
The Complexity of Epistemic Model Checking: Clock
Semantics and Branching Time1

X. Huang and R. van der Meyden2

Abstract. In the clock semantics for epistemic logic, two situations
are indistinguishable for an agent when it makes the same observa-
tion and the time in the situations is the same. The paper characterizes
the complexity of model checking branching time logics of knowl-
edge in finite state systems with respect to the clock semantics.

1 Introduction

Epistemic logic has been shown to provide a useful formalism for
reasoning about systems in which the representation of agents’ states
of uncertainty is a critical factor [6]. The range of problems to which
epistemic logic has been applied encompasses distributed and multia-
gent systems, computer security, diagnosis and recoverability. These
applications have motivated the development of verification tech-
niques based on logics that combine temporal and epistemic features.

In particular, model checking combinations of temporal and epis-
temic logics has been a topic of recent interest. In model checking,
the verification problem is treated as the problem of checking that
a formula is satisfied in a given model. For suitably restricted rep-
resentations of models and specification languages this problem can
be shown to be decidable. Model checkers implement this decidable
problem using a variety of sophisticated heuristics and symbolic im-
plementation techniques.

Operators in the logic of knowledge can be given a number of
different semantics, depending on the basic information from which
an agent derives what it knows. For example, we can treat agent’s
knowledge as those facts that it can derive from just its current ob-
servation. This semantics is basis of much of the literature on model
checking temporal and epistemic logics. However, the model check-
ing problem can also be shown to be decidable for stronger interpre-
tations of knowledge. In this paper, we consider the model check-
ing problem for an interpretation of knowledge in which an agent’s
knowledge is taken to be what it can derive from its current obser-
vation plus the current clock value. We call this the clock semantics
for knowledge. The significance of the clock semantics is that many
systems are built with clocks, and they are used in protocols, e.g., for
timeouts. The observational semantics is too weak to capture infor-
mation present in clock values.

The model checking problem with respect to the clock semantics
has previously been shown to be decidable for linear time temporal
logics extended by knowledge operators by Engelhardt et al [5]. In
this paper we consider the effect of taking the temporal basis for

1 Work supported by Australian Research Council Linkage Grant LP0882961
and Defence Research and Development Canada (Valcartier) contract
W7701-082453.

2 School of Computer Science and Engineering, University of New South
Wales, email: {xiaoweih,meyden}@cse.unsw.edu.au

the specification language to be instead a branching time temporal
logic. We show that this combination also leads to a decidable model
checking problem, and characterise its complexity for a number of
different fragments of a logic CTL∗Kclkn that combines the linear time
operators, branching operators and epistemic operators.

The main results of the paper are presented in Table 1, which gives
the complexity (both upper and lower bounds) of each of the model
checking problems we consider. For purposes of comparison, we in-
clude in this table the known results for the complexity of the linear
time epistemic logic with respect to clock semantics (LTLKclkn).

Logic Bound Combined Model Formula
Complexity Complexity Complexity

LTLKclkn upper PSPACE PSPACE PSPACE
(from [5]) lower PSPACE PH PSPACE

CTL∗Kclkn upper PSPACE PSPACE PSPACE
(this paper) lower PSPACE PH PSPACE

CTLKclkn upper PSPACE PSPACE LOGSPACE
(this paper) lower PSPACE PH LOGSPACE

CTL−Kclkn upper PNP PNP LOGSPACE
(this paper) lower PNP[log] PNP[log] LOGSPACE

Table 1. Complexity Results

It turns out that the addition of branching operators to the combi-
nation LTLKclkn of linear time temporal logic and epistemic logic
(giving the logic CTL∗Kclkn) does not increase the computational
complexity of model checking, which remains PSPACE-complete.
More interestingly, the model checking problem for the fragment
CTLKclkn based in the branching time logic CTL has the same
complexity as for the linear time case (LTLKclkn), viz., PSPACE-
complete. Prima facie, this result is a little surprising since the com-
plexities of model checking linear time temporal logic and branching
time logic in the absence of epistemic operators are known to be dif-
ferent, viz., PTIME for the branching time temporal logic CTL and
PSPACE-complete for linear time temporal logic LTL.

However, our general result masks some subtleties, and a more
careful analysis reveals differences between the linear time and
branching time cases. In particular, a difference is apparent if one
considers the complexity of model checking as a function of the size
of the model, or as a function of the size of the formula. Formula
complexity is the complexity of model checking a varying formula
when the model is held fixed: this gives a measure of the complex-
ity of the model checking as a function of the size of the formula.
Alternately, model complexity is the complexity of the model check-
ing problem when a formula is held fixed and the model is varied:

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-549

549

this gives a measure of the complexity of the model checking prob-
lem as a function of the size of the model. We find that the com-
plexity difference between CTL and LTL continues to be reflected
when one adds epistemic operators in the case of formula complexity,
where CTLKclkn is LOGSPACE-complete and LTLKclkn is PSPACE-
complete (which is the same as the formula complexities for CTL
and LTL respectively.) However, with respect to model complexity
there is no change.

We also explore the impact of a further restriction on the set of
branching time operators, taking these to be just EF (at some future
time in some branch) and EX (at some successor), giving the logic
CTL−Kclkn . Here, we show that the complexity of model checking
falls down to a low level of the polynomial hierarchy, viz PNP.

The structure of the paper is as follows. In section 2, we define the
syntax and semantics of the logics that we study, as well as the model
checking problems that we consider. Section 3 proves the main com-
plexity results of the paper. Section 4 discusses related work; in par-
ticular, we argue that some previous work on bounded model check-
ing CTLKclkn is incorrect.

