
Verifying Properties of
Infinite Sequences of Description Logic Actions

Franz Baader1 and Hongkai Liu1 and Anees ul Mehdi2

Abstract. The verification problem for action logic programs with
non-terminating behaviour is in general undecidable. In this paper,
we consider a restricted setting in which the problem becomes de-
cidable. On the one hand, we abstract from the actual execution
sequences of a non-terminating program by considering infinite se-
quences of actions defined by a Büchi automaton. On the other hand,
we assume that the logic underlying our action formalism is a decid-
able description logic rather than full first-order predicate logic.

1 INTRODUCTION

Action programming languages like Golog [9] and Flux [13], which
are respectively based on the situation calculus and the fluent cal-
culus, can be used to control the behaviour of autonomous agents
and mobile robots. Often, programs written in these languages are
non-terminating since the robots are supposed to perform open ended
tasks, like delivering coffee as long as there are requests. To ensure
that the execution of such a program leads to the desired behaviour
of the robot, one needs to specify the required properties in a formal
way, and then verify that these requirements are met by any (infinite)
execution of the program. In the coffee delivery example, one might,
e.g., want to show that anyone requesting coffee will eventually get it
delivered. When trying to automate this verification task, one has to
deal with two sources of undecidability: (i) the expressiveness of the
programming constructs (while loops, recursion) and (ii) the expres-
siveness of situation/fluent calculus, which encompasses full first-
order predicate logic.

Verification for non-terminating Golog programs has first been ad-
dressed by De Giacomo, Ternovskaia, and Reiter [8], who express
both the semantics of the programs and the properties to be veri-
fied using an appropriate fixpoint logic. To verify a property of a
program, one first needs to compute a fixpoint, which is expressed
in second-order logic. In general, this computation need not termi-
nate (this corresponds to the first source of undecidability). Even if
the fixpoint computation does terminate, verifying that the desired
property holds requires a manual, meta-theoretic proof. Attempts to
automate this approach are usually restricted to propositional logic
[11]. Claßen and Lakemeyer [7] aim at the fully automated verifi-
cation of non-terminating Golog programs. They specify properties
in an extension of the situation calculus by constructs of the first-
order temporal logic CTL∗. Verification then basically boils down to
the computation of a fixpoint, where again this computation need not
terminate. If the fixpoint computation terminates, then the proof that

1 TU Dresden, Germany, email: {baader,liu}@tcs.inf.tu-dresden.de; partially
supported by DFG under grant BA 1122/10–2.

2 KIT Karlsruhe, Germany, email: ame@aifb.uni-karlsruhe.de; partially sup-
ported by the EU in the project SOA4All (http://www.soa4all.eu).

the desired property holds is a deduction in the underlying logic (i.e.,
no meta-theoretic reasoning is required). However, due to the second
source of undecidability mentioned above, this deduction problem is
in general not decidable.

In the present paper, we introduce a restricted setting, where both
sources of undecidability are avoided. Regarding the first source, in-
stead of examining the actual execution sequences of a given Golog
or Flux program, we consider infinite sequences of actions that are
accepted by a given Büchi automaton B. If B is an abstraction of
the program, i.e. all possible execution sequences of the program are
accepted by B, then any property that holds in all the sequences ac-
cepted by B is also a property that is satisfied by any execution of the
program. For example, assume that, among other actions, researcher
John can perform the action “review paper,” which makes him tired,
and that robot Robin can perform the actions “deliver paper” and
“deliver coffee,” where the latter one results in John no longer be-
ing tired, whereas the former one results in John having to review
yet another paper. The property φtired we want to ensure is that John
does not stay tired indefinitely, i.e., whenever he is tired at some time
point, then there is a later time point at which he is not tired. As-
sume that there is a complex program controlling Robin’s behaviour,
but we can show that Robin will infinitely often deliver coffee. Thus,
the Büchi automaton Bdeliver that accepts all action sequences that
contain the action “deliver coffee” infinitely often is an abstraction
of this program, and it is easy to see that any infinite sequence of
actions accepted by this automaton satisfies φtired .

