
from L if only cooperation modalities 〈〈A〉〉ηB are allowed (and not
〈〈A〉〉B).

Analogously to Definition 6, we define the logics RALR, RALr ,
RAL+

r , and RAL+
R and their proponent-restricted and/or resource-

flat variants.

Restricted RBMs. In Section 3 we show that the model-checking
problem is often undecidable over general RBMs. Exceptions are
two bounded settings presented in the following.

For k ∈ N, an RBM M is said to be k-bounded for endowment
η if for every element (q, ζ) on any (η, sA, B)-path for any strategy
sA and B ⊆ Agt either ζ(a)(r) ≤ k or ζ(a)(r) = ∞ holds for
all resources r ∈ ResM and agents a ∈ Agt. An RBM is called
bounded for η if it is k-bounded for η for some k ∈ N.

At a first glance such models may seem quite artificial but in fact
there are several natural settings resulting in bounded models. We
call a model production-free if actions can only consume and not
produce resources. Clearly, every production-free model is bounded.

There is another way to enforce a bounded setting. The definition
above is purely structural and obviously not every RBM is bounded.
However, often agents themselves have limited capabilities such that
it does not necessarily make sense to allow them to carry arbitrary
amounts of resources. Depending on the resource type only a limited
number of units may be permitted in any endowment. In this setting
one imposes the requirement of boundedness to the semantics and
simply discards any resources that exceed a given bound. The latter
is a semantic restriction and has to be inserted into the definition of
paths.

We define a k-bounded (η, sA, B)-path as in Definition 5 but
we set set λ|Res [0] = η1

a(r) := min{k, ηi
a(r)} and replace con-

ditions 4 and 5 by the following: ηi+1
a (r) = min{k, ηi

a(r) +
prod(�α|a, r) − sh(a, r))}.

The k-bounded η-outcome of a strategy sA in q with respect to B,
outk (q, η, sA, B), is defined as the set of all k-bounded (η, sA,
B)-paths starting in q.

Finally, we define the k-bounded R-semantics |=k
R (resp. r-

semantics |=k
r) as in Definition 6 but replace the outcome by the

k-outcome.

3 Verification: (Un-)Decidability

In this section we turn to the model-checking problem and consider
how the variously restricted settings influence its complexitiy. Full

N. Bulling and B. Farwer / On the (Un-)Decidability of Model Checking Resource-Bounded Agents 569

proofs can be found in [6].
Decidability Results. For both bounded settings introduced in

Section 2 we have that along each resource extended path there are
only finitely many reachable states from Q×En. Hence, given an en-
dowment, we can ‘unravel’ a given RBM and apply ‘normal’ ATL∗

model checking [4] which is proven to be decidable. Note, however,
that the unraveling may yield finite paths (i.e. states with no succes-
sor) requiring a straightforward extension of existing algorithms.

Theorem 1 Model checking RAL∗
R (and all other variants dis-

cussed here) is decidable over the class of bounded RBMs and the
k-bounded semantics.

Undecidability Results. In this section, we consider all settings
apart from the bounded ones. It is well known that the model-
checking problems for ATLR, ATL∗

r , and ATL∗
R are P-complete,

PSPACE, and 2EXPTIME-complete, respectively [4]. Model
checking RTL is shown decidable in [5], and the same holds for
RBCL [2]. Here, we show that the latter two cases form an excep-
tion; the general resource-bounded settings turn out to be undecid-
able due to the possibility of producing resources.

Two-Counter Automata. The proofs are carried out by simulat-
ing a two-counter automaton (tca) A (cf. [11]) and a reduction to
the halting problem on empty input (we write A↓ for ‘A halts on
empty input’). A tca is essentially a (nondeterministic) push-down
automaton with two stacks and exactly two stack symbols (one of
them is the initial stack symbol). This kind of machines has the same
computation power as Turing machines.