2 Syntax and Semantics

We work with logics that combine temporal logics and the logic of
knowledge and common knowledge for n agents. All the logics that
we consider are fragments of the logic CTL∗Kclkn . Let Prop be a set
of atomic propositions and Ags = {1, . . . , n} be a set of n agents. The
syntax of the logic CTL∗Kclkn is given by the following grammar:

φ ::= p | ¬φ | φ1 ∧ φ2 | Xφ | Fφ | φ1Uφ2 | Gφ |
Eφ | Aφ |

Kiφ | CGφ

where p ∈ Prop and i ∈ Ags and G ∈ P(Ags)\{∅}. The first line gives
basic propositional logic plus linear time temporal operators that re-
fer to the future. Intuitively, Xφ says that φ holds at the next time, Fφ
says that φ holds at some future time, φ1Uφ2 says that φ1 holds until
φ2 does, and Gφ says that φ holds at all times in the future. The oper-
ators in the second line are from branching time temporal logic and
refer to possible alternate futures: Aφ says that φ holds in all possible
futures and Eφ says that φ holds in some possible future. The final
line gives epistemic operators: Kiφ says that agent i knows φ and CGφ

says that φ is common knowledge to the group of agents G. If we take
just the first line of this grammar we have the linear time temporal
logic LTL, and adding the second line gives the branching temporal
logic CTL∗. The logic LTLKclkn is the fragment obtained by taking
just the first and the third lines of the grammar. The branching time
temporal logic CTL is obtained from CTL∗ by placing a restriction
on the permitted combinations of linear and branching time temporal
operators: we replace these in the grammar by the restricted cases
QXφ, QφiUφ2, QFφ and QGφ, where Q is either A or E. Adding
the epistemic operators to CTL gives the logic CTLKclkn . The frag-
ment CTL−Kclkn is obtained by combining the epistemic operators
with the branching temporal operators EX and EF. Dually, this logic
contains AX and AG, so can express the important class of epistemic
safety properties.

To give semantics to all these logics it suffices to give semantics
to CTL∗Kclkn . We do this using a variant of interpreted systems [6],
specialised to the clock semantics. Let S be a set, which we call the
set of global states. A run over S is a function r : N→ S . A point is a
pair (r,m) where r is a run and n ∈ N. Given a setR of runs, we define
Points(R) to be the set of all points of runs r ∈ R. An interpreted
system for n agents is a tuple I = (R,∼1, . . . ,∼n, π), where R is a

set of runs over S , each ∼i is an equivalence relation on Points(R)
(called agent i’s indistinguishability relation) and π : S → P(Prop)
is an interpretation function. We say that a run r′ is equivalent to a
run r up to time m ∈ N if r′(k) = r(k) for 0 ≤ k ≤ m.

We can define a general semantics of CTL∗Kclkn by means of a
relation I, (r,m) |= φ, where I is an intepreted system, (r,m) is a
point of I and φ is a formula. This relation is defined inductively as
follows:

• I, (r,m) |= p if p ∈ π(r(m)),
• I, (r,m) |= ¬φ if not I, (r,m) |= φ
• I, (r,m) |= φ1 ∨ φ2 if I, (r,m) |= φ1 or I, (r,m) |= φ2

• I, (r,m) |= Eφ if there exists a run r′ ∈ R equivalent to r up to
time m such that I, (r′,m) |= φ

• I, (r,m) |= Aφ if for all runs r′ ∈ R equivalent to r up to time m,
we have I, (r′,m) |= φ

• I, (r,m) |= Xφ if I, (r,m + 1) |= φ
• I, (r,m) |= φ1Uφ2 if there exists m′ ≥ m such that I, (r,m′) |= φ2,

and I, (r, k) |= φ1 for m ≤ k < m′.
• I, (r,m) |= Gφ if I, (r, k) |= φ for all k ≥ m
• I, (r,m) |= Kiφ if for all points (r′,m′) of I such that (r,m) ∼i

(r′,m′), we have I, (r′,m′) |= φ
• I, (r,m) |= CGφ if for all sequences of points (r,m) =

(r0,m0), (r1,m1), . . . (rk,mk) of I, such that for each j = 0 . . . k−1,
there exists i ∈ G such that (r j,mj) ∼i (r j+1,mj+1), we have
I, (rk,m) |= φ.

For the knowledge operators, this semantics is essentially the same
as the usual interpreted systems semantics. For the temporal opera-
tors, it corresponds to a semantics for branching time known as the
bundle semantics [2, 21]. To specialise this general semantics to the
clock semantics, we suppose that we have have for each agent i an
observation function Oi : S → O, for some set O, such that Oi(s)
represents agent i’s observation in state s. Say that the equivalence
relations ∼i in the system are derived from the observation functions
Oi when (r,m) ∼i (r′,m′) iff m = m′ and Oi(r(m)) = Oi(r′(m′)).
A system is a clock system if there exist observation functions from
which its indistinguishability relations ∼i are derived. Intuitively, in
such systems, an agent’s knowledge is determined from its current
observation plus the clock value.