To avoid the second source of undecidability, we restrict the un-
derlying logic to a decidable description logic. Description Logics
(DLs) [2] are a well-known family of knowledge representation for-
malisms that may be viewed as fragments of first-order logic (FO).
The main strength of DLs is that they offer considerable expressive
power going far beyond propositional logic, while reasoning is still
decidable. An action formalism based on DLs was first introduced in
[5], and it was shown that important reasoning problems such as the
projection problem, which are undecidable in the full situation/fluent
calculus, are decidable in this restricted formalism.

In this paper, we show that these positive results can be extended to
the verification problem. As logic for specifying properties of infinite
sequences of DL actions, we use the temporalized DL ALC-LTL re-
cently introduced in [3], which extends the well-known propositional
linear temporal logic (LTL) [12] by allowing for the use of axioms
(i.e., TBox and ABox statements) of the basic DL ALC in place of
propositional letters.3 Note that the property φtired that we have used
in the above coffee delivery example can easily be expressed in LTL.

In the next section, we first recall the basic definitions for DLs,

3 More precisely, we will consider the extension of ALC-LTL to the more
expressive DL ALCO, but disallow TBox statements.

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-53

53

action formalisms based on DLs, temporalized DLs, and Büchi au-
tomata, and then introduce the verification problem and its dual, the
satisfiability problem, which asks whether there is an infinite se-
quence of actions accepted by the given Büchi automaton B that sat-
isfies the property. Since these problems are interreducible in polyno-
mial time, we then concentrate on solving the satisfiability problem.
In Section 3, we consider a restricted version of the general problem,
where the Büchi automaton accepts exactly one infinite sequence of
unconditional actions. The general problem is then investigated in
Section 4. Because of space constraints, detailed proofs of our re-
sults and a formalization of the above example had to be omitted.
They can be found in [4].

2 PRELIMINARIES

We start by introducing the DL ALCO, which extends the basic DL
ALC by nominals, i.e., singleton concepts.

Definition 1 Let NC , NR, and NI respectively be disjoint sets
of concept names, role names, and individual names. The set of
ALCO-concept descriptions is the smallest set such that

• all concept names are ALCO-concept descriptions;
• if a ∈ NI , then {a} is an ALCO-concept description;
• if C, D are ALCO-concept descriptions and r ∈ NR, then ¬C,

C �D, C �D, ∃r.C, and ∀r.C are ALCO-concept descriptions.

An ALCO-concept definition is of the form A ≡ C, where A is
a concept name and C an ALCO-concept description. An ALCO-
TBox T is a finite set of concept definitions with unique left-hand
sides. Concept names occurring on the left-hand side of a definition
of T are called defined in T whereas all other concept names are
called primitive in T . The TBox T is acyclic iff there are no cyclic
dependencies between the definitions. An ALCO-ABox A is a finite
set of ALCO-assertions of the form C(a), r(a, b), ¬r(a, b), where
C is an ALCO-concept description, r ∈ NR, and a, b ∈ NI .

We use � to abbreviate A�¬A. Given an assertion γ, its negation ¬γ
is again an assertion: ¬(C(a)) := (¬C)(a), ¬(r(a, b)) := ¬r(a, b),
and ¬(¬r(a, b)) := r(a, b). We restrict our attention to acyclic
TBoxes since, for more general TBox formalisms involving general
concept inclusion axioms (GCIs), it is not clear how to define an ap-
propriate semantics for DL actions [5]. The presence of nominals in
the concept description language and of negated roles in ABoxes is
needed for our treatment of DL actions (see [5]).