Definition 9 (Two-counter automaton (cf. [11])) A tca A is given
by (S, Γ, sinit, Sf , Δ) where S is a finite set of states, Γ is the finite
input alphabet, sinit ∈ S is the initial state, Sf ⊆ S is the set of final
states, and Δ ⊆ (S×Γ×{0, 1}2)×(S×{−1, 1}2) is the transition
relation such that if ((s, a, E1, E2), (s

′, C1, C2)) ∈ Δ and Ei = 0
then Ci �= −1 for i = 1, 2 (to ensure that an empty counter cannot
further be decremented). In the case of an empty input, we ignore the
alphabet and assume Δ ⊆ (S × {0, 1}2) × (S × {−1, 1}2).

A tca effectively is a transition system equipped with two counters
that influence the transitions. Each transition step of the automaton
may rely on any of the counters being zero or non-zero and in each
step the counters can be incremented or decremented. It is important
to note that a tca can only distinguish between a counter being zero or
non-zero. Consider the transition ((s, E1, E2), (s

′, C1, C2)) ∈ Δ.
Here, Ei = 1 (resp. = 0) represents that counter i is non-empty
(resp. empty) and Ck = 1 (resp. = −1) denotes that counter i is
incremented (resp. decremented) by 1. The transition encodes that
in state s the automaton can change its state to s′ provided that the
first (resp. second) counter meets condition E1 (resp. E2). The value
of counter k changes according to Ck for k = 1, 2. The transition
((s, 1, 0), (s′,−1, 1) ∈ Δ, for example, is enabled if the current sate
is s, counter 1 is non-empty, and counter 2 is empty. If the transi-
tion is selected the state changes to s′, counter 1 is decremented and
counter 2 is incremented by 1.

The general mode of operation is as for pushdown automata. In
particular, a configuration is a triple (s, v1, v2) ∈ S × N

2
0 de-

scribing the current state (s), the value of counter 1 (v1) and of
counter 2 (v2). A computation δ a sequence of subsequent config-
urations that can emerge by transitions according to Δ such that the
first state is sinit. An accepting configuration is a finite computation
δ = (si, v

i
1, v

i
2)i=1,...,k where the last state sk ∈ Sf , i.e., a final

state. We use δi = ((si, E
i
1, E

i
2), (si+1, C

i
1, C

i
2)) ∈ Δ to denote the

err

〈 1 2〉 E1E2

〈 i
1

2
〉l =

{
−1 l = 0
0 l = 1

k1
k2

〈 j
′
1

′
2〉

j

iee

a

a

a

a

a

Figure 2. Transformation of transitions (s, E1, E2)Δ(si, C1, C2) and
(s, E1, E2)Δ(sj , C′

1, C′
2) .

tuple that leads from the ith configuration (si, v
i
1, v

i
2) to the i + 1th

configuration (si+1, v
i+1
1 , vi+1

2) for i < k. In particular, we have
that vi+1

j = vi
j + Ci

j for j = 1, 2.

Idea for the Reduction. In order to show that model checking of
resource-bounded agent logics is undecidable, we reduce the halt-
ing problem to these logics. The specific construction varies for each
logic. In the following we present the general idea. Detailed proofs
can be found in [6]. Let A = (S, Γ, sinit, Sf , Δ) be a tca. We repre-
sent the value of the two counters as resource types R1 and R2. For
each state of the automaton, we add a state to the model and we label
the accepting states in Sf by a proposition halt. The increment and
decrement of counter values are modeled by actions producing and
consuming from the corresponding resource type. The general idea
underlying all the reductions is as follows (the path formula depends
on the specific logic L considered):

(�) A↓ iff there is a path in the RBM along which a path formula
γL is true.

The path in the RBM corresponds to an accepting computation of
the automaton. The general mode of operation is straightforward and
only the following difficulty remains: it is not possible to test whether
a counter (i.e. a resource type) is empty in any of the resource-
bounded agent logics. This causes problems in the reductions. For
example, consider a tuple ((s, 1, 0), (s′,−1, 1) ∈ Δ. It can only
be chosen if the second counter is actually empty. But, because we
cannot directly test whether a resource type is empty, we need to
come up with a workaround. This is the sophisticated part in the
reductions (sometimes easier sometimes harder, depending on the
expressiveness of the used logic). Fundamentally, the encoding of
a transition r := ((s, E1, E2), (s

