ECAI 2010

H. Coelho et al. (Eds.)

10S Press, 2010

© 2010 The authors and 10S Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-535

535

Learning Aggregation Functions for Expert Search

Ronan Cummins! and Mounia Lalmas? and Colm O’Riordan?

Abstract. Machine learning techniques are increasingly being ap-
plied to problems in the domain of information retrieval and text min-
ing. In this paper we present an application of evolutionary compu-
tation to the area of expert search. Expert search in the context of
enterprise information systems deals with the problem of finding and
ranking candidate experts given an information need (query). A diffi-
cult problem in the area of expert search is finding relevant informa-
tion given an information need and associating that information with
a potential expert.

We attempt to improve the effectiveness of a benchmark expert
search approach by adopting a learning model (genetic program-
ming) that learns how to aggregate the documents/information asso-
ciated with each expert. In particular, we perform an analysis of the
aggregation of document information and show that different num-
bers of documents should be aggregated for different queries in order
to achieve optimal performance.

We then attempt to learn a function that optimises the effective-
ness of an expert search system by aggregating different numbers
of documents for different queries. Furthermore, we also present ex-
periments for an approach that aims to learn the best way to aggre-
gate documents for individual experts. We find that substantial im-
provements in performance can be achieved, over standard analytical
benchmarks, by the latter of these approaches.

1 Introduction

In large modern organisations, employees have often accumulated
unique expertise in specific topic areas. People are a vital source of
information in a topic of expertise, as they can explain aspects of a
topic of interest that may otherwise be unavailable. Automatically
identifying experts in a certain area, given a specific topic, is there-
fore a useful goal in modern information systems. Thus, the aim of
an expert search system is to find and rank experts in a large corpus
of semi-structured or unstructured documents given a user query.

There are several reasons why one may wish to identify people
with relevant expertise in a topic rather than documented sources of
information. These reasons include: a lack of access to documented
forms of information, a lack of individual ability to formulate a solu-
tion to the problem being addressed, a need for explanation or rein-
terpretation of a certain topic and a human need for social interaction
[15].

The best performing approach to the expert search task is the two-
stage document centric model. In this approach, all the documents in
a corpus are scored and ranked using a state of the art ranking func-
tion (e.g. BM25). Then, the top /N document scores associated with
a candidate expert are aggregated in order to rank the experts. This

L University of Glasgow, Scotland, email: ronanc @dcs.gla.ac.uk
2 University of Glasgow, Scotland, email: mounia@acm.org
3 National University of Ireland, Galway, Ireland

simplistic approach has been shown to be more effective than other
approaches for the expert search task for a wide variety of retrieval
functions and parameter settings.

In this paper, we adopt a genetic programming approach to learn
functions that can best aggregate the on-topic information in doc-
uments. The number of documents to aggregate and the weighting
for these documents is very important to the overall performance of
the model. We show that the optimal number of documents to aggre-
gate differs for individual queries. The contributions of this paper are
three-fold:

e We show that the number of documents to aggregate is an impor-
tant factor in the effectiveness of an expert search system (section
3.2).

e We investigate a number of features to determine if they are useful
in predicting the optimal number of documents to aggregate for
the expert search task (sections 3.3 and 3.4).

e We present results from two approaches using genetic program-
ming that aim to learn how to combine features for use in effective
document aggregation functions for the expert search task (section
5).

The remainder of the paper is organised as follows: Section 2 out-
lines some background and related research in the theory and prac-
tice of expert search. Section 3 presents a preliminary analysis of the
problem that further motivates our subsequent experiments. Section 4
outlines the framework in which we attempt to learn expert search ag-
gregation functions. Section 5 presents the experiments and results.
Finally, Section 6 comprises our conclusions and future work.

2 Related Research

The expert search task of the enterprise track of TREC [3, 14] has
been run since 2005 and provides a corpus, topics and associated rel-
evant experts to enable researchers to develop techniques in advanc-
ing the area of expert search. The evaluation metrics used in this task
are similar to those used in the standard IR (information retrieval)
document retrieval task except that the metric measures relevant can-
didate experts rather than relevant documents.

One of the first steps in an expert search system is to identify can-
didate (or potential) experts in the corpus. This is typically done by
extracting the email address and/or names in the ‘mailto:’ tags within
a document. In large semi-structured document collections it is nec-
essary to gather email addresses and other features (e.g. first name
and surname) that may uniquely identify a possible expert candidate.
This is not a trivial problem and is called ‘named entity recognition’
in the domain of information extraction but is beyond the scope of
this paper.