Definition 2 An interpretation is a pair I = (ΔI , ·I) where the
domain ΔI is a non-empty set, and ·I is a function that assigns a
set AI ⊆ ΔI to every concept name A, a binary relation rI ⊆
ΔI × ΔI to every role name r, and an element aI ∈ ΔI to every
individual name a such that a
= b implies aI
= bI (UNA). This
function is extended to ALCO-concept descriptions as follows:

• {a}I = {aI};
• (C�D)I = CI∩DI , (C�D)I = CI∪DI , (¬C)I = ΔI\CI;
• (∃r.C)I = {x ∈ ΔI | ∃y ∈ ΔI . (x, y) ∈ rI ∧ y ∈ CI};
• (∀r.C)I = {x ∈ ΔI | ∀y ∈ ΔI . (x, y) ∈ rI → y ∈ CI}.

The interpretation I is a model of the TBox T if AI = CI for all
A ≡ C ∈ T , and of the ABox A if it satisfies all the assertions in A,
i.e., aI ∈ CI for all C(a) ∈ A, (aI , bI) ∈ rI for all r(a, b) ∈ A,
and (aI , bI)
∈ rI for all ¬r(a, b) ∈ A. We say that A is consistent
w.r.t. T if there is a model of A that is also a model of T .

The temporalized DL ALCO-LTL is obtained from propositional
linear temporal logic (LTL) [12] by allowing for the use of ALCO-
assertions in place of propositional letters (see [10] for a survey of
temporalized DLs).

Definition 3 ALCO-LTL formulae are defined by induction:

• if β is an ALCO-assertion, then β is an ALCO-LTL formula;
• if φ, ψ are ALCO-LTL formulae, then so are φ ∧ ψ, φ ∨ ψ, ¬φ,

φUψ, and Xφ.

We use �φ to abbreviate ¬(�(a)U¬φ). The difference to the logic
ALC-LTL introduced in [3] is, on the one hand, that ALCO-
assertions rather than just ALC-assertions can be used. On the other
hand, an ALC-LTL formula may also contain GCIs, whereas in
ALCO-LTL we do not allow the use of terminological axioms. In-
stead, we use a global acyclic TBox, whose concept definitions must
hold at every time point. The semantics of ALCO-LTL is based on
ALCO-LTL structures, which are infinite sequences of interpreta-
tions over the same non-empty domain Δ in which every individual
name stands for a unique element of Δ.

Definition 4 An ALCO-LTL structure is a sequence I =
(Ii)i=0,1,... of ALCO-interpretations Ii = (Δ, ·Ii) such that
aIi = aIj for all individual names a and all i, j ∈ {0, 1, 2, . . .}.
Given an ALCO-LTL formula φ, an ALCO-LTL structure I =
(Ii)i=0,1,..., and a time point i ∈ {0, 1, 2, . . .}, validity of φ in I

at time i (written I, i |= φ) is defined inductively:

I, i |= β iff Ii satisfies the ALCO-assertion β
I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= φ ∨ ψ iff I, i |= φ or I, i |= ψ
I, i |= ¬φ iff not I, i |= φ
I, i |= Xφ iff I, i + 1 |= φ
I, i |= φUψ iff there is k ≥ i such that I, k |= ψ

and I, j |= φ for all j, i ≤ j < k

In this paper, we assume that the transition from Ii to Ii+1 in an
ALCO-LTL structure is caused by the application of an action. We
recall the pertinent definitions for DL actions from [5]. For the sake
of simplicity, we omit occlusions from our presentation.

Definition 5 Let T be an acyclic ALCO-TBox. An ALCO-action α
for T is a pair (pre, post) which consists of

• a finite set pre of ALCO-assertions, the pre-conditions;
• a finite set post of conditional post-conditions of the form β/γ,

where β is an ALCO-assertion and γ is a primitive literal for T ,
i.e., an assertion of the form A(a), ¬A(a), r(a, b), or ¬r(a, b)
where A is a primitive concept name in T , r is a role name, and
a, b are individual names.

If every β/γ ∈ post is of the form �(a)/γ, then we call α an un-
conditional action, and in this case we write γ instead of �(a)/γ.
Otherwise, it is a conditional action.

Basically, such an action is applicable in an interpretation if its pre-
conditions are satisfied. The conditional post-condition β/γ requires
that γ must hold after the application of the action if β was satisfied
before the application. In addition, nothing should change that is not
required to change by some post-condition.

