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Abstract. We introduce and study higher-order coalition logic, a
multi modal monadic second-order logic with operators [{x}ψ]ϕ ex-
pressing that the coalition of all agents satisfying ψ(x) can achieve a
state in which ϕ holds. We use neighborhood semantics to model ex-
tensive games of perfect information with simultaneous actions and
we provide a framework reasoning about agents in the same way as it
is reasoning about their abilities. We illustrate higher-order coalition
logic to represent and reason about coalition formation and cooper-
ation, we show a more general and expressive way to quantify over
coalitions than quantified coalition logic, we give an axiomatization
and prove completeness.

1 Introduction

Multiagent modal logic typically indexes modal operators by (sets
of) agents, such that K1p stands for agent 1 knowing p, or C1,2q
stands for common knowledge among agent 1 and 2 that q. In logics
of ability, coalition logic [18] extends classical propositional logic
with operators [C]ϕ for groups of agents C, read as: “the coalition C
can make a choice such that ϕ holds” or “ϕ is a possible outcome for
coalition C”, and therefore can specify and reason about abilities of
coalitions in games. Alternate-time temporal logic [3] may be seen as
an extension of coalition logic as well as of computational tree logic
[10] with operators 〈〈C〉〉ϕ, read as: “the coalition C has a winning
strategy such that ϕ holds”, and can reason on strategies or sequences
of choices. Moreover, these two logics have been further extended
with, for example, explicit representation of actions [6], epistemic
operators [22], preferences structures [9], explicit representation of
strategies [23], and more [2, 8, 7, 19].

A general question in multiagent modal logic is whether the agents
can be described by formulas, for example describing the roles the
agents are playing, and logics of ability have been extended with
quantification over coalitions [1]. In particular, Agotnes at al. [1]
came up with the idea of using restrictions on the coalitions that ap-
pear in the modality of CL.

In this paper we address the following research question: How
to extend the logic presented by Ågotnes et al. [1] with a monadic
second-order language to unify the language to specify coalitions
with the language to talk about outcomes?

This breaks down in the following sub-questions:

• What is the semantics and what properties can we express in this
extended language?

• How to show axiomatization, soundness and completeness for
such a logic?
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Replying to the above questions is pivotal for the definition of a gen-
eral, expressive and formal framework to represent knowledge about
coalitional games.

In contrast to most work in modal agent logic, we start from first-
order logic rather than propositional logic. More precisely, we start
from an extension of first-order logic in which we can quantify over
the subsets of the domain, called monadic second-order logic (MSO).
Higher-order coalition logic is a modal extension of monadic second-
order logic, in which we follow coalition logic by employing neigh-
borhood semantics to model extensive games of perfect information
with simultaneous actions [16].

Our completeness result extends a completeness proof for first-
order modal logic with neighborhood semantics [4] by handling set
variables.

In this paper we do not consider decidable fragments of higher-
order coalition logic. Jamroga and Seylan in [15] introduce a decid-
able extension of coalition description logic expressing state of in-
dividual agents in a limited way. Also the integration of some form
of quantification over coalitions by extending coalition description
logics is left for further research.

The paper is structured as follows. First we repeat quantified coali-
tion logic, then we introduce higher-order coalition logic, and we
analyze how it extends the expressive power of quantified coalition
logic. Finally we provide an axiomatization, prove completeness, and
show a translation from quantified coalition logic to higher-order
coalition logic.

2 Quantified Coalition Logic

This section is based on [18] and [1], to which we refer for a detailed
discussion.

Coalition Logic (CL) is a propositional modal logic, with modali-
ties indexed by a coalition, i.e., a subset of a given finite and bounded
set of agents Ag. In CL we write [C]ϕ, where [C] is a modality and
ϕ a formula, to intuitively express that ‘C can achieve ϕ’, or, that ‘C
is effective for ϕ’, or that ‘C has a choice such that ϕ’.

Formulae of CL are defined by the following grammar:

ϕ ::= � | p | ¬ϕ | ϕ ∨ ϕ | [C]ϕ

where p ranges over the set of Boolean variables Φ0 and C is a subset
of a fixed set of agents Ag.