Associating candidates to the information in the corpus has also
been studied and although proximity has been shown to be a use-

536 R. Cummins et al. / Learning Aggregation Functions for Expert Search

ful heuristic [13], candidates are usually deemed to be associated
with documents to some degree if a candidate identifier appears in
the document. Various models of expert search have been formally
studied [2] and it is concluded that the document-centric approach
outperforms other approaches to expert search for most parameters
settings and performance metrics. The document-centric approach to
expert search first ranks the documents in the collection with respect
to the topic using a standard term-weighting scheme (e.g. BM 25).
Then, it aggregates the score of the documents that are associated
with a candidate to produce a final ranking of candidates. Recent re-
search [11, 12] has modelled this approach as a voting problem and
researched various strategies of aggregating the strengths of votes
of documents for specific candidates. Many fusion techniques have
been experimented with that deal with the aggregation of document
scores in order to promote a candidate.

Using notation similar to that previously used [12], R(Q) denotes
a ranked list of documents returned with respect to a query @ and
D(z;) denotes the set of documents associated with a candidate ex-
pert z;. In this approach, scores from a single ranked list of doc-
uments are aggregated to score a candidate expert. The following
fusion (or aggregation) technique combines the scores of documents
associated with a candidate when matched against a specific topic:

N
combSUM (Q, z;, N) = Z

d; €R(Q)ND ()

(5(@.dj)) (D)

where z; is candidate expert ¢, d; is document j, () is a query
(topic), D(x;) is the set of documents associated with z;, R(Q)
is the ranking of documents (i.e. an ordered set) when given query
Q and S(Q, d;) is the score of document d; given query (. Thus,
combSU M is a summation of the top N document scores associated
with the candidate x;.This two-stage approach has consistently out-
performed other approaches (e.g. Model I [2]) on TREC data over the
years. It is trivial to show that by changing the number of aggregated
documents, one can easily change the ranking of candidate experts.
We can also surmise that if IV is large, it will tend to promote experts
who are associated with a larger number of documents, as all docu-
ments with a non-zero score will be aggregated to increase the score
of the candidate. This may not be desirable in certain cases.

Traditional genetic algorithms (GAs) have been adopted by some
to learn term-weights that are useful for retrieval for a specific col-
lection [6]. A genetic programming (GP) approach to evolving term-
weighting schemes in IR has previously been adopted in a number
of works [5, 4]. These GP approaches are a useful form of oft-line
learning as they can often produce formulae that outperform human-
designed solutions. Furthermore, they produce a symbolic represen-
tation of the solution that is useful for future analysis. However, no
work to date has attempted to learn functions for the expert search
problem using evolutionary computation.

3 Preliminary Analysis

In this section, we perform a preliminary analysis to show that dif-
ferent aggregation methods are optimal for different queries. We also
perform an analysis of query-based and expert-based features in or-
der to determine if certain features are correlated with an optimal
aggregation strategy.

3.1 Data & Experimental Setup

The data used in this work are the TREC collections from 2005 to
2008. TREC 2005 and 2006 use the W3C collection and two sets

of topics. TREC 2007 and 2008 use the CSIRO collection and two
sets of topics. Table 1 shows some of the characteristics of the test
collections.

Table 1. TREC Test Collections

3C SIRO
REC 20038T'REC 200@rREC 200 J@rREC 200
of Documents 97,110 97,110 70,716 70,716
of Candidates ,092 ,092 910 910
of Docs with Candidate gl 03,291 03,291 08,159 08,159
of Topics 0 9 0 5

For all the analysis and experiments in this paper, we use the well-
known BM?25 function as the initial ranking function. Therefore,
all of the aggregation functions, ranks and scores are based on the
BM 25 function. Furthermore, we use * to denote statistical signifi-
cance at the 0.05 level and ** to denote statistical significance at the
0.01 level (two-tailed t-test). The MAP (mean average precision) of
relevant experts is used as the main measure of performance as it is
a standard retrieval metric that is stable and well-known in the area.