For model checking we require the decidability of the problem
of checking that a formula holds in a model. In order to do so, we
require a finite state representation for the model. Interpreted sys-
tems are unsuitable for this, since they are based on infinite runs.
We therefore treat interpreted systems as generated from an al-
ternate finite representation. Define a (finite) model to be a tuple
M = (S , I,⇒,O, π) where S is a (finite) set of states, I ⊆ S is the
set of initial states,⇒⊆ S × S is a serial temporal transition relation,
O = {Oi}i∈Ags is a family of observation functions Oi : S → O, and
π : S → P(Prop) is a propositional interpretation. We write E for
the set of all finite models

Given a model M with states S , we may construct clock system
I(M) = (R,∼1, . . . ,∼n, π) over global states S , as follows. The com-
ponent π in I(M) is identical to that in M. The set of runs is defined
as follows. We say that a fullpath from a state s is an infinite se-
quence of states s0 s1... such that s0 = s and si ⇒ si+1 for all i ≥ 0.
We use Path(s) to denote the set of all fullpaths from state s. A run
of the system is a fullpath s0 s1 . . . with s0 ∈ I. We define R to be the
set of runs of M. Finally, we take the indistinguishability relations ∼i

to be the relations derived from the observation functions Oi in the
environment.

A formula φ is said to hold in a model M, written M |= φ, if

X. Huang and R. van der Meyden / The Complexity of Epistemic Model Checking: Clock Semantics and Branching Time550

I(M), (r, 0) |= φ for all r ∈ R. The model checking problem we study
is defined as follows: given a finite model M and a formula φ, de-
termine if M |= φ. We are interested in this problem for a range of
different languages L, and as a function of its parameters as well
as in general. More precisely, the combined complexity of model
checking L is the complexity of the set {(M, φ) ∈ E × L | M |= φ}.
The model complexity of a fixed formula φ is the complexity of the
set {M ∈ E | M |= φ}. This gives a measure of the complexity of
model checking as a function of the size of the model. The formula
complexity of L for a fixed model M is the complexity of the set
{φ ∈ L | M |= φ}. This captures the contribution to the complexity of
model checking that derives from the formula.

3 Complexity

We now consider the complexity of the model checking problems in-
troduced in the previous section, for the language CTL∗Kclkn and sev-
eral of its sublanguages. For purposes of comparison, we first recall a
number of known results for model checking temporal and epistemic
logics.

Previous Results

Our logics build on the temporal logics LTL, CTL and CTL∗, whose
model checking complexities are already well understood. In the case
of CTL∗, the combined complexity is known to be PSPACE-complete
[3, 4]. Indeed, this is already the case for the linear time logic LTL
[1]. On the other hand, the logic CTL has a combined complexity
in PTIME [3, 13]. A fortiori, the model and formula complexities
of CTL are also in PTIME. For both LTL and CTL∗, the model com-
plexity is PTIME [22, 8, 13], and the formula complexity is PSPACE-
complete [13]. Thus, the complexity of model checking linear time
temporal logic derives primarily from the contribution made by the
formula. Since the formula we wish to check is typically small (but
the model may be large) this result explains the feasibility in practice
of LTL model checking even in the face of its PSPACE-hardness in
the sense of combined complexity.

Given these results, we easily obtain that the combined complexity
and the formula complexity of LTLKclkn are at least PSPACE hard. It
is shown in [5] that, in fact, the addition of epistemic operators (in-
terpreted with respect to clock semantics) does not necessarily add to
the complexity of LTL. Both the combined and formula complexities
of LTLKclkn turn out to be in PSPACE (hence PSPACE-complete,
since the fragment LTL is already PSPACE-hard). A difference is
found in the case of model complexity, however. It is shown that
whereas LTL has PTIME model complexity, for each level Πp

k of the
polynomial hierarchy, there exists a formula φ ∈LTLKclkn such that
{M ∈ E | M |= φ} is Πp

k -hard. An exact characterization of the model
complexity of LTLKclkn remains an open problem. However, it is pos-
sibly a very hard problem: note that whereas QBF is PSPACE com-
plete, and the QBF formulas starting with ∀ and having k-alternations
correspond to Πp

k , it is not known whether the polynomial hierarchy
is equal to PSPACE. It appears that the gap between the upper and
lower bounds for model complexity of LTLKclkn may be related to
this problem.

CTL∗Kclkn

We now show that we can derive complexity bounds for CTL∗Kclkn
from the known results for LTLKclkn . Given a model M and a
CTL∗Kclkn formula φ, we will show that the model checking problem

M |= φ is equivalent to another model checking problem M′ |= φ′,
where φ′ is a LTLKclkn+1 formula and M′ and φ′ are of polynomial size
w.r.t. M and φ, respectively. With this equivalence, we can move all
the complexity results for LTLKclkn to CTL∗Kclkn . To obtain model
M′, we add an agent � to the model M and define its observations by
O�(s) = s for each state s ∈ S . We take φ′ to be the formula obtained
from φ by replacing all A operators with K� and all E operators with
¬K�¬. The correctness of the equivalence claim now follows by an
induction using the argument in the following result:

Lemma 1 For all points (r,m) of I(M), and φ ∈CTL∗Kclkn we have
I(M), (r,m) |= Aφ iff I(M′), (r,m) |= K�φ.