Definition 1 (Model in CL) A model M for CL is a triple M =
〈S,N, π〉 where

• S = {s1, . . . , sn} is a finite non-empty set of states.
• N : P(Ag)× S → P(P(S)) is a neighborhood function5 where

if T ∈ N(C, s) then, from state s, the coalition C can cooperate
to ensure that the next state will be a member of T .

5 Called also effectivity function.

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-555

555



• π : S → P(Φ0) is a valuation function, which for every state
s ∈ S gives the set π(s) of Boolean variables that are satisfied at
s.

An interpretation for CL is a pair M, s where M is a model and s is
a state in M. The satisfaction relation “|=CL” for CL holds between
interpretations and formulae of CL. We say that coalition C can en-
force ϕ in s if for some T ∈ N(C, s), ϕ is true in all t ∈ T . That
is, C can make a choice such that, irrespective of the others’ choices,
ϕ will hold. The satisfaction relation is defined as usual for atomic
variables and �,¬,∨, where for the modal case we have:

• M, s |=CL [C]ϕ iff ∃T ∈ N(C, s) such that ∀t ∈ T , we have
M, t |=CL ϕ

As reported in [17], it is possible to define a number of constraints
on neighborhood functions, depending upon exactly which kind of
scenario they are intended to model. The most general structures to
deal with extensive games with simultaneous moves are weak playa-
bility models, a model M is weakly playable iff the neighborhood
function has the properties reported in Def. 2

Definition 2 A neighborhood function N is weakly playable if it sat-
isfies the following properties:

1. Outcome monotonicity: ∀X,X ′, C : [X ⊆ X ′ ⊆ S,C ⊆ Ag]
if X ∈ N(C, s) then X ′ ∈ N(C, s) (i.e., if a coalition C can
achieve an ouctcome in a set, it can achieve an outcome in any
bigger set).

2. ∅ �∈ N(Ag, s) (i.e., the grand coalition Ag cannot achieve ⊥).
3. ∀C′

, C : [C
′ ⊆ C ⊆ Ag] if ∅ ∈ N(C, s) then ∅ ∈ N(C

′
, s)

(i.e., together with the second, fourth and fifth assumptions, no
coalition can enforce ⊥).

4. ∀C ⊆ Ag if ∅ �∈ N(∅, s) then S ∈ N(C, s)(i.e., together with the
first assumption we have that any coalition C can achieve some-
thing).

5. Superadditivity: ∀X1, X2, C1, C2 : [X1, X2 ⊆ S;C1, C2 ⊆
Ag; (C1 ∩ C2 = ∅)] If X1 ∈ N(C1, s) and
X2 ∈ N(C2, s) then X1 ∩X2 ∈ N(C1 ∪ C2, s)
(i.e., if C1 can enforce X1 and C2 can achieve X2, they can both
exercise their ability in order to enforce X1 ∩X2).

6. Ag-maximality: ∀X : [X ⊆ S] If (S \ X) �∈ N(∅, s) then X ∈
N(Ag, s)
(i.e., by contraposition, if Ag cannot enforce X , then S \ X is
already enforced).

As reported in [1], if we have n agents in Ag, and one wants to
express that some coalition can enforce some atomic property p, one
needs to enumerate 2n disjunctions of the form [C]p. The idea be-
hind Quantified Coalition Logic (QCL) is to avoid this blow-up in the
length of formulae. Informally, QCL is a propositional modal logic,
containing an indexed collection of unary modal operators 〈P 〉ϕ and
[P ]ϕ. The intended interpretation of 〈P 〉ϕ is that there exists a set
of agents C, satisfying predicate P , such that C can achieve ϕ. We
refer to expressions P as coalition predicates, in the following we
report the language of coalition predicates.

The syntax of the coalition predicates is given by the following
grammar:

P ::= subseteq(C) | supseteq(C) | ¬P | P ∨ P

where C ⊆ Ag is a set of agents and subseteq and supseteq are
two atomic predicates. The circumstances under which a concrete

coalition Co satisfies a coalition predicate P , are specified by a sat-
isfaction relation “|=cp”, defined as follows6:

• Co |=cp subseteq(C) iff Co ⊆ C
• Co |=cp supseteq(C) iff Co ⊇ C

The Quantified Coalition Logic (QCL) presented in [1] extends
Pauly’s Coalition Logic by introducing the above mentioned coali-
tion predicates. Formulae of QCL are defined by the following gram-
mar (with respect to a set Φ0 of Boolean variables, a fixed set Ag of
agents, and the language of coalition predicates):

ϕ ::= � | p | ¬ϕ | ϕ ∨ ϕ | 〈P 〉ϕ | [P ]ϕ

where p ∈ Φ0 is an atomic proposition and P is a coalition predicate
over Ag7.