′, C1, C2)) is a three-step process
(cf. Figure 2). In a state s of the RBM (we are economic and use
the same notation) an agent performs an action 〈E1, E2〉 in order
to ‘select’ r resulting in a ‘test’ state sE1E2 . In this state, an action
〈s′, C1, C2〉 with resource-costs corresponding to the values of Ci

can be executed (i.e. the action produces/consumes Ci resources of
Ri). Clearly, such an action is only successful if sufficient resources
are available. The check whether a counter/resource type is empty or
not, happens at the intermediate state sE1E2 . In these states, a non-
cost-free action tk1

k2
for ki ∈ {0,−1, 1} leading to an ‘error state’ qe

is available. Thus, if a counter should be zero according to the tran-
sition t; then, such a test action must not be performable. Hence, (�)
can be refined to the following:

(��) A↓ iff there is path in the RBM such that eventually halt and
along which there is no way to reach the error state qe.

Intuitively, if the error state cannot be reached along a path the
selection of transitions is valid in the sense described above (i.e. it
corressponds to an accepting computation of the automaton).

Non-flat Languages. We begin with specialised settings for non-
flat languages. In the first case of RALr we test whether there is

N. Bulling and B. Farwer / On the (Un-)Decidability of Model Checking Resource-Bounded Agents570

a path such that eventually halt and in no state a transition to err
is possible. In order to test whether the error state can be reached
we make use of the non-resource flatness of the logic. Formally, we
show: A↓ iff MA, sinit, η0 |=r ¬〈〈∅〉〉η0

Agt¬((¬〈〈∅〉〉 �¬err)U halt).
The endowment η0 equips agents with no resources.

Theorem 2 Model checking RALr is undecidable, even in the single
agent case; hence also, RAL+

r and RAL∗
r are undecidable.

Proof. [Sketch] Given a tca A = (S, Γ, sinit, Sf , Δ) we construct an
RBM MA with two resources R1 and R2 (one per counter). We set
QMA = S∪{sE1E2 | s ∈ S, E1, E2 ∈ {0, 1}}∪{qe, qa}. State qe

(resp. qa) is labelled err (resp. halt) and represents the ‘error’ (resp.
‘halting’) state. The states sE1E2 are temporary states encoding that
counter k is zero (Ek = 0) or non-zero (Ek = 1) for k = 1, 2.

For each transition (s, E1, E2)Δ(s′, C1, C2) of the automaton we
introduce actions 〈E1, E2〉 and 〈s′, C1, C2〉 (cf. Figure 2). The first
action leads from s to sE1E2 and the second action from sE1E2 to
s′. Action 〈s′, C1, C2〉 consumes/produces Ci units of resource Ri,
i = 1, 2. The other kinds of actions are cost-free. Clearly, actions
can only be performed if sufficient resources are available. We need
to ensure that actions 〈E1, E2〉 with some Ei = 0 can only be per-
formed if the counter i is actually 0; that is, if no resources of type Ri

are available. Therefore, special ‘test’ actions tk1
k2

that cost ki units of
resource Ri are introduced, ki ∈ {0,−1, 1}. Such actions can only
be performed in states sE1E2 with some Ei = 0 and they always
lead to state qe. Now, in a sate sE1E2 with some element equal 0, say
E1 = 0, E2 = 1, (representing that counter 1 should be zero and 2
be non-zero) action t−1

0 can be used to verify whether the currently
available resources model the counter correctly: If qe is reachable re-
sources of type R1 are available although this should not be the case
according to E1. Moreover, we add an action αe to state qe, leading
back to qe and an action αa that leads from any state s ∈ Sf to qa

and from qa to itself. We assume that these are the only actions in
states qe and qa and that they will be executed by default.
We show: A↓iff MA, sinit, η0 |=r ¬〈〈∅〉〉η0

Agt¬((¬〈〈∅〉〉 �¬err)U halt).
Again, the formula states that there is an (η0, ε, Agt)-path such that
eventually halt and the error state can never be reached along the
way to qa.
“⇒”: Let δ = (si, v

i
1, v

i
2)i=1,...k be an accepting configuration.