Proof: The direction from right to left is trivial. It is easily
seen that the the semantics of I(M), (r,m) |= Aφ refers to a
subset of the points (r′,m′) referred to by the semantics of
I(M), (r,m) |= K�φ. (Note that in both cases the fact that we are
using clock semantics means that m = m′.) Conversely, suppose
that I(M), (r,m) |= Aφ. Considering I(M′), (r,m) |= K�φ, let
(r′,m′) be a point such that (r,m) ∼� (r′,m′). Then m = m′ and
r(m) = O�(r(m)) = O�(r′(m′)) = r′(m′) = r′(m). It follows that
the sequence r′′ = r(0)r(1) . . . r(m)r′[m + 1..∞] is a run. Since the
operators in φ refer only to the future, an easy induction shows that
I(M′), (r′′,m) |= φ iff I(M′), (r′,m) |= φ. Note that r′′ is equivalent
to time m to r. Hence, by assumption that I(M), (r,m) |= Aφ, we
obtain that I(M), (r′′,m) |= φ, hence I(M′), (r′′,m) |= φ, from which
it follows using the above observation that I(M′), (r′,m) |= φ. This
completes the proof that I(M′), (r,m) |= K�φ. �

This transformation immediately enables us to derive upper bounds
of PSPACE for the combined, model and formula complexity of
CTL∗Kclkn . Since LTLKclkn is a sublanguage of CTL∗Kclkn , lower
bounds of PSPACE, Πp

k (for any k, by some formula) and PSPACE
respectively also follow directly.

CTLKclkn

The combined complexity and model complexity upper bounds for
CTL∗Kclkn are also upper bounds for CTLKclkn , because CTLKclkn is
a sublanguage of CTL∗Kclkn .

The logic CTL has formula complexity of LOGSPACE [13],
which is lower than the PSPACE-complete formula complexity of
LTL, as noted above. We now show that this difference remains re-
flected in the extended logic CTLKclkn . We present an algorithm that
shows that this logic has LOGSPACE formula complexity, lower
than the PSPACE-complete formula complexity for the extended
logic CTL∗Kclkn and matching the LOGSPACE formula complexity
for CTL model checking.

Given a fixed model M = (S , I,⇒,∼1, ...,∼n, π), we construct an-
other model M′ = (S × P(S), I′,⇒′,∼′1, ...,∼′n, π′), with states of the
form (s, P) where s ∈ S and P ⊆ S , such that

1. (s, P) ∈ I′ iff s ∈ I and P = I,
2. (s, P)⇒′ (t,Q) iff s⇒ t and Q = {t ∈ S |∃s ∈ P(s⇒ t)},
3. (s, P) ∼′i (t,Q) iff P = Q and s ∼i t,
4. π′(s, P) = π(s).

Though M′ might be exponentially larger than M, it is also a fixed
structure. Now M |= φ is equivalent to M′ |= φ for observational
semantics defined as follows.

1. M′, (s, P) |= p iff p ∈ π′(s, P).

X. Huang and R. van der Meyden / The Complexity of Epistemic Model Checking: Clock Semantics and Branching Time 551

2. M′, (s, P) |= ¬φ iff not M′, (s, P) |= φ.
3. M′, (s, P) |= EXφ iff there exists (t,Q) such that M′, (t,Q) |= φ

and (s, P)⇒′ (t,Q).
4. M′, (s, P) |= E[φ1Uφ2] iff there exists a path (s, P) = (s0, P0) ⇒′

(s1, P1) ⇒′ ... ⇒′ (sm, Pm) such that M′, (sm, Pm) |= φ2 and
M′, (si, Pi) |= φ1 for 0 ≤ i ≤ m − 1.

5. M′, (s, P) |= EGφ iff there exists an infinite path (s, P) =
(s0, P0)⇒′ (s1, P1)⇒′ ..., such that M′, (si, Pi) |= φ1 for all i ≥ 0.

6. M′, (s, P) |= Kiφ iff M′, (t,Q) |= φ for all (t,Q) with (s, P) ∼′i
(t,Q).

7. M′, (s, P) |= CGφ iff for all sequences (s, P) =

(s0, P0), (s1, P1), ..., (sm, Pm) with m ≥ 0 and (si, Pi) ∼ j (si+1, Pi+1)
for j ∈ G and 0 ≤ i ≤ m − 1, we have M′, (sm, Pm) |= φ.
By [13], for CTL, M |= φ can be checked in space O(|M| · log|φ|).

With respect to the observational semantics, the addition of epistemic
operators to CTL does not increase the complexity of model check-
ing, since we may easily reduce the epistemic transitions to a spe-
cial type of temporal transition. Therefore, the formula complexity
of CTLKclkn is in LOGSPACE.

Lower bounds for model checking CTLKclkn can be obtained from
the proof of lower bounds for LTLKclkn in [5] by noting that the
proofs of these lower bounds use structures of the following special
form.

Definition 1 Let M = (S , I,⇒,∼1, ...,∼n, π) be a model. Say that M
is a lasso-bundle if for any s ∈ S , there exists a unique state s′ such
that s ⇒ s′. M is a lasso-structure if M is a lasso-bundle and I is a
singleton set.

For lasso-structures, the semantics of LTL and CTL are known
to coincide [9, 17]. An LTL formula can be evaluated in a lasso-
bundled model by a CTL model checker by prefixing each temporal
operator by an A/E path quantifier which results in a CTL formula.
The reverse also holds.

We show that a similar result applies to LTLKclkn and CTLKclkn .
Define a transformation function f mapping a normalized LTLKclkn
formula (in which all negative operators occur in front of atomic
propositions) into a CTLKclkn formula.

1. f (p) = p
2. f (¬φ) = ¬ f (φ)
3. f (φ1 ∨ φ2) = f (φ1) ∨ f (φ2)
4. f (Xφ) = AX f (φ), f (Fφ) = AF f (φ), f (Gφ) = AG f (φ)
5. f (φ1Uφ2) = A[f (φ1)U f (φ2)]
6. f (Yφ) = Y f (φ), where Y ∈ {Ki,CG}.