The satisfaction relation “|=QCL” for QCL holds between inter-
pretations and formulae of QCL, and it is defined for the modal op-
erators as follows:

• M, s |=QCL 〈P 〉ϕ iff ∃C ⊆ Ag : C |=cp P and ∃S ∈ N(C, s)
such that ∀s′ ∈ S, we have M, s′ |=QCL ϕ

• M, s |=QCL [P ]ϕ iff ∀C ⊆ Ag : C |=cp P implies ∃S ∈
N(C, s) such that ∀s′ ∈ S, we have M, s′ |=QCL ϕ

In [1] it is proved that QCL is exponentially more succinct
than CL i.e., if we want to translate a QCL formula of the type
〈subseteq(Ag)〉ϕ into a CL we get a formula which is exponentially
longer, since it has to explicitly enumerate all coalitions in Ag.

3 Higher-Order Coalition Logic

In the following we present Higher-Order Coalition Logic (HCL)
which extends Coalition Logic by using a monadic second-order lan-
guage (MSO). MSO is the extension of first-order logic that allows
quantification over the subsets of the domain. Predicates of any ar-
ity may appear in monadic formulae, but they may not be quanti-
fied over. Monadic theories are useful in various branches of mathe-
matical logic and its applications [13]. Often they have a reasonable
level of expressiveness sufficient to formalize interesting features but
simple enough to be manageable. For deeper treatment of monadic
theories, we refer to [5], whereas for a description of second-order
languages we refer to [11].

We assume the usual notions of variables, predicates, connec-
tives ∧,∨,→,¬, quantifiers ∀, ∃ and the notions of free and
bound variables. Let V = VI ∪ VS be a countable col-
lection of variables where VI and VS are partitions for indi-
vidual and set variables respectively. For each natural number
n ≥ 1, there is a (countable) set of n-place predicate symbols
(F,G, . . .). Formulas of HCL are defined by the following grammar:
ϕ ::= F (x1, . . . , xn) | Xx | (¬ϕ) | (ϕ ∨ ϕ) | ∀X(ϕ) |

∀x(ϕ) | [{x}ϕ]ϕ | 〈{x}ϕ〉ϕ
where

• F (x1, . . . xn) is a first-order atomic formula 8.
• x is a first-order variable.
• X is a set variable.
• {x}ψ is a group operator which, intuitively represents the set of

all elements d such that ψ[d/x] holds.

We use ∃Xϕ (resp. ∃xϕ) as a shorthand for ¬∀X¬ϕ (resp. ¬∀x¬ϕ).

6 Satisfaction for ¬ and ∨ is as usual.
7 Notice that in [P ]ϕ the language of P and ϕ are disjoint.
8 In general we write ϕ(x) when x is the only free variable in ϕ.
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Definition 3 A second-order constant domain coalition frame is a
tuple 〈W,N,D〉 where:

• D is any non-empty set of agents called the domain.
• W is a set of states.
• N : W × P(D) → P(P(W )) is a neighborhood function.

We now restrict our study to a specific class of frames, which are
the higher-order counter part of weakly playable frames of [17].

Definition 4 A constant domain frame F = 〈W,N,D〉 is weakly
playable iff the neighborhood function satisfies the properties in Def
2.

In this work we concentrate over weakly playable frames because
they are the most general structures to cope with extensive games
with simultaneous moves.

Definition 5 A second-order constant domain coalition model
based on a frame F = 〈W,N,D〉 is a a tuple M = 〈W,N,D, I, σ〉
together with a set As, where

• I is a classical first-order interpretation function where for each
n-ary predicate symbol F , I(F,w) ⊆ Dn.