Performance for Varying Number of Documents
06 T T T T T

IV
055 e 3
X

<

TREC2005 ——
TREC2006 --%-- |
TREC2007 ---*
TREC2008 &

Mean Average Precision
°
=
T

L L
2 4 6 8 10 12 14 16 18 20
Number of Documents

Figure 1. Performance (MAP) for varying N on different collections

Performance for three topics on TREC 2005

\ Topic #1 —+—
04t Y Topic #46 —x— |
X Topic #48 ¥

Mean Average Precision

L L L L L
2 4 6 8 10 12 14 16 18 20
Number of Documents

Figure 2. Performance (MAP) for varying NV on different topics

As described in section 2, the aggregation function (equation 1)
for the expert search model is used to combine information from dif-
ferent documents. We wish to determine how the effectiveness of

R. Cummins et al. / Learning Aggregation Functions for Expert Search 537

the expert search task changes as we change the number of docu-
ments (V) to use in the aggregation process. Figure 1 shows the MAP
(Mean Average Precision) of the aggregation function (combSU M)
for different values of IV on the four TREC collections. We can see
that the performance varies quite significantly for various /N. Using
N =1 (i.e. only using the top associated document to rank the can-
didates) penalises experts that may have a number of documents that
are highly related to the topic. For all of the collections, choosing
an NN greater than 1 (i.e. the top ranked document) improves perfor-
mance. However, if N is increased beyond a certain point, perfor-
mance decreases for all collections.

Varying the number of documents to be aggregated has not been
widely studied, although it has been noted by some researchers that
performance differs as N changes on a specific collection [9]. The
best mean MAP across all the TREC collections is when N = 5 and
indeed, it is optimal on two of the four collections. This is a useful
benchmark function for later experiments and it is worth noting that
it has been found only after an exhaustive search.

Furthermore, Figure 2 shows that the optimal value of NN is also
very different for various topics within the same collection. We show
a sample of three topics for the TREC 2005 dataset. We can see that
for these topics, the performance varies substantially as the number
of documents used in the aggregation (/V) changes. Therefore, if the
most optimal value of N for individual queries for a specific collec-
tion could be predicted, we could substantially improve the perfor-
mance of the expert search system. This phenomenon has not been
reported before. Table 2 shows the performance improvement that
could be achieved if we could predict the best N to use for each
query for each of the four collections. The optimal strategy is la-
belled N = opt(Q). The optimal strategy (i.e. N = opt(Q)) is
found using an exhaustive search for NV for values from 1 to 20 for
each query on each collection®.

Table 2. MAP for different aggregation functions on TREC data

3C SIRO

REC 200: REC 200 REC 200 REC 200
=1 .2249 .4896 2382 .3062
=5 .2392 .5531 3133 .2969
= opt(Q)D.2811xx .6038 *x 3776 x% 3817 %%

Another observation is that the performance of topics on TREC
2006 is substantially greater than any of the other years. The optimal
value for N (N = 15) on this data (TREC 20006) is also substantially
larger than the other collections. This may suggest that the perfor-
mance of the topic is related to the optimal number of documents to
aggregate. The intuition is that for easy queries (i.e. those that have
a high performance in terms of MAP) there are more relevant docu-
ment in the high ranks. Therefore, by including more documents in
the aggregation process (i.e. choosing a higher value of N), more of
these relevant documents will be included in the aggregation process
for each expert. It is ultimately the aggregation of relevant informa-
tion that is crucial in determining the relevance of an expert.

3.2 Individual Query Features

We have shown in the previous section that the performance of dif-
ferent queries are optimal for different values of N. Therefore, if we

4 Although we only report results from BM25, we can also confirm that
other ranking functions tested behave similarly and have optimal values of
N that are highly correlated with those found using BM 25.

wish to predict the best N for a particular query, we must look at fea-
tures which vary across different queries. A number of query-based
feature have previously been developed to predict the performance
of individual queries [8, 7]. A number of these have been shown to
be correlated with query performance.

We now look at these query-based features to see if they are corre-
lated with the optimal value of N for each query. Table 3 shows the
Spearman correlation of a number of query-based features with the
optimal value of N used in the aggregation function for each query.
Firstly, none of the measures are strongly correlated (i.e. 0.5 - 1.0)
with the optimal value of N per query and secondly, only a few of
the measures are weakly correlated (i.e. 0.0 - 0.5) with an optimal
value of N to a significant degree.

It would seem from this analysis that the features chosen may not,
in general, be able to predict the optimal number of documents to ag-
gregate for each query. However, it may be possible that certain non-
linear combinations of such features can be discovered by a learning
approach that may, in turn, be correlated with an optimal aggregation
strategy for each query. We return to this problem in section 4.1.