Definition 6 Let T be an acyclic TBox, α = (pre, post) an ALCO-
action for T , and I, I′ interpretations sharing the same domain and

F. Baader et al. / Verifying Properties of Infinite Sequences of Description Logic Actions54

interpreting all individual names in the same way. We say that α may
transform I to I′ w.r.t. T (I ⇒T

α I′) if I and I′ are both models of
T and, for each primitive concept name A in T and each role name
r, we have AI′

= ((AI ∪A+) \A−) and rI
′
= ((rI ∪ r+) \ r−),

where A+ = {bI | β/A(b) ∈ post ∧ I |= β},
A− = {bI | β/¬A(b) ∈ post ∧ I |= β},
r+ = {(aI , bI) | β/r(a, b) ∈ post ∧ I |= β},
r− = {(aI , bI) | β/¬r(a, b) ∈ post ∧ I |= β}.

We say that α is executable in I if I is a model of pre.

It is an easy consequence of this definition that, for any model I
of T , there is exactly one model I′ of T such that I ⇒T

α I′ [5].
An action that tries to add and remove the same literal at the same
time does not really make sense. In the above definition, we have
(arbitrarily) favoured removal of such a literal. However, in reality we
just want to disallow such actions. For this reason, say that the action
α is consistent with T if, for all β1/γ, β2/¬γ in the post-conditions
of α, we have that the ABox {β1, β2} is inconsistent w.r.t. T . In the
following we assume that all actions are consistent with T .

We extend the notation ⇒T
α to finite sequences of actions u =

α1 · · ·αm by writing I ⇒T
u I′ if there are models I1, . . . , Im−1

of T such that I ⇒T
α1 I1 ⇒T

α2 I2 · · · ⇒T
αm−1 Im−1 ⇒T

αm
I′.

The projection problem is concerned with the question of whether a
certain property holds after the execution of such a finite sequence
of actions. Formally, this problem is defined as follows. Let T be an
acyclic ALCO-TBox, u a finite sequence of ALCO-actions for T ,
and A an ALCO-ABox. The ALCO-assertion β is a consequence
of applying u in A w.r.t. T if, for all models I of A and T and all
models I′ of T with I ⇒T

u I′, we have I′ |= β. As shown in [5],
the projection problem for finite sequences of ALCO-actions can be
reduced to the consistency problem for ALCO-ABoxes w.r.t. acyclic
ALCO-TBoxes (and vice versa), and thus is PSpace-complete. Note
that this reduction crucially depends on the availability of nominals
in the target language.

In this paper, we are interested in deciding whether the execu-
tions of infinite sequences of actions satisfy a (temporal) property
expressed in ALCO-LTL. Let Σ be a finite set of ALCO-actions for
T . An infinite sequence of such actions can be viewed as an infinite
word over the alphabet Σ, i.e., a mapping w : N → Σ, where N

denotes the set of non-negative integers.

Definition 7 Let T be an acyclic ALCO-TBox, A an ALCO-ABox,
and w an infinite sequence of ALCO-actions for T . The ALCO-LTL
structure I = (Ii)i=0,1,... is generated by w from A w.r.t. T if I0 is
a model of A and, for all i ≥ 0, we have Ii ⇒T

w(i) Ii+1 and w(i) is
executable in Ii.

For the verification problem, we do not examining the actual ex-
ecution sequences of a given action program, but instead consider
infinite sequences of actions that are accepted by a Büchi automa-
ton abstracting such a program. Büchi automata are finite automata
accepting infinite words [14]. A Büchi automaton B basically looks
and works like a “normal” finite automaton, but it receives infinite
words w as inputs, and thus generates infinite runs. An infinite run
of B on w is an infinite word r : N → Q over the alphabet Q of
states of B such that r(0) is an initial state and, for every i ≥ 0, there
is a transition of B from the state r(i) with letter w(i) to the state
r(i + 1). This run is accepting if it infinitely often reaches a final
state. The language Lω(B) of infinite words accepted by B consists
of all infinite words w over Σ such that B has an accepting run on w.