• σ is a function which assigns objects to individual variables and
which is parametrized by w for set variables such that σ(X,w) ⊆
D9. We let σ[u/x] be an assignment which differs from σ only in
assigning u to x (similarly for σ[U/X] where σ[U/X](X,w) =
U for every w).

• As ⊆ P(P(D)) is a family of admissible coalitions such that
U ∈ As iff there exists a well-formed formula ϕ such that U =
{a ∈ D | M |=σ[a/x] ϕ(x)}. Intuitively, we consider admissible
all and only the coalitions that are definable by an HCL formula.

Let M = 〈W,N,D, I, σ〉 be any constant domain coalition model,
we define the HCL satisfaction relation |= as follows:

• M, w |=σ F (x1, . . . , xn) iff 〈σ(x1), . . . , σ(xn)〉 ∈ I(F,w) for
each n-place predicate symbol F

• M, w |=σ ¬ϕ iff M, w �|=σ ϕ
• M, w |=σ ϕ ∨ ψ iff M, w |=σ ϕ or M, w |=σ ψ
• M, w |=σ Xx iff σ(x) ∈ σ(X,w)

• M, w |=σ ∀xϕ iff for every object d ∈ D such that for σ
′
=

σ[d/x] we have M, w |=σ
′ ϕ

• M, w |=σ ∀Xϕ iff for every set U ∈ As, we have
M, w |=σ[U/X] ϕ

• M, w |=σ [{x}ψ]ϕ iff (ϕ)M,σ ∈ N(w,U) where U = {d |
M, w |=σ ψ[d/x]}

• M, w |=σ 〈{x}ψ〉ϕ iff W − (ϕ)M,σ �∈ N(w,U) where U =
{d | M, w |=σ ψ[d/x]}

Where (ϕ)M,σ ⊆ W is the set of states w ∈ W such that M, w |=σ

ϕ. In the definition of truth of modal formulas we refer to U as the
coalition identified by ψ. Notice that the second-order quantification
ranges over a family of admissible subsets (i.e., As), this semantics
is often referred to as general (or Henkin).

4 HCL as a Representation Language

Before diving into axiomatization and completeness of the logic we
want to stress the added value of a highly expressive language like
HCL.
9 With this definition of σ we make set variables assignment dependent on

states, this is due because set variables can be substituted with monadic
predicates which have an interpretation that depends on states too.

As we underlined in the introduction, both CL and QCL have the
strong limitation that the language to express coalitions and the lan-
guage to talk about outcomes are separate, moreover the adopted
propositional language puts serious limits on the practical employ-
ment of such logics to represent knowledge about games in a com-
pact and effective way.

HCL contributes to extend CL expressiveness in three ways:

1. Being a first-order language, agents are elements of the domain
and can have properties and relationships among themselves. For
instance, we can assign roles to agents and organize them in hier-
archies, the formula

∀x(super user(x) → user(x))

means that every agent that is a super user is also a user.
2. Set variables permit to quantify over coalitions in a more general

way than QCL. For instance the formula

∀X(∀x(Xx → user(x)) → [{y}Xy]ϕ)

expresses that every coalition such that all of its members are
users can achieve ϕ. Notice that by exploiting the fact that ev-
ery super user is a user we get that

[{x}super user(x)]ϕ

The language of QCL coalition predicates does not take into ac-
count any relational property between agents.

3. In [{x}ϕ(x)]ψ the formula ϕ describing the coalition is in the
same language of ψ. This feature lets us express complex prop-
erties on the basis of the relationships between agents in different
coalitions, for instance:

[{x}ϕ(x)]ψ → [{y}∃x(ϕ(x) ∧ collaborates(y, x))]ψ

means that if the coalition represented by ϕ(x) can achieve ψ then
also the group of all agents which collaborates with at least one
member of ϕ(x) can. With HCL is then possible to express condi-
tional winning strategies by relying on the attributes of the agents
composing a coalition.

Because HCL is a higher-order language, the following question
arises:

What is the relationship between quantifiers and modal operators?

In particular, could it be sensible to have the following formula as a
theorem of HCL?