3.3 Individual Expert Features

Previously, we have shown that different queries have different opti-
mal document aggregation functions. Aggregating different numbers
of documents for different candidate experts may also lead to im-
proved performance. This would essentially mean choosing a differ-
ent N for each expert. However, an exhaustive search for the optimal
values of N (i.e. the number of documents to include in the aggrega-
tion) for a set of experts is extremely costly as there are over a thou-
sand experts in each corpus and the experts are ranked with respect to
each other. This creates a huge number of possible combinations and
therefore an optimal strategy is extremely difficult to find (although
an optimal must exist).

Following this argument, we now chose a number of expert-based
features (i.e. features that change from expert to expert). We anal-
yse these expert-based features by examining them with respect to
relevant and non-relevant experts on a number of topics. The fea-
tures chosen relate to individual experts and to the list of documents
that can possibly be aggregated for each expert. The top_exp-ranks,
feature is the rank of the highest ranked associated document for a
specific expert ;. The no-docs,, feature is the maximum number
of documents that could possibly be aggregated for a specific expert
and the top_exp_score,, feature is the score of the highest ranked
associated document for an expert.

To analyse these simple features, we take the top 50 experts for
each topic (ranked using the baseline approach combSU M where
N = 5) and analyse their associated documents. Table 4 shows the
three expert related features used, where R is the set of relevant can-
didate experts and N R is the set of non-relevant candidates. The
% column shows the consistency of the relationship R < NR for
the features across the topics in the data set. For example, for the
top_exp_score,, feature on TREC 2008, the % of topics where a rel-
evant candidate’s top document score is a lower than a non-relevant
candidate’s top document score, is only 4%.

The table shows that for all of the collections, relevant candi-
date experts are associated with a higher ranked document than non-
relevant candidate experts (top-exp-rank.,). We can also see that
the score of the highest ranked document associated with a candidate
expert is greater for relevant candidate experts (top-exp-scorez,).
However, more interestingly, it can be noticed that relevant candidate
experts are associated with less documents (no.docs.,) on average

538 R. Cummins et al. / Learning Aggregation Functions for Expert Search

Table 3. Spearman correlation of Query-Based Features with the optimal NV

SIRO
eature escription REC 200 REC 2007@@TREC 200
idf min in ¢df query term 0.02 0.32% .16
idf maz ax idf query term 0.01 0.33* 0.05
idf gew td dev of ¢df of query terms .04 0.07 0.10
SCS uery clarity score 0.09 0.36* .04
gl uery length .05 0.02 0.02
top-score core of top ranked doc .17 0.23 0.01
query-scopejifraction of docs returned 0.04 31% 0.09

for three of the four test collections. For the TREC 2006 topics, it can
be seen that relevant experts are associated with more documents, on
average, than non-relevant ones (for 58% of the topics on this col-
lection). This explains why a high value of V increases performance
for this data set only (TREC 2006) as aggregating more documents
will promote candidates that are associated with many documents
(see end of section 3.2). Now that we have outlined a number of
expert-based features, we can attempt to incorporate them into an
aggregation function.

4 Learning Framework

In this section we outline the framework in which we automatically
learn aggregation functions for our expert search approach. In partic-
ular, we can now outline two separate approaches. Our first approach
aims to learn the optimal number of document to aggregate for a spe-
cific query (query-based aggregation). Our second approach aims to
learn the optimal number of documents to aggregate for each specific
expert (expert-based aggregation).

4.1 Learning Query-Based Aggregation Functions

We can view the learning of an aggregation function that aims to
learn the best N as a weighting problem. Figure 3 shows an example
of how such a function may look compared to a discrete function that
either includes the document in the aggregation (i.e. 1) or ignores the
document (i.e. 0). The x-axis shows the rank of each document for a
query, while the y-axis shows the weighting (i.e. 1 to include the doc-
ument and O if we ignore the document). A continuous function (as
shown in Figure 3) is more suitable for a number of reasons: (1) it is
more expressive as it allows different weightings to be applied to the
ranked document scores and (2) it is more informative for use with
a supervised learning approach. In our approach, we allow the top
30 documents associated with each candidate expert to be weighted
accordingly for the learning approach. The top 30 documents will
afford the learning approach ample information to weight and aggre-
gate these documents correctly.