We are now ready to give a formal definition of the verification
problem, which was informally introduced in Section 1, as the prob-
lem of deciding validity of an ALCO-LTL formula w.r.t. an acyclic
TBox, an ABox, and a Büchi automaton.

Definition 8 Let T be an acyclic ALCO-TBox, A an ALCO-ABox,
Σ a finite set of ALCO-actions for T , B a Büchi automaton for the
alphabet Σ, and φ an ALCO-LTL formula.

• φ is valid w.r.t. T , A, and B if I, 0 |= φ holds for all w ∈ Lω(B)
and all ALCO-LTL structures I generated by w from A w.r.t. T .

• φ is satisfiable w.r.t. T , A, and B if there is w ∈ Lω(B) and an
ALCO-LTL structure I generated by w from A w.r.t. T such that
I, 0 |= φ.

Obviously, φ is valid w.r.t. T , A and B iff ¬φ is unsatisfiable w.r.t. T ,
A and B. For this reason, we concentrate in the following on solving
the satisfiability problem.

3 THE CASE OF A SINGLE CYCLIC
SEQUENCE OF UNCONDITIONAL ACTIONS

We say that the infinite word w is cyclic if it starts with an initial word
α1 · · ·αm and then repeats a non-empty word β1 · · ·βn infinitely of-
ten. We denote such a cyclic word by w = α1 · · ·αm(β1 · · ·βn)ω .
The following facts are well-known [14] (and easy to see): if B is
a Büchi automaton that accepts a singleton language {w}, then w
is a cyclic word of the form w = α1 · · ·αm(β1 · · ·βn)ω where
m, n are bounded by the cardinality of the set of states of B; con-
versely any singleton language {w} consisting of a cyclic word
w = α1 · · ·αm(β1 · · ·βn)ω is accepted by a corresponding Büchi
automaton Bw such that the cardinality of the set of states of B is
linear in m + n.

In this section, we consider only Büchi automata accepting sin-
gleton languages. In addition, we restrict the attention to uncondi-
tional actions. Thus, for the remainder of this section, we assume
that T is an acyclic ALCO-TBox, A an ALCO-ABox, Σ a finite
set of unconditional ALCO-actions for T , Bw a Büchi automa-
ton for the alphabet Σ accepting the singleton language {w} for
w = α1 · · ·αm(β1 · · ·βn)ω , and φ an ALCO-LTL formula. Such a
cyclic sequence of actions represents a program that, after an initial-
ization phase, runs in a non-terminating loop.

The main observation that allows us to solve the satisfiability prob-
lem for φ w.r.t. T , A and Bw is that each ALCO-LTL structure gen-
erated by w from A w.r.t. T “runs into a cycle” after the first m+2n
interpretations.

Lemma 1 Let I = (Ii)i=0,1,... be an ALCO-LTL structure gen-
erated by w = α1 · · ·αm(β1 · · ·βn)ω from A w.r.t. T . Then
Im+kn+i = Im+n+i for all k ≥ 2 and 0 ≤ i < n.

Basically, we now apply the approach for solving the projec-
tion problem from [5] to the finite sequence of actions α1 · · ·αm

β1 · · ·βnβ1 · · ·βn−1. In this approach, time-stamped copies of all
concept and role names occurring in the input (i.e., in w, T ,A, φ)
are generated, together with a number of additional auxiliary con-
cept names. Using this extended vocabulary, one builds, for every
assertion γ occurring in the input, time-stamped variants γ(i) for all
i, 0 ≤ i ≤ m+2n−1. The extended vocabulary is also used to con-
struct an acyclic ALCO-TBox Tred and an ALCO-ABox Ared such
that the following holds:

F. Baader et al. / Verifying Properties of Infinite Sequences of Description Logic Actions 55

• for every sequence I0, . . . , Im+2n−1 of models of T such that I0

is a model of A and Ii ⇒T
w(i) Ii+1 (0 ≤ i < m + 2n− 1), there

is a model J of Ared and Tred such that

(∗) Ii satisfies γ iff J satisfies γ(i)

holds for all i, 0 ≤ i ≤ m+2n− 1 and all assertions γ occurring
in the input.