[{x}ϕ(x)]∀yψ(y) → ∀y[{x}ϕ(x)]ψ(y)
The above formula is a multi-modal variation of the Converse Bar-
can Formula (CBF). We argue that the reply to the above question
should be affirmative. To convince yourself, think about the follow-
ing example:

[{x}x = V alerio](∀y(phd supervisor(y) → happy(y))) →
∀y([{x}x = V alerio](phd supervisor(y) → happy(y)))

In fact, we can read it as:“If Valerio can achieve a state in which all
of his supervisors are happy then, for every single supervisor Valerio
can achieve a state in which that supervisor is happy.”

What does not seem to be sensible for a coalition logic is to have
the Barcan Formula (BF) as a theorem, i.e.

∀y[{x}ϕ(x)]ψ(y) → [{x}ϕ(x)]∀yψ(y)
In fact the corresponding example
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∀y([{x}x = V alerio](phd supervisor(y) → happy(y))) →
[{x}x = V alerio](∀y(phd supervisor(y) → happy(y)))

does not necessarily be true, the fact that Valerio, given a supervisor,
can make him happy does not mean that he can achieve a state in
which all of them simultaneously are.

The intuitive need of having CBF valid and not BF when reason-
ing about coalitions makes impossible the use of any relational (e.g.,
Kripke) semantics for higher-order coalition logic with constant do-
main, in fact it is well known that the Barcan formula is valid in all
first-order relational models with constant domains [14].

Surprisingly, from theory of neighborhood semantics we know
that CBF is valid for the class of all constant domain supplemented10

frames but not BF [4].

Theorem 1 In HCL for any formula ψ, ϕ and variable X ∈ {x,X}
• �|= ∀X [{x}ψ]ϕ(X ) → [{x}ψ]∀Xϕ(X )
• |= [{x}ψ]∀Xϕ(X ) → ∀X [{x}ψ]ϕ(X )

Proof. See [4] (Observation 3.13). �

5 The Axiomatization of HCL

The axiomatization of HCL consists of three parts: the standard ax-
iomatization of first-order logic (figure 1) and monadic second-order
logic (figure 2) together with the specific axioms of HCL (figure 3).
The MSO axiomatization mimics the axiomatization of first-order
logic (without equality), the only difference is in the COMP ax-
iom11 which characterizes general semantics for monadic second-
order logic. The similarity in the axiomatizations of Fig. 1 and 2
comes from the fact the MSO under general semantics can be re-
interpreted over multi-sorted first-order logic, for a deeper treatment
of completeness of MSO under general semantics we refer to [11]
(Section 4.4). In figure 3, we have the specific axioms of HCL. Ax-
iom E establishes the duality of [{x}ψ] in terms of 〈{x}ψ〉, while
axioms M,Ag⊥,�,⊥, N, S are the direct translation of the six con-
ditions in Definition 2.

FO1 Tautologies of sentential calculus
FO2 � ∀xϕ → ϕ[t/x], where t is substitutable for x in ϕ
FO3 � ∀x(ϕ → ψ) → (∀xϕ → ∀xψ)
FO4 � ϕ → ∀xϕ, where x does not occur free in ϕ
FO5 � x = x
FO6 � x = y → (ϕ → ψ) where ϕ is atomic and ψ is

obtained from ϕ by replacing x in zero or more
(but not necessarily all) places by y.

MP If � ϕ and � ϕ → ψ, then � ψ
1GEN If � ϕ , then � ∀xϕ

Figure 1. Axioms and rules of first-order logic

6 Completeness

In this section we discuss the completeness of HCL. First of all we
need some definitions, let Γ be a set of HCL formulas.
10 A frame is supplemented if the corresponding neighborhood function sat-

isfies outcome monotonicity as reported in Def 2.
11 COMP. stands for “comprehension” by analogy with the comprehension

axiom of set theory.

COMP � ∃X∀x(Xx ↔ ϕ), where X does not occur free
in ϕ

MSO1 � ∀Xϕ → ϕ[X/T ], where T (which is either a set
variable or a monadic predicate) is substitutable
in ϕ for X .