The transformation prefixes each temporal operator with a uni-
versal operator A. The following proposition concludes that this
transformation preserves the satisfiability of formulae under lasso-
bundled models.

Proposition 1 For any lasso-bundled model M and any LTLKclkn
formula φ, and run r of I(M), we have I(M), (r, n) |= φ ⇔
I(M), (r,m) |= f (φ).

Proof: By a straightforward induction on the construction of φ. Note
that it follows from the fact that M is lasso-bundled that if r′ is a
run equivalent to r up to time n then in fact r′ = r. This implies that
I(M), (r,m) |= φ iff I(M), (r,m) |= Aφ iff I(M), (r,m) |= Eφ. �

The lower bounds of LTLKclkn logic are proved in [5] by a re-
duction from the satisfiability problem of QBF. For any alternation

depth k, a LTLKclkn formula φk is constructed, such that for each QBF
formula Ψ of alternation depth k, a lasso-bundled model MΨ can be
constructed, such thatΨ is satisfiable iff I(MΨ) |= φk. Now by Propo-
sition 1, φk can be further reduced to a CTLKclkn formula f (φk), and
Ψ is satisfiable iff I(MΨ) |= f (φk). Therefore, we can move the lower
bounds of combined complexity and model complexity for LTLKclkn
to CTLKclkn . In particular, we conclude that the combined complexity
is PSPACE-hard, and for each k there exists a formula whose model
complexity is Πp

k -hard. The lower bound for formula complexity can
be deemed as LOGSPACE, since every problem in LOGSPACE is
complete under log-space reductions.

CTL−Kclkn

We reduce the problem of model checking CTL−Kclkn to a frag-
ment of Presburger Arithmetic, called extended Min-Max Arith-
metic (MMA) in [7]. We use the notation [i, j] = {i, i + 1, ..., j}
and [j] = [1, j]. An extended MMA dag-formula α based in a finite
partial order (X,≤) is a collection of definitions of variables (αi)i∈X ,
where the definition for each αi is one of the following, with i > j, k
and ∼∈ {≤,≥} and m, n ∈ N in each case: (1) ≡ m mod n with n > 0
and m ∈ Z/nZ, (2) ∼ n, (3) ¬α j, (4) α j∧αk, (5) ∼ max (α j, n), (6) m ∼
max (α j, n), (7) α j � a, with � ∈ {+,−} and a ∈ N written in unary.
The semantics of αi in the context of an extended MMA formula α,
written as [[αi]], is the set of natural numbers satisfying the defini-
tion of αi, e.g., [[∼ max (α j, n)]] = {k ∈ N|k ∼ max ([[α j]] ∩ [0, n])},
and [[m ∼ max (α j, n)]] is either N or ∅ depending on whether
m ∼ max [[α j]] ∩ [0, n]), and [[α j�a]] = {k | k = n�a ≥ 0, n ∈ [[α j]]}.
The following two lemmas are from [7].

Lemma 2 Given an extended MMA dag-formula α = (αi)i∈X, there
exist numbers Li and Ti, computable in PTIME, such that, if n1, n2 >

Ti and n1 ≡ n2 mod Li then n1 ∈ [[αi]]⇔ n2 ∈ [[αi]].

Lemma 3 Given n ∈ N and an extended MMA dag-formula α,
whether n ∈ [[αi]] can be decided with complexity �P

2 = PNP.

Another result we use is Chrobak’s normal form for nondetermin-
istic finite automata [18]:

Lemma 4 Given a model M, we may compute in polynomial time a
collection of arithmetic progressions R(s, t) = {ai + biN | i = 1..k}
such that ∪R(s, t) = {n ∈ N | s⇒n t}, |R(s, t)| ≤ |S |2 and ai = O(|S |2)
and bi = O(|S |).

We write M(ψ) for {(s, n) ∈ S ×N | ∃r(I(M), (r, n) |= ψ and r(n) =
s)}. (Note thatI(M), (r, n) |= ψ and r(n) = s impliesI(M), (r′, n) |= ψ
for all runs r′ with r′(n) = s.) Let sub f (φ) be the set of subformulas
of φ, and let T denote tautology.

Lemma 5 Given a formula φ ∈ CTL−Kclkn and a model M, let X =
S × (sub f (φ) ∪ {T}), equipped with the partial order defined by
(s1, ψ1) ≥ (s2, ψ2) iff s1 = s2 and ψ2 ∈ sub f (ψ1) ∪ {T}. There ex-
ists an extended MMA-dag (αx)x∈X, computable in time polynomial
in |M| + |φ| such that for all (s, ψ) ∈ X, we have [[α(s,ψ)]] = {n ∈
N | (s, n) ∈ M(ψ)}.
Proof: We define α(s,ψ) by induction on ≥. First, note that by
Lemma 4, for each pair s, t ∈ S , we may write the set {n | s ⇒n t}
as a polynomial size union R(s, t) of arithmetic progressions a + bN.
Thus, we may take

α(t,T) =
∧
s∈I

∧
a+bN∈R(s,t)

≡ a mod b

for the base case. In the inductive case, we proceed as follows:

X. Huang and R. van der Meyden / The Complexity of Epistemic Model Checking: Clock Semantics and Branching Time552

1. ψ = p: here we take α(s,p) = α(s,T) if p ∈ π(s), else we take α(s,p) =

F (where F = (> 1) ∧ (< 1) so that [[F]] = ∅).
2. ψ = ψ1 ∧ ψ2: here α(s,ψ) = α(s,ψ1) ∧ α(s,ψ2)