• for every model J of Ared and Tred there exists a sequence
I0, . . . , Im+2n−1 of models of T such that I0 is a model of A,
Ii ⇒T

w(i) Ii+1 (0 ≤ i < m + 2n − 1), and (∗) holds for all
i, 0 ≤ i ≤ m+2n− 1 and all assertions γ occurring in the input.

By Lemma 1, any finite sequence I0, . . . , Im+2n−1 satisfying the
properties stated in the above items can be extended to an ALCO-
LTL structure generated by w = α1 · · ·αm(β1 · · ·βn)ω from A
w.r.t. T by setting Im+kn+i := Im+n+i for all k ≥ 2 and
0 ≤ i < n. We can enforce executability of the actions w(j) in
Ij by adding the ABox

Apre =
[

0≤j<m+2n−1

{γ(j) | γ ∈ prej},

where prej is the set of pre-conditions of the action w(j). To ensure
that the ALCO-LTL formula φ is satisfied, we generate an additional
ABox Aφ by applying a non-deterministic tableau algorithm. In this
algorithm, we have time-stamped copies ψ(i) for every subformula ψ
of φ. Note that, for the atomic subformulae (i.e., ALCO-assertions),
these are just the time-stamped copies introduced above. The tableau
algorithm starts with the set S = {φ(0)} and then modifies this set
by applying tableau rules. Instead of defining all these rules in detail,
we just sketch the most interesting ones, which deal the temporal
operators X and U (a complete description can be found in [4]).

There are two variants of the rule that deals with the X-operator.
If, for some i < m + 2n − 1, we have (Xψ)(i) ∈ S, then the
first variant applies, which adds ψ(i+1) to S and removes (Xψ)(i).
If (Xψ)(m+2n−1) ∈ S, then the second variant applies, which adds
ψ(m+n) to S and removes (Xψ)(i).

There are also two variants of the rule that deals with the U oper-
ator, depending on whether the until formula (ψ1Uψ2)

(i) ∈ S has a
time-stamp i ≤ m + n or i > m + n. Here, we describe only the
more interesting variant, which is the one for i > m+n. This variant
(non-deterministically) picks a k ∈ {m + n, . . . , m + 2n − 1}.

If i ≤ k ≤ m + 2n− 1, then the rule adds ϕ
(i)
1 , . . . , ϕ

(k−1)
1 , ϕ

(k)
2

to S and removes (ψ1Uψ2)
(i).

If m + n ≤ k < i, then the rule adds ϕ
(i)
1 , . . . , ϕ

(m+2n−1)
1 ,

ϕ
(m+n)
1 , . . . , ϕ

(k−1)
1 , ϕ

(k)
2 and removes (ψ1Uψ2)

(i).
It can be shown that rule application always terminates with a

final set S, which contains only (time-stamped) ALCO-assertions,
i.e., the final S is an ABox. Since the tableau algorithm has non-
deterministic rules (such as the rule dealing with U), it can produce
several such ABoxes, depending on the choices made in the non-
deterministic rules. We say that the ABox Aφ is induced by φ w.r.t.
w if it is one of the ABoxes produced by applying the tableau algo-
rithm to {φ(0)}.

In the restricted setting considered in this section, we can reduce
the satisfiability problem introduced in Definition 8 to consistency of
an ALCO-ABox w.r.t. an acyclic ALCO-TBox:

Lemma 2 The ALCO-LTL formula φ is satisfiable w.r.t. T , A, and
Bw iff there is an ABox Aφ induced by φ w.r.t. w such that Ared ∪
Apre ∪ Aφ is consistent w.r.t. Tred.