Clearly, if agent 1 executes 〈Ei
1, E

i
2〉 in state si �∈ Sf , action

〈si+1, C
i
1, C

i
2〉 in state s

Ei
1Ei

2
i (according to δi as introduced above),

and αa in sk ∈ Sf the resulting path is given by λ with λ|Q =

(sjs
E

j
1E

j
2

j sj+1)j=1,...,k−1(qa)ω . It remains to show that for any state

s
Ei

1Ei
2

i with Ei
k = 0 we have that λ|Res [2i − 1](1, Rk) = 0 (i.e. in

this state agent 1 has no resources of type Rk). By induction one can
easily prove that the actions keep track of the resources correctly and

thus action t−1
0 cannot be executed in any s

E
j
1E

j
2

j along the path.
“⇐”: Clearly, if such a satisfying path exists it must have the struc-
ture as shown above and we can directly construct an accepting com-

putation of the automaton. Each triple sis
Ei

1Ei
2

i si+1 uniquely deter-
mines a transition δi. �

In the previous case it was essential to keep track of the resources
of the opponent. Here, we show that also the proponent-restricted
setting is undecidable if we allow perfect-recall strategies. A perfect-
recall strategy of the proponent is used to encode the computation of
the automaton. Similar to Theorem 2, we can utilise the following
reduction: A↓ iff MA, sinit, η0 |=R 〈〈1〉〉η0((¬〈〈1〉〉 �err)U halt).

err

〈 1 2〉 E1E2

1 2
〈 i 1 2〉

l =

{
−1 l = 0
0 l = 1

k1
k2

〈 j
′
1

′
2〉

2

2
2

2

e

1

1
1

C′
1C′

2
j

C1C2
i

j

i

Figure 3. Construction used in the proof of Theorem 4 for
(s, E1, E2)Δ(si, C1, C2) and (s, E1, E2)Δ(sj , C′

1, C′
2).

err

〈 1 2〉 E1E2

〈 i
1

2〉l =

{
−1 l = 0
0 l = 1

k1
k2

〈 j
′
1

′
2〉

2

1

1
1

j

i

21

−k1
−k2

1

′E1E2

tE1E2 eE1E2

Figure 4. Construction used in the proof of Theorem 6 for
(s, E1, E2)Δ(si, C1, C2) and (s, E1, E2)Δ(sj , C′

1, C′
2).

Theorem 3 Model checking pr-RALR (even without the release
operator) is undecidable in the single-agent case; hence, also pr-
RAL+

R, pr-RAL∗
R,RALR, RAL+

R, and RAL∗
R are undecidable.

For the next setting, the proponent has once again no memory
available. In turn, an additional agent (opponent agent 2) is used to
model the computation (as in Theorem 2) and the proponent (agent
1) keeps track of the resources (as in Theorem 3). Note that it is
important for the language not to be resource-flat. The idea of the
construction is shown in Figure 3. Then, we can show that A↓ iff
MA, sinit, η0 |=r ¬〈〈1〉〉η0¬((¬〈〈2〉〉 �〈〈1〉〉 �err)U halt).

Theorem 4 Model checking pr-RALr is undecidable for models
with at least two agents; hence, also pr-RAL+

r and pr-RAL∗
r are

undecidable.

Flat Languages. Resource-flat logics seem easier to verify as in
the reduction it is not possible to have nested operators in order to
verify whether the resources in a state are actually zero (compare
the techniques introduced in the above). We show that perfect-recall
and two agents can be used to ‘overcome this limitation’. The propo-
nent (agent 1) is used to simulate the computation of the automaton
where the opponent (agent 2) tries to enter the error state in each test
state; hence, no nested cooperation modality is needed. The setting
is as shown in Figure 3 and we can show: A↓ iff MA, sinit, η0 |=R

〈〈1〉〉η0
Agt� halt.

Theorem 5 Model Checking rf -RALR is undecidable for models
with at least two agents; thus, also rf -RAL+

R and rf -RAL∗
r are un-

decidable.