3. ψ = ¬ψ1: here α(s,ψ) = α(s,T) ∧ ¬α(s,ψ1)

4. ψ = Kiψ1: here

α(s,ψ) = α(s,T) ∧
∧

t∈S ,s∼i t

(α(t,T) ⇒ α(t,ψ1))

5. ψ = CGψ1: here we take

α(s,ψ) = α(s,T) ∧
∧
t∈S

(γ(s, t,G, |S |)⇒ α(t,ψ1))

where γ(s, t,G, k) is an extended MMA-dag formula expressing
times at which t is reachable from s in k steps through the rela-
tion ∪i∈G ∼i. This can be represented efficiently by the following
induction: in the base cases, γ(s, t,G, 0) = α(s,T) if s = t and F
otherwise, γ(s, t,G, 1) = α(s,T) ∧ α(t,T) if s ∼i t for some i ∈ G,
otherwise γ(s, t,G, 1) = F. Inductively, for k ≥ 2, we define

γ(s, t,G, k) =
∨
s′∈S

(γ(s, s′,G, �k/2�) ∧ γ(s′, t,G, �k/2�)).

6. ψ = EXψ1: here α(s,ψ) = α(s,T) ∧∨s⇒t(α(t,ψ1) − 1).
7. ψ = EFψ1: we break this case down into several possibilities.

Suppose that (s, n) ∈ M(EFψ1). Then there exist t ∈ S and n′ ∈ N
such that s⇒n′−n t and (t, n′) ∈ M(ψ1).
It follows using Lemma 4 that there exists a + bN ∈ R(s, t) such
that n′ − n ∈ a + bN. If b = 0, then plainly we have n ∈ α(t,ψ1) − a.
Consider the case where b � 0, so n′ − n ≡ a mod b. Moreover,
inductively, there exist, by Lemma 2, numbers T and L such that
n1, n2 > T and n1 ≡ n2 mod L implies n1 ∈ [[α(t,ψ1)]] iff n2 ∈
[[α(t,ψ1)]]. We consider the different possible values of c, the residue
of n′ mod b. There are two possibilities for a given c: either there
exist an infinite number of n′ ≡ c mod b such that (n′, t) ∈ M(ψ1),
or there exist a finite number such values.
We first note that in the case of an infinite number of such values,
there must exist such a value in the range T < n′ ≤ T + L, by
the periodicity condition on α(t,ψ1). Writing β(t, ψi) = α(t,ψ1) ∧ (≡
c mod(gcd(b, L))), and in f (t, ψ1, b, c) = T < max(β(t, ψi), t + L),
we find that in f (t, ψ1, b, c) expresses that there exist an infinite
number of values of n′ ≡ c mod b such that (n′, t) ∈ M(ψ1). (Note
that if (m, t) ∈ M(ψ1) and m ≡ c mod(gcd(b, L)), then by the Chi-
nese Remainder theorem, the simultaneous equation x ≡ c mod b
and x ≡ m mod L has a solution, which may be taken to be greater
than T , so that by periodicity of α(t,ψ1) we have (x, t) ∈ M(ψ1) and
x ≡ c mod b.) Thus, we may represent the case of n with an
infinite number of n′ ≡ c mod b using the formula

χ∞(t, ψ1, b, c) = in f (t, ψ1, b, c) ∧ (≡ c − a mod b) .

In the case of a finite number of such values, note that if
[[in f (t, ψ1, b, c)]] = ∅ then for all n′ ∈ [[α(t,ψ1)]] with n′ ≡ c mod b
we have n′ < T . (If there exists such a value n′ larger than T
then by L-periodicity we can find one in the range [T, T + L] with
n′ ≡ c mod gcd(b, L).) Thus, in this case we can express the pos-
sible values of n by the expression

χ<∞(t, ψ1, b, c) = ¬in f (t, ψ1, b, c)∧ ≤ max((α(t,ψ1) ≡ c mod b), t) .

Putting the pieces together, we may define α(s,ψ) to be

∨
t∈S

(
(
∨

a+bN∈R(s,t), b=0 α(t,ψ1) − a)
∨∨a+bN∈R(s,t),0≤c<b χ∞(t, ψ1, b, c) ∨ χ<∞(t, ψ1, b, c)

)
.

�

Combining this result with Lemma 3, we obtain the upper bound
of PNP for the combined complexity of model checking CTL−Kclkn .

By way of lower bound, we show that the combined complexity
of model checking CTL−Kclkn is hard for PNP[log], i.e., the complexity
class corresponding to PTIME computations with a logarithmic num-
ber of queries to an NP oracle. (The same lower bound also holds for
model complexity, by a slightly more elaborate proof that we leave
for a longer version of this paper.) This is equivalent to the class of
PTIME computations with independent queries to an NP oracle, i.e.,
the construction of an oracle query may not depend on the outcome of
any other oracle query. The following problem ODD-SAT is known
to be complete for this class: given boolean formulas φ1, . . . φn, de-
termine if there exists an odd i such that φ1, . . . φi are satisfiable and
φi+1, . . . φn are not satisfiable.