Our learning approach will learn the best weight(Q, d) in the fol-
lowing framework:

N
combSUM (Q, z;, N) = Z

deR(Q)ND (x;)

@)
where weight(Q,d) is the weighting given to a document d with
regard to certain features of @ and S(Q, d) is the score of a document
d with regard to the query Q.

In order to learn this function shape for individual queries (i.e.
a different function for each query-based on the query features),

Example of Continuous Learned Function

weight

Learning Framework
Discrete Cut-off --------

o 5 10 15 20
Number of Documents.

Figure 3. Weighting Documents Using a Continuous Function

we use genetic programming (GP) [10]. Genetic programming is
a population-based learning paradigm that can automatically define
functions given parameters and functions as inputs. It optimises for a
particular performance metric (i.e. MAP for the expert search prob-
lem) on sample of training data using a survival of the fittest approach
and produces a symbolic representation of the function. We use all
of the features outlined in Table 3 (first column) and the document
rank as inputs to our learning process. We also use the following
functions: { x, ,/, /, +, —, exp(), log(), sq() } as inputs to the GP.

4.2 Learning Expert-Based Aggregation Functions

Similarly to section 4.1, we can view the learning of an aggregation
function that aims to learn the best /N for individual experts as a
weighting problem and model it as follows:

> (weight(zi,d) - S(Q,d))

d€R(Q)ND ;)
3)

where weight(x;, d) is the weighting given to a document d with re-
gard to certain features of z; (i.e. the i*" candidate expert). Again, we
allow the learning approach to use the top 30 documents associated
with each expert to be weighted accordingly. The inputs to the GP for
this approach are the expert features outlined in Table 4 and the cur-
rent document rank (R). We also use the following functions: { X,
o /s = exp(), log(), sq() } as inputs to the GP. This variation
of the problem can be viewed similarly to a normalisation problem
for each candidate expert (as different candidate experts have differ-
ent numbers of associated documents). Recent work [1] has indicated
that a simple inverse document frequency (idf) type feature for the

combSUM (Q, z;, N) =

R. Cummins et al. / Learning Aggregation Functions for Expert Search 539

Table 4. Expert-Based Features correlation with Relavant (R) and Non-Relevant Experts (NR)

top_exp.rank,

top erp.scorey.

candidate expert has been useful way of normalising expert scores
on some TREC collections.

5 Experiments

In this section, we will present the results of the two learning ap-
proaches to aggregating documents. We use the TREC collection
from 2005 as the training collection and the remaining data as the test
data. As a result, we are likely to see improvements for the learning
approach on TREC 2005. However, more important are the results
on the unseen test data (TREC 2006-2008). We also report precision
at 10 (P@10) experts in parenthesis in the tables in this section. As
benchmark aggregation approaches, we use combSU M (equation 1)
when N = 1 and N = 5. Statistical significance is measured against
the best benchmark (N = 5). We also use the best normalisation
approach (i.e. an ¢df normalisation approach) outlined in recent re-
search [1]. For each of the two approaches undertaken in this work
(query-based and expert-based), we report the results from the best
two runs (out of four) of the GP. All GP runs use a population of 2000
randomly generated individuals run for 50 generations and optimsed
for MAP.

5.1 Results: Query-Based Aggregation

Table 5. MAP (P@10) for query-based functions on TREC training and
test data
3C SIRO
chemd@I'REC 2005 REC 2006 REC 2007 REC 2008
— 102249 (0.292) 4896 (0585 2382 (0.112 JiD.3062 (0.289)
= 5.2392 (0.33) .5531 (0.642]D.3133 (0.132]D.2969 (0.303)
df.; [JD-2021(0.298) 13373 (0.367 JD-2815 (0.108 JiD-3299 = (0.301

G P>JD.2659 (0.354) .5449 (0.646|D.2570 (0.114|D.3127 (0.327)
G P,D.2652 xx (0.348 .5457 (0.630)D.2578 (0.122]4D.3023 (0.298)

Table 5 shows the results of the best two GP runs (QG P> and
QGPy) for the query-based aggregation approach. We can see that
there is a significant improvement on the training data (TREC 2005)
for the learned functions. However, this does not generalise to un-
seen data. Although all learned functions improve performance over
a poor baseline aggregation function (i.e. when N = 1), they are
not better than the best benchmark (N = 5). This seems to confirm
the previous analysis (section 3.3) that showed that the query-based
features were not strongly correlated to the optimal value for N. Fur-
thermore, it suggests that any combination (even non-linear) of the
query-based features is not likely to bring about an improvement in
performance. Therefore, although different queries have different op-
timal numbers of documents for aggregation, it cannot be predicted
on a per-query basis by the features we have examined.