MSO2 � ∀X(ϕ → ψ) → (∀Xϕ → ∀Xψ)
MSO3 � ϕ → ∀Xϕ, where X does not occur free in ϕ
2GEN if � ϕ, then � ∀Xϕ

Figure 2. Axioms and rules of monadic second-order logic

E � [{x}ψ]ϕ ↔ ¬〈{x}ψ〉¬ϕ
M � [{x}ψ](ϕ1 ∧ ϕ2) → ([{x}ψ]ϕ1 ∧ [{x}ψ]ϕ2)
Ag⊥ � ¬[{x}�]⊥
� � ¬[{x}⊥]⊥ → [{x}ψ]⊥
⊥ � (ψ1 → ψ2) → ([{x}ψ2]⊥ → [{x}ψ1]⊥)
N � ¬[{x}⊥]¬ϕ → [{x}�]ϕ
S � (¬∃x(ψ1 ∧ ψ2)) ∧ ([{x}ψ1]ϕ1 ∧ [{x}ψ2]ϕ2) →

[{x}(ψ1 ∨ ψ2)](ϕ1 ∧ ϕ2)
RE � (ϕ1 ↔ ϕ2) → ([{x}ψ]ϕ1 ↔ [{x}ψ]ϕ2)
NORM � ∀x(ψ1 ↔ ψ2) → [{x}ψ1]ϕ ↔ [{x}ψ2]ϕ

Figure 3. Specific Axioms and rules of HCL

Definition 6 A set Γ has the ∀−property iff for each formula ϕ ∈ Γ:

• for each individual variable x, there is some variable y, called the
witness, such that ϕ[y/x] → ∀xϕ(x) ∈ Γ.

• for each set variable X , there is some set variable Y , called the
set witness, such that ϕ[Y/X] → ∀Xϕ(X) ∈ Γ.

The proof of the following Lemma can be found in [14]

Lemma 1 If Γ is a consistent set of formulas of L1, then there is
a consistent set of formulas Δ of L+

1 with the ∀-property such that
Γ ⊆ Δ, where L+

1 is the language L1 with countably many new
variables and monadic predicates.

We can now define the canonical model for HCL. Given an HCL
language L1, let L+

1 be the extension of L1 used in Lemma 1 and
V+ = V+

I ∪ V+
S the variables in this extended language. Define the

smallest canonical model for HCL

M∗ = 〈W∗, N∗, D∗, I∗, σ∗〉
as follows. Let MAX(Γ) indicate that the set Γ is an HCL-
maximally consistent set of formulas of L+

1 ,

• W∗ = {Γ | MAX(Γ) and Γ has the ∀-property}
• X ∈ N∗(Γ, U) iff there is an [{x}ψ]ϕ ∈ Γ such that,

– X = {Δ ∈ W∗ | ϕ ∈ Δ}
– U = {d ∈ D∗ | M∗,Γ |=σ ψ[d/x]}

• D∗ = V+
I

• 〈x1, . . . , xn〉 ∈ I∗(ϕ,Γ) iff ϕ(x1, . . . , xn) ∈ Γ
• For every individual variable x ∈ V+

I , σ∗(x) = x
• For every set variable X ∈ V+

S , σ∗(X,Γ) = {u | Xu ∈ Γ}
The definition of the neighborhood function N∗ essentially says

that a set of states of the canonical model is necessary at a state Γ
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precisely when Γ claims that it should, notice that this definition is
not circular but recursive and well-founded 12.

For any formula ϕ ∈ L1, let |ϕ|∗ be the proof set of ϕ w.r.t. model
M∗, that is,

|ϕ|∗ = {Γ | Γ ∈ W∗ and ϕ ∈ Γ}
The fact that N∗ is a well-defined function follows from the fact that
Γ contains the rules RE and NORM .

Definition 7 Let M = 〈W,N,D, I, σ〉 be any first-order constant
domain coalition model. M is said to be canonical for HCL pro-
vided W = W∗, D = D∗, I = I∗, σ = σ∗ and

|ϕ|∗ ∈ N(Γ, U) iff [{x}ψ]ϕ ∈ Γ with

U = {d ∈ D∗ | M∗,Γ |=σ ψ[d/x]}
Thus the model M∗ is the smallest canonical model for HCL.