At present, the decidability of the resource-flat and proponent-
restricted versions of LRAL+ and LRAL with the standard semantics is
open. However, by using the apparently stronger infinity-semantics
(|=∞

R) we can prove the undecidability of rf -pr -LRAL and thus also
of rf -pr -RAL∗

R by Proposition 1. We do this by showing A↓ iff
MA, sinit, η0 |=∞

R 〈〈1〉〉η0(¬err)U halt. The construction is sketched
in Figure 4. Essentially, the opponent (2) may decide to enter the ‘test
loop’ in sE1E2 . This ‘bad’ loop can only be avoided if 1 chooses
good transitions of the automaton. Finite dead-end paths are disre-
garded thanks to the infinity-semantics.

Theorem 6 Model Checking rf -pr -RAL∗
R, rf -pr -(LRAL,|=∞

R), and
rf -pr -(LRAL,|=∞

R) is undecidable for models with at least two agents.

N. Bulling and B. Farwer / On the (Un-)Decidability of Model Checking Resource-Bounded Agents 571

LRAL∗ LRAL+ LRAL pr -LRAL∗ pr -LRAL+ pr -LRAL
|=R U1 U1 U1 U1 U1 U1

|=r U1 U1 U1 U2 U2 U2

rf +|=R / |=∞
R U2 U2 U2 U2/ U2∞ ? / U2∞ ? / U2∞

rf +|=r ? ? ? ? ? ?

|=k
R, |=k

r D D D D D D

Table 1. Overview of model-checking decidability results. Each cell
represents the logic over the language given in the column using the

semantics given in the row. The content of each cell indicates whether the
model-checking problem is decidable (D) or undecidable (Ux). x indicates

the number of required agents. U2∞ refers to the semantics |=∞
R .

Summary of the Complexity Results. Our analysis, summarised
in Table 1, shows that the combination of various settings and lan-
guages influences the difficulty of the model-checking problem. Al-
though we do not claim that our results with respect to the number
of agents are optimal they show an interesting pattern. One can often
compensate the lack of expressiveness caused by various restrictions
on the language or semantics by taking more agents into account. The
most difficult case seems to be the perfect-recall semantics where
resource-flatness suggests to be important for decidable fragments,
particularly in combination with memoryless strategies.

The question for the resource-flat proponent-restricted languages
LRAL+ and LRAL under the R-semantics is still open, while the case
is proven undecidable if focusing on infinite paths. Also open is the
case of resource-flat languages with r-semantics. The two bounded
settings are decidable.

Note, that the result form [5] about the decidability of RTL
matches the results presented here, since it corresponds to the single-
agent case of rf -pr -RALR.

4 Related Work & Conclusions

Related Work. Resource-Bounded Tree Logics, introduced in [5],
extend the well-known Computation Tree Logics [10] by resources.
Instead of asking for the plain existence of an infinite path satisfying
some temporal property, this path must also be feasible given a set of
available resources. As shown in [6] these logics can be considered as
the resource-flat-single-agent fragments of the logics presented here.

Resource-Bounded Coalition Logic (RBCL), an extension of
Coalition Logic with resources, is introduced [2]. This logic can be
seen as a first step towards a multi-agent extension of the Resource-
Bounded Tree Logics [5] under the restricted temporal setting of
multiple-step strategies (‘sometime in the future‘). Only recently,
in [3] a multi-agent version (RBATL) following the same ideas is
presented. For both logics the authors allow only consumption of
resources which is computationally much easier and has a decidable
model-checking property (cf. Theorem 1). In [6] we show that RBCL
can essentially be embedded in RALR; the same seems possible for
RBATL.

RBCL is used in [1] to specify and verify properties about Coali-
tional Resource Games [16]. These are games in which agents can
cooperate and combine their available resources in order to bring
about desired goals.

Conclusions. We have presented various strategic logics for rea-
soning about abilities under limited resources. The different set-
tings were based on classical restrictions (cf. [10, 4]) imposed on
the underlying temporal language (LRAL∗ vs. LRAL+ vs. LRAL)
and strategic dimension (perfect vs. imperfect recall). Addition-
ally, we have imposed restrictions on the resource dimension
by focussing on specific groups acting under limited resources
(proponent-restrictiveness) and on the nesting of cooperation oper-
ators (resource-flatness).