Table 6. MAP (P@10) for learned expert-based functions on TREC
training and test data

SIRO
chem EC 2005 REC 2006 |MLREC 2007 REC 2008
2249 (0.292) 4896 (0.585 JiD.2382 (0.112) [iD-3062 (0.289)
2392 (0.33) 5531 (0.642JiD.3133 (0.132) [lD.2969 (0.303)
df“ 2021 (0.298) 3373 (0.367 02815 (0.108) [D-3299 = (0.301)

P2 2821 % (0. 386
P3 2843 x5 (0. 38)

.5466 (0.604 |D.3546% (0.130D.3634 *x (0.345
.5185 (0.589)D.3426 (0.132) |D.3697 +x (0.361

5.2 Results: Expert-Based Aggregation

Table 6 shows the results of the best two runs of the GP for the expert-
based aggregation approach. Firstly, we can see that the performance
increases significantly on the training data. Furthermore, on TREC
2007 and 2008 test data, performance also increases significantly.
We can see that for TREC 2006 (which achieves an exceptionally
high MAP overall) the performance decreases slightly. In general for
the expert-based approach, the learned aggregation functions tend to
improve performance over a good benchmark function (N = 5). In-
terestingly, the idf approach, which normalises the experts based on
the number of documents in which an expert z; occurs (no-docsz,),
is poor on all but one collection.

5.2.1 Robustness

As we have seen, choosing the most optimal N document to ag-
gregate significantly improves performance. We have also seen that
choosing the best IV is not a trivial problem. Therefore, a robust (or
at least predictable) aggregation function conveys many advantages.
In this section, we analyse the performance of the expert-based ag-
gregation functions for vastly different values of N.

Figures 4 and 5 show the robustness of the learned schemes for
varying numbers of documents (/V). We can see that for nearly all
of the collections the performance of the learned schemes (G P2 and
G P;3) increase as IV increases. Both learned schemes have a poor
performance at N = 1 but as more documents are included the per-
formance increases and is quite predicable and stable (i.e. a single
high value of N can be used with these learned schemes for good
stable performance). This is most likely because these aggregation
functions were learned when N was high (N = 30), and therefore
learned how to properly weight documents at these lower ranks. Con-
versely, we can see that if one aggregates documents using the base-
line approach (denoted B M 25), the performance tends to peak early
and then degrades.

Another interesting observation is that the learned schemes ap-
proach the performance of the best benchmark on the TREC 2006
data as the number of documents increases. Indeed, we have already
indicated (section 3.4) that for this collection (TREC 2006), can-
didate experts with more associated documents are more relevant.
However, it is also interesting that there is only a small drop (if any)
in performance on all the other TREC collections when using a large

540 R. Cummins et al. / Learning Aggregation Functions for Expert Search

number of documents for the aggregation (e.g. N = 60). From inspec-
tion of our learned formula (shown as G P.), it can be shown that the
no-docs,,; feature (i.e. the number of documents associated with a
expert) is used to normalise the scores for each expert. This prevents
experts, that are associated with many documents, being unfairly pro-
moted. The learning approach adopted has learned to combine this in
a way so that documents are weighted correctly at lower ranks (e.g.
30, 40, 50 and 60 etc). This is also achieved using the rank (R) of the
document.

\/\/Z/no.docszi/(\/(IO/R) +R)
V/5¢(10/R) + R + sq(10/R) + VR %2

where R is the rank of the document in the initial ranking and
no.-docsg, is the total number of documents associated with expert
Zi.