Lemma 2 (Truth Lemma) For each Γ ∈ W∗ and formula ϕ ∈ L1,

ϕ ∈ Γ iff M∗,Γ |=σ∗ ϕ

Proof. The proof is by induction on ϕ. The base case and proposi-
tional connectives are as usual. The ‘if’ direction of the modal and
quantifier case is straightforward. We will discuss the two cases.
Suppose that ∀xϕ(x) �∈ Γ (where x is an individual variable).
Then since Γ is maximal, ¬∀xϕ(x) ∈ Γ, and so by the ∀-property
there is some variable y ∈ V+

I such that ¬ϕ[y/x] ∈ Γ, and so
ϕ[y/x] �∈ Γ. Thus by induction hypothesis, M∗,Γ �|=σ∗[y/x] ϕ(x).
Hence M∗,Γ �|=σ∗ ∀xϕ(x).

For a set variable X we proceed similarly, suppose that
∀Xϕ(X) �∈ Γ. Then since Γ is maximal, ¬∀Xϕ(X) ∈ Γ, and
so by the ∀-property there is some variable Y ∈ V+

S such that
¬ϕ[Y/X] ∈ Γ, and so ϕ[Y/X] �∈ Γ. Thus by induction hypothe-
sis, M∗,Γ �|=σ∗[Y/X] ϕ(X). Hence M∗,Γ �|=σ∗ ∀Xϕ(X).

Regarding the modal case, the proof proceeds by construction of
N∗ and definition of truth: [{x}ψ]ϕ ∈ Γ iff (by construction) |ϕ| ∈
N∗(Γ, U)13 iff (by definition of truth) M∗,Γ |=σ∗ [{x}ψ]ϕ �

We now have to check that the canonical model M∗ is weakly
playable.

Lemma 3 The canonical model M∗ = 〈W∗, N∗, D∗, I∗, σ∗〉 is
weakly playable

Proof. We have to check that the properties in Definition 4 are
canonical. For instance consider Condition 6 (superadditivity). By
contradiction, suppose C1 ∩ C2 = ∅, X1 ∈ N∗(w,C1), X2 ∈
N∗(w,C2) and X1∩X2 �∈ N∗(w,C1∪C2). In what follows Ci(x)
(i = 1, 2) corresponds to an HCL formula such that

Ci = {d ∈ D∗ | M∗, w |=σ Ci(d)}
Notice that for every subset C of the domain D∗ such that N∗(w,C)
it is always possible to find a formula ϕ(x) such that its ex-
tension corresponds to C14. We then have that [{x}C1(x)]ϕ1,
[{x}C2(x)]ϕ2 ∈ w for |ϕ1|∗ = X1 and |ϕ2|∗ = X2.Then, be-
cause C1 ∩ C2 = ∅, by axiom S. we have that [{x}C1(x) ∨
C2(x)](ϕ1 ∧ ϕ2) ∈ w and since |ϕ1 ∧ ϕ2|∗ = X1 ∩ X2 we have
X1 ∩X2 ∈ N(w,C1 ∪ C2), which is a contradiction.

�

12 This can be intuitively seen via an iterative construction on the modal depth
of ψ in [{x}ψ]ϕ.

13 With U = {d ∈ D∗ | M∗,Γ |=σ∗ ψ[d/x]}.
14 This holds by construction of N∗ in the definition of the smallest canonical

model.

Theorem 2 For any canonical model M for HCL, ϕ is valid in the
canonical model iff � ϕ.

Now, from the truth lemma, via a standard argument we get as corol-
lary:

Corollary 1 The class of all (weakly playable) constant domain
coalition frames is sound and complete for HCL

7 Translating Quantified Coalition Logic

In this section we show how CL and QCL can be embedded into
HCL. We prove this by introducing the following translation τ de-
fined as follows,

Definition 8 Let τ be a function from propositional logic to HCL
defined as follows:

τ(�) = �
τ(p) = T (p)

τ(¬ϕ) = ¬(τ(ϕ))
τ(ϕ1 ∨ ϕ2) = (τ(ϕ1) ∨ τ(ϕ2))

where � is any tautology, T (p) is a propositional atom which mimic
the boolean variable p.