The sizes of Ared,Apre, and Tred are polynomial in the size of A,
the size of T , and w [5]. In addition, our tableau algorithm is an
NPSpace-algorithm. Since NPSpace is equal to PSpace and the con-
sistency problem for ALCO-ABoxes w.r.t. acyclic ALCO-TBoxes
is in PSpace, this shows that we can decide the satisfiability prob-
lem within PSpace. PSpace-hardness follows from the fact that the
PSpace-complete projection problem for ALCO-actions can be re-
duced to the validity problem, which in turn can be reduced to the
satisfiability problem. In [5], it is shown that the projection problem
is PSpace-hard even for the empty TBox ∅, a fixed ABox A, and
a fixed unconditional action without preconditions α. It is easy to
see that the assertion γ is a consequence of applying α in A w.r.t.
∅ iff the ALCO-LTL formula Xγ is valid w.r.t. ∅, A and Bw where
w = α(α)ω .

Theorem 1 Satisfiability and validity of an ALCO-LTL formula
w.r.t. an acyclic ALCO-TBox, an ALCO-ABox, and a Büchi au-
tomaton accepting a singleton language over an alphabet of uncon-
ditional actions are PSpace-complete.

4 THE GENERAL CASE

Now, we consider arbitrary Büchi automata and (possibly) condi-
tional actions. In this setting, we cannot use the approach introduced
in the previous section. On the one hand, it is easy to see that, for
conditional actions, the crucial Lemma 1 need not hold. On the other
hand, while any non-empty language accepted by a Büchi automaton
contains a cyclic word, it may also contain non-cyclic ones. Thus, it
is not a priori clear whether a cyclic word can be taken as the word
w ∈ Lω(B) required by the definition of the satisfiability problem.

Our approach for solving satisfiability of an ALCO-LTL formula
φ w.r.t. an acyclic ALCO-TBox T , an ALCO-ABox A, and a Büchi
automaton B over an alphabet Σ of (possibly) conditional actions is
based on the approach for deciding satisfiability in ALC-LTL intro-
duced in [3]. Given an ALC-LTL formula φ to be tested for satisfi-
ability, this approach builds the propositional abstraction bφ of φ by
replacing each ALC-assertion4 γ occurring in φ by a corresponding
propositional letter pγ . Let L be the set of propositional letters used
for the abstraction. Consider a set S ⊆ P(L), i.e., a set of subsets of
L. Such a set induces the following (propositional) LTL formula:

bφS := bφ ∧ �

0
@ _

X∈S

0
@ ^

p∈X

p ∧
^

p �∈X

¬p

1
A

1
A

Intuitively, this formula is satisfiable if there exists a propositional
LTL structure satisfying bφ in which, at every time point, the set of
propositional letters satisfied at this time point is one of the sets X ∈
S. To get satisfiability of φ from satisfiability of bφS for some S ⊆
P(L), we must check whether the sets of assertions induced by the
sets X ∈ S are consistent. To be more precise, assume that a set
S = {X1, . . . , Xk} ⊆ P(L) is given. For every i, 1 ≤ i ≤ k, and
every concept name A (role name r) occurring in φ, we introduce
a copy A(i) (r(i)). We call A(i) (r(i)) the ith copy of A (r). The
assertion γ(i) is obtained from γ by replacing every occurrence of a
concept or role name by its ith copy. The set S = {X1, . . . , Xk}
induces the following ABox:

AS :=
[

1≤i≤k

{γ(i) | pγ ∈ Xi} ∪ {¬γ(i) | pγ
∈ Xi}.

4 In [3], both assertions and GCIs need to be replaced. In the present paper,
GCIs are not allowed to occur in LTL formulae, and thus we need to deal
only with assertions.

F. Baader et al. / Verifying Properties of Infinite Sequences of Description Logic Actions56

The following lemma is proved in [3].

Lemma 3 The ALC-LTL formula φ is satisfiable iff there is a set
S ⊆ P(L) such that the propositional LTL formula bφS is satisfiable
and the ABox AS is consistent (w.r.t. the empty TBox).