To encode this as a model checking problem, let p1 . . . pk be the
first k primes, and let Mk be the model with the transition relation
composed of a set of independent cycles si,1 ⇒ si,2 . . . ⇒ si,pi ⇒ si,1

with the i-the such cycle of length pi. Let the proposition qi hold
only at state si,1, for i = 1..k. Take the set of initial states to be I =
{s1,1, . . . , sk,1}. Suppose that there is a single agent 1 that is not able
to distinguish any of these states, i.e O1(s) = O1(t) for all states s, t.
The size of Mk is polynomial in k, since this also holds for the size
of the k-th prime.

Note that the sets Pn = {t ∈ S | ∃s ∈ I(s ⇒n t)} pass through all
combinations of sets of size k, with one element selected from each
cycle. Thus, we may use the formulas ¬K1¬q1, . . . ,¬K1¬qk, whose
truth value at a state s at time n depends only on Pn and not s, to
represent an assignment to k boolean variables, and satisfiability of
the boolean formula φ(x1, . . . xk) can be represented by the formula
φ∗ = EF(φ(¬K1¬q1, . . . ,¬K1¬qk)). Finally, we encode the problem
ODD-SAT by the formula∨

i=1...n,i odd

∧
j=1...i

φ∗j ∧
∧

j=i+1...n

¬φ∗j .

This lower bound does not quite match the upper bound. We do
not know at present whether either can be improved.

4 Related Work

The model checking complexities for temporal logics are collected
in Table 2, which is taken from [13].

Logic Combined Model Formula
Complexity Complexity Complexity

LTL PSPACE-complete NLOGSPACE-complete PSPACE-complete
CTL∗ PSPACE-complete NLOGSPACE-complete PSPACE-complete
CTL PTIME-complete NLOGSPACE-complete LOGSPACE
CTL− PTIME-complete NLOGSPACE-complete LOGSPACE

Table 2. Complexity Results for Temporal Logics

When combined with epistemic logic under the observational se-
mantics, the model checking complexities do not increase, e.g., for
CTLKobs

n , PTIME-completeness is shown in [6] and [10], for upper
bound and lower bound, respectively.

When combined with epistemic logic under the perfect recall se-
mantics, many subtleties are introduced. Linear time temporal epis-
temic logics on synchronous systems or asynchronous systems are
analyzed in [19] and [20], and [16, 15, 14] explore branching time
temporal epistemic logics.

X. Huang and R. van der Meyden / The Complexity of Epistemic Model Checking: Clock Semantics and Branching Time 553

p

s1

s2 s3

Figure 1. A model

For epistemic logic under clock semantics, [5] provides complex-
ity results for its combination with LTL. The present paper comple-
ments this work by considering instead several branching time logics.
A bounded model checking (BMC) algorithm for the universal frag-
ment of CTL∗Kclkn logic, abbreviated as ACTL∗Kclkn , is presented
in [11, 12]. However, it appears to be incorrect. A flaw of their al-
gorithm occurs on formulas of the form AFKiφ, which in negated
dual form EG¬Ki¬ψ requires finding a witness run on which ¬Ki¬ψ
holds at all times. For bounded model checking temporal logics, runs
can be represented as lassos s0 ⇒ s1 ⇒ . . . sk ⇒ sl where 0 ≤ l ≤ k
and k ≤ |S |. To satisfy the formula EG¬Ki¬ψ would then require
that we satisfy ¬Ki¬ψ at each point in the run. For the observational
semantics for knowledge, this can be done by finding for each time
m with 0 ≤ m ≤ k another lasso t0 ⇒ t1 ⇒ . . . tk′ ⇒ tl′ with sm ∼i tm′

for some m′ with ψ holding at the state tm′ . However, the clock se-
mantics requires that the states sm and tm′ occur at the same time. The
approach to this in [11, 12] is to check that the witness state tm′ can
occur at the same time as the state sm.

However, this is not sufficient, rather, we require such a witness for
each time n such that sk can occur at time n in the original lasso. An
example is shown in Figure 1. The model M = (S , I,⇒,∼a, π), where
S = {s1, s2, s3}, I = {s1, s2}, ⇒ is shown in Figure 1, ∼a is the least
equivalence relation with s1 ∼a s2 and π(s2) = {p}, π(s1) = π(s3) = ∅.
For the ACTL∗Kclkn formula φ = AFKa¬p, the algorithm of [11, 12]
would conclude that M �|= φ by finding a ‘counterexample’ lasso
of length 1, where the dual ¬φ ≡ EG¬Ka¬p is resolved on loop
s1 ⇒ s1, and the fact that ¬Ka¬p must hold at s1 is witnessed by the
fact that p holds at state s2 ∼ s1 on the lasso s2 ⇒ s3 ⇒ s2. However,
though ¬Ka¬p is satisfiable on the lasso s1 ⇒ s1 at time 0, it is not
satisfiable at time 1 since state s2 is not possible at time 1.

By comparison, the algorithms discussed above for CTLKclkn
and LTLKclkn use set-level loops. More specifically, the state-level
lasso s1 ⇒ s1 should be lifted to a set-level lasso (s1, {s1, s2}) ⇒
(s1, {s1, s3})⇒ (s1, {s1, s2}), where the second element in a pair is the
set of possible states at a given time. Now ¬Ka¬p is not satisfiable
on (s1, {s1, s3}) because state s2 is not possible at that time. There-
fore, the loop s1 ⇒ s1 does not provide a valid counterexample for
formula φ. Indeed, it can be easily checked that M |= φ.