The translation τ can now be extended to handle CL modal oper-
ators as follows

τ([C]ψ) = [{x}C(x)]τ(ψ)

where, for every coalition C ∈ Ag let C(x) be a monadic first-order
predicate such that d ∈ C iff C(d) holds15. Regarding QCL, we first
define a translation for coalition predicates,

Definition 9 Let δ be a function from QCL coalition predicates and
HCL, defined as follows:

δ(X, subseteq(C)) = ∀x(Xx → C(x))
δ(X, supseteq(C)) = ∀x(C(x) → Xx)

δ(X,¬P ) = ¬δ(X,P )
δ(X,P1 ∨ P2) = δ(X,P1) ∨ δ(X,P2)

We then extend τ as follows:

τ(〈P 〉ϕ) = ∃X((δ(X,P )) ∧ [{x}(Xx)]τ(ϕ))
τ([P ]ϕ) = ∀X((δ(X,P )) → [{x}(Xx)]τ(ϕ))

Theorem 3 Let M∗ = 〈S,E, π〉 be a CL model, s a state and ϕ
a CL formula then there exists a HCL model M = 〈W,N,D, I, σ〉
such that

• M∗, s |= ϕ iff M, s |=σ τ(ϕ)

Proof. By induction on ϕ, let M = 〈W,N,D, I, σ〉 be defined as
follows:

• W = S; N = E; D = Ag
• I(T, s) = {p | p ∈ π(s)}
• I(C, s) = {d | d ∈ C}, for all C ⊆ Ag
• σ(p) = p, for all boolean variables p ∈ φ0

1. Suppose M∗, s |= p, where p is atomic, by the definition of M∗

it easy to see that M, s |= T (p).

15 Notice that it is always possible to define such a predicate because the set
of Ag is finite and bounded.
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2. Suppose M∗, s |= [C]ψ, we have to prove that

M, s |=σ [{x}C(x)]ψ

By induction hypothesis, we know that there exists an HCL model
M such that

M∗, s |= ψ iff M, s |=σ τ(ψ).

From the definition of M we have that

C = {d |M, s |=σ[d/x] C(x)}

then because N = E we have

M, s |=σ [{x}C(x)]ψ

other cases are similar. �

Theorem 4 Let M∗ = 〈S,E, π, 〉 be a QCL model, s a state and ϕ
a QCL formula, then there exists a HCL model M = 〈W,N,D, I〉
and a σ such that

• M∗, s |= ϕ iff M, s |=σ τ(ϕ)

Proof. Similar to Theorem 3. �

8 Conclusions

We introduce higher-order coalition logic, a monadic second-order
(multi-)modal logic. In particular, we define a coalition logic in
which agents can affect themselves by collapsing the language to
talk about coalitions and the language to talk about states. We intro-
duce a formalism which permits a very general way to quantify over
coalitions. We provide an expressive and compact way to represent
coalitions by means of the set-binding operator {x}ϕ.

We give an axiomatization and prove completeness. We strengthen
the usefulness of employing neighborhood semantics by analyzing
relationships between BF and CBF axiom schemas. In general, HCL
is undecidable16. However there is room for further research in iden-
tifying a proper decidable fragment of HCL, in fact we know that CL
has the finite model property [18], the group operator {x}ψ does not
extends the complexity of MSO [12] and the interaction axioms in
HCL are limited to CBF .

The results presented provide a general, expressive and formal
framework to represent knowledge about extensive games with per-
fect information with simultaneous actions and to further study
higher-order coalition logics.

In [1] the possibility to quantify over coalitions by using a first-
order apparatus is considered unfeasible, in fact it is argued that ex-
plicit quantification over sets leads to undecidability over infinite do-
mains, and very high computational complexity even over finite do-
mains, which would make the logic too computationally complex to
be of practical interest. We disagree with this conclusion, in fact, it is
true that MSO is a proper fragment of full second-order logic that al-
ready has the full complexity. Nevertheless as reported in [20], MSO
is in some respect much better behaved than full second-order logic.
In particular Rabin’s theorem tell us that the satisfiability problem for
MSO with respect to countably branching trees is decidable, unlike
the corresponding problem for full second-order logics. Moreover
MSO is deeply studied as successful practical query formalism on
finite structures and XML documents [21].

16 Think for instance about general infinite domains.

A promising direction would be to formalize different fragments
of HCL by constraining both the domain and the neighborhood struc-
ture in order to get nice computational properties. Further research
must be done in order to assess computational properties of HCL.
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