GP, =

Robustness of different schemes on TREC 2005 & 2006

TREC2006 BM25 & |
TREC2006 GP2 —-a--
TREC2006 GP3 - -0~

Mean Average Precision
2
T

Number of Documents

Figure 4. Robustness of aggregation functions (TREC 2005 & 2006)

Robustness of different schemes on TREC 2007 & 2008

Mean Average Precision

TREC2007 BM25 —+—
TREC2007 GP2 -~

o1p TREC2007 GP3 %~ |
TREC2008 BM25 &
TREC2008 GP2 ~-#--
TREC2008 GP3 --0--
005 ;

10 20 30 40 50 60
Number of Documents

Figure 5. Robustness of aggregation functions (TREC 2007 & 2008)

6 Conclusion

We have shown that performance gains can be achieved by modi-
fying the number of documents chosen for use in the aggregation
function of an expert search system. We have performed an analysis
of two approaches to aggregating document information in the expert

search task. We used a learning approach to find suitable aggregation
functions for both approaches. We have shown that there is no im-
provement when using query performance predictors to estimate a
suitable aggregation function for individual queries.

However, we have shown that genetic programming can find use-
ful aggregation functions on a per expert basis. These function out-
perform other analytical idf normalisation expert search approaches
outlined in the literature. We have also shown that the aggregation
functions produced from this learning approach are robust when us-
ing larger numbers of documents in the aggregation process.

7 ACKNOWLEDGEMENTS

Ronan Cummins is funded by the Irish Research Council for Sci-
ence, Engineering and Technology, co-funded by Marie Curie Ac-
tions under FP7. Mounia Lalmas is currently funded by Microsoft
Research/Royal Academy of Engineering.

REFERENCES

[1]1 K. Balog and M. de Rijke, ‘Associating people and documents’, in 30th
European Conference on Information Retrieval (ECIR 2008), pp. 296—
308, Glasgow, (April 2008).

[2] Krisztian Balog, Leif Azzopardi, and Maarten de Rijke, ‘Formal models
for expert finding in enterprise corpora’, in SIGIR '06: Proceedings of
the 29th annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 43-50, New York, NY, USA,
(2006). ACM.

[3] Nick Craswell and Arjen P. De Vries, ‘Overview of the trec-2005 en-
terprise track’, in In The Fourteenth Text REtrieval Conf. Proc. (TREC,
(2005).

[4] Ronan Cummins and Colm O’Riordan, ‘Evolving local and global
weighting schemes in information retrieval’, Information Retrieval,
9(3), 311-330, (2006).

[5] Weiguo Fan, Ming Luo, Li Wang, Wensi Xi, and Edward A. Fox, ‘Tun-
ing before feedback: combining ranking function discovery and blind
feedback for robust retrieval’, in the Proceedings of the 27th Annual
International ACM SIGIR Conference, U.K., (2004). ACM.

[6] M. Gordon, ‘Probabilistic and genetic algorithms in document re-
trieval’, Commun. ACM, 31(10), 1208-1218, (1988).

[7]1 Claudia Hauff, Djoerd Hiemstra, and Franciska de Jong, ‘A survey of
pre-retrieval query performance predictors’, in CIKM '08: Proceeding
of the 17th ACM conference on Information and knowledge manage-
ment, pp. 1419-1420, New York, NY, USA, (2008). ACM.

[8] Ben He and Iadh Ounis, ‘Query performance prediction’, Inf. Syst.,
31(7), 585-594, (20006).

[9] Jiepu Jiang, Wei Lu, and Dan Liu, ‘Csir at trec 2007 expert search task’,
in TREC, (2007).

[10] John R. Koza, Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection, MIT Press, 1992.

[11] Craig Macdonald and Iadh Ounis, ‘Voting for candidates: adapting data
fusion techniques for an expert search task’, in CIKM ’06: Proceedings
of the 15th ACM international conference on Information and knowl-
edge management, pp. 387-396, New York, NY, USA, (2006). ACM.

[12] Craig Macdonald and Iadh Ounis, ‘Searching for expertise: Experi-
ments with the voting model’, The Computer Journal, (2008).

[13] Desislava Petkova and W. Bruce Croft, ‘Proximity-based document rep-
resentation for named entity retrieval’, in CIKM ’07: Proceedings of the
sixteenth ACM conference on Conference on information and knowl-
edge management, pp. 731-740, New York, NY, USA, (2007). ACM.

[14] Ian Soboroff, Arjen P. De Vries, and Nick Craswell, ‘Overview of the
trec-2006 enterprise track’, in In The Fifthteenth Text REtrieval Conf.
Proc. (TREC), (2006).

[15] Dawit Yimam-seid and Alfred Kobsa, ‘Expert finding systems for or-
ganizations: Problem and domain analysis and the demoir approach’,
Journal of Organizational Computing and Electronic Commerce, 13,
2003, (2002).