While we believe that lasso-like structures can be used to provide
counter-examples for bounded model checking of ACTL∗Kclkn , the
fact that the model complexity of CTLKclkn is hard for the polynomial
hierachy (compared with the NLOGSPACE-complete model com-
plexities of LTL and CTL) strongly suggests that the claim in [11, 12]
that lassos of length at most |M| suffice cannot be upheld. Rather, the
apparent necessity of set-level lassos suggests that the bound should
be of the order of 2|M|. We leave a more detailed investigation of this
issue for further work.

REFERENCES

[1] A.P. Sistla and E.M. Clarke, ‘The complexity of propositional linear
temporal logics’, Journal of Assoc. Comput. Mach., 32(3), 733–749,

(1985).
[2] J. Burgess, ‘Logic and time’, Journal of Symbolic Logic, 44, 556–582,

(1979).
[3] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla, ‘Au-

tomatic verification of finite-state concurrent systems using temporal
logic specifications’, ACM Trans. Program. Lang. Syst., 8(2), 244–263,
(1986).

[4] E. Allen Emerson and Chin-Laung Lei, ‘Modalities for model check-
ing: Branching time logic strikes back’, Sci. Comput. Program., 8(3),
275–306, (1987).

[5] Kai Engelhardt, Peter Gammie, and Ron van der Meyden, ‘Model
checking knowledge and linear time: PSPACE cases’, in LFCS, eds.,
Sergei N. Artemov and Anil Nerode, volume 4514 of LNCS, pp. 195–
211. Springer, (2007).

[6] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi,
Reasoning about Knowledge, MIT Press, 1995.

[7] Stefan Goller, Richard Mayr, and Anthony Widjaja To, ‘On the com-
putational complexity of verifying one-counter processes’, in LICS, pp.
235–244. IEEE Computer Society, (2009).

[8] Kupferman, Vardi, and Wolper, ‘An automata-theoretic approach to
branching-time model checking’, JACM: Journal of the ACM, 47,
(2000).

[9] Orna Kupferman and Moshe Y. Vardi, ‘Model checking of safety prop-
erties’, in CAV, eds., Nicolas Halbwachs and Doron Peled, volume 1633
of LNCS, pp. 172–183. Springer, (1999).

[10] Alessio Lomuscio and Franco Raimondi, ‘The complexity of model
checking concurrent programs against CTLK specifications’, in AA-
MAS, eds., Hideyuki Nakashima, Michael P. Wellman, Gerhard Weiss,
and Peter Stone, pp. 548–550. ACM, (2006).

[11] Xiangyu Luo, Kaile Su, Abdul Sattar, Qingliang Chen, and Guan-
feng Lv, ‘Bounded model checking knowledge and branching time in
synchronous multi-agent systems’, in AAMAS, eds., Frank Dignum,
Virginia Dignum, Sven Koenig, Sarit Kraus, Munindar P. Singh, and
Michael Wooldridge, pp. 1129–1130. ACM, (2005).

[12] Xiangyu Luo, Kaile Su, Abdul Sattar, and Mark Reynolds, ‘Verifica-
tion of multi-agent systems via bounded model checking’, in Australian
Conference on Artificial Intelligence, eds., Abdul Sattar and Byeong Ho
Kang, volume 4304 of LNCS, pp. 69–78. Springer, (2006).

[13] Ph. Schnoebelen, ‘The complexity of temporal logic model check-
ing’, in Advances in Modal Logic, eds., Philippe Balbiani, Nobu-
Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev, pp. 393–436.
King’s College Publications, (2002).

[14] Nikolay V. Shilov and Natalya Olegovna Garanina, ‘Model checking
knowledge and fixpoints’, in FICS, eds., Zoltan Esik and Anna Ingolfs-
dottir, volume NS-02-2 of BRICS Notes Series, pp. 25–39. University
of Aarhus, (2002).

[15] Nikolay V. Shilov and Natalya Olegovna Garanina, ‘Well-structured
model checking of multiagent systems’, in Ershov Memorial Confer-
ence, eds., Irina Virbitskaite and Andrei Voronkov, volume 4378 of
LNCS, pp. 363–376. Springer, (2006).

[16] Nikolay V. Shilov, Natalya Olegovna Garanina, and K.-M. Choe, ‘Up-
date and abstraction in model checking of knowledge and branching
time’, Fundam. Inform., 72(1-3), 347–361, (2006).

[17] Heikki Tauriainen and Keijo Heljanko, ‘Testing LTL formula transla-
tion into büchi automata’, STTT, 4(1), 57–70, (2002).

[18] Anthony Widjaja To, ‘Unary finite automata vs. arithmetic progres-
sions’, Inf. Process. Lett., 109(17), 1010–1014, (2009).

[19] Ron van der Meyden, ‘Common knowledge and update in finite envi-
ronments’, Inf. Comput., 140(2), 115–157, (1998).

[20] Ron van der Meyden and Nikolay V. Shilov, ‘Model checking knowl-
edge and time in systems with perfect recall (extended abstract)’, in
FSTTCS, eds., C. Pandu Rangan, Venkatesh Raman, and Ramaswamy
Ramanujam, volume 1738 of LNCS, pp. 432–445. Springer, (1999).

[21] Ron van der Meyden and Kashu Wong, ‘Complete axiomatizations for
reasoning about knowledge and branching time’, Studia Logica, 75(1),
93–123, (2003).

[22] Moshe Y. Vardi and Pierre Wolper, ‘An automata-theoretic approach to
automatic program verification (preliminary report)’, in LICS, pp. 332–
344. IEEE Computer Society, (1986).

X. Huang and R. van der Meyden / The Complexity of Epistemic Model Checking: Clock Semantics and Branching Time554