Our main objective was to analyse whether it is possible to ver-
ify resource-bounded agents under these diverse settings. We have
shown undecidability for many fragments and identified the number
of agents needed. We believe that these results are important and in-
teresting for future investigations of strategic abilities under limited
resources. Our results show that small changes in the language and
semantics may influence whether model checking becomes decidable
or undecidable (cf. for instance, the |=∞

r and |=r semantics over rf -
pr -LRAL). We have also considered bounded settings with decidable
model-checking problems.

For future work, we plan to close the open cases, in particular
for the resource-flat languages under r-semantics and to analyse the
model-checking complexity of the decidable and tractable fragments.
An extended version of this paper containing full proofs can be found
in [6].

REFERENCES

[1] N. Alechina, B. Logan, N. Hoang Nga, and A. Rakib, ‘Verifying prop-
erties of coalitional ability under resource bounds’, in Proceedings of
the Second Internatinoal Workshop on Logics for Agents and Mobility
(LAM’09), ed., Berndt Farwer, Los Angeles CA, USA, (August 2009).

[2] N. Alechina, B. Logan, N. Hoang Nga, and A. Rakib, ‘A logic for
coalitions with bounded resources’, in Proceedings of the Twenty First
International Joint Conference on Artificial Intelligence, ed., Craig
Boutilier, volume 2, pp. 659–664, Pasadena CA, USA, (July 2009). IJ-
CAI/AAAI, AAAI Press.

[3] N. Alechina, B. Logan, N. Hoang Nga, and A. Rakib, ‘Resource-
bounded alternating-time temporal logic’, in Proceedings of the Ninth
International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2010), eds., Wiebe van der Hoek, Gal Kaminka, Yves
Lespérance, Michael Luck, and Sandip Sen, Toronto, Canada, (May
2010). IFAAMAS. (to appear).

[4] R. Alur, T. A. Henzinger, and O. Kupferman, ‘Alternating-time Tem-
poral Logic’, Journal of the ACM, 49, 672–713, (2002).

[5] N. Bulling and B. Farwer, ‘Expressing properties of resource-bounded
systems: The logics RBTL and RBTL∗’, in Post-Proceedings of CLIMA
’09, eds., J. Dix, Michael Fisher, and Peter Novak, Hamburg, Germany,
(September to appear 2010).

[6] N. Bulling and B. Farwer, ‘On the decidability of verifying resource-
bounded agents’, Technical Report IfI-10-05, Clausthal University of
Technology, (Mai 2010).

[7] N. Bulling and W. Jamroga, ‘What agents can probably enforce’, Fun-
damenta Informaticae, 93, 81–96, (2009).

[8] N. Bulling, W. Jamroga, and J. Dix, ‘Reasoning about temporal proper-
ties of rational play’, Annals of Mathematics and Artificial Intelligence,
53(1-4), 51–114, (2009).

[9] E.M. Clarke, O. Grumberg, and D. Peled, Model Checking, MIT Press,
1999.

[10] E.M. Clarke and E.A. Emerson, ‘Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic’, in Proceedings of
Logics of Programs Workshop, volume 131 of Lecture Notes in Com-
puter Science, pp. 52–71, (1981).

[11] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, Reading, Massachusetts,
1979.

[12] W. Jamroga and J. Dix, ‘Model checking abilities of agents: A closer
look’, Theory of Computing Systems, 42(3), 366–410, (2008).

[13] O. Kupferman, M.Y. Vardi, and P. Wolper, ‘An automata-theoretic ap-
proach to branching-time model checking’, Journal of the ACM, 47(2),
312–360, (2000).

[14] F. Laroussinie, N. Markey, and G. Oreiby, ‘On the expressiveness and
complexity of atl’, CoRR, abs/0804.2435, (2008).

[15] A. Pnueli and R. Rosner, ‘On the synthesis of a reactive module’, in
POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pp. 179–190, New York,
NY, USA, (1989). ACM.

[16] M. Wooldridge and P.E. Dunne, ‘On the computational complexity of
coalitional resource games’, Artif. Intell., 170(10), 835–871, (2006).

N. Bulling and B. Farwer / On the (Un-)Decidability of Model Checking Resource-Bounded Agents572