Now, we show how we can use this approach to solve the satis-
fiability problem introduced in Definition 8, i.e., satisfiability of an
ALCO-LTL formula φ w.r.t. an acyclic ALCO-TBox T , an ALCO-
ABox A, and a Büchi automaton B over an alphabet Σ of (possibly)
conditional actions. First, note that Lemma 3 also holds if we for-
mulate it for ALCO-LTL formulae rather than ALC-LTL formulae.
However, the existence of a set S ⊆ P(L) such that bφS is satisfiable
and the ABox AS is consistent is not enough to have satisfiability of
φ w.r.t. T , A, and B. In fact, the existence of such a set only yields an
ALCO-LTL structure I = (Ii)i=0,1,... satisfying φ. We also need
to ensure (i) that I0 is a model of A and (ii) that there is an infinite
word w ∈ Lω(B) such that, for all i ≥ 0, the transition from Ii to
Ii+1 is caused by the action w(i) and Ii is a model of T .

Ensuring that I0 is a model of A is easy since A can be encoded in
the ALCO-LTL formula by working with the formula φ ∧

V
γ∈A γ

instead of φ. For this reason, we will assume in the following (with-
out loss of generality) that the ABox A is empty.

To deal with the second issue, we introduce corresponding propo-
sitional letters pγ not only for the assertions γ occurring in φ, but
also for (i) the assertions γ occurring in the actions in Σ, and (ii) the
assertions γ of the form A(a) and r(a, b) where A, r, a, b occur in
φ, T , or an action in Σ, A is a concept name that is primitive in
T , r is a role name, and a, b are individual names. We call the asser-
tions introduced in (ii) primitive assertions. In the following, let L be
the (finite) set of propositional letters obtained this way. Obviously,
Lemma 3 still holds if we use this larger set of propositional letters
to build the sets S and the formulae bφS .

One way of deciding satisfiability of a propositional LTL for-
mula bφ is to construct a Büchi automaton C

bφ that accepts the propo-

sitional LTL structures satisfying bφ [15]. To be more precise, let
Γ := P(L). A propositional LTL structure bI = (wi)i=0,1,... is
an infinite sequence of truth assignments to the propositional let-
ters from L. Such a structure can be represented by an infinite word
X = X(0)X(1) . . . over Γ, where X(i) consists of the proposi-
tional variables that wi makes true. The Büchi automaton C

bφ is built
such that it accepts exactly those infinite words over Γ that represent
propositional LTL structures satisfying bφ. Consequently, bφ is satis-
fiable iff the language accepted by C

bφ is non-empty. The size of C
bφ

is exponential in the size of bφ, and the emptiness test for Büchi au-
tomata is polynomial in the size of the automaton. As sketched in [3],
the automaton C

bφ can easily be modified into one accepting exactly

the words representing propositional LTL structures satisfying bφS .
In fact, we just need to remove all transitions that use a letter from
Γ \ S. Obviously, this modification can be done in time polynomial
in the size of C

bφ, and thus in time exponential in the size of bφ. We
denote the Büchi automaton obtained this way by CS

bφ
.

Now, consider the Büchi automaton B from the input, and assume
that it is of the form B = (Q, Σ, I, Δ, F), where Q is the set of
states, I ⊆ Q the set of initial states, Δ ⊆ Q×Σ×Q the transition
relation, and F ⊆ Q the set of final states. We use B to construct a
Büchi automaton B′ = (Q′, Γ, I ′, Δ′, F ′) that accepts those infinite
words X = X(0)X(1) . . . over the alphabet Γ for which there is an
infinite word w ∈ Lω(B) such that the difference between X(i) and
X(i + 1) is “caused by” the action w(i):

• Γ = P(L);

• Q′ = Q × Σ × Γ;
• I ′ = I × Σ × Γ;
• ((q, α, X), Y, (q′, α′, X ′)) ∈ Δ′ iff the following holds:

1. (q, α, q′) ∈ Δ;

2. X = Y ;

3. Let α = (pre, post).

– pγ ∈ X for all γ ∈ pre;
– if β/γ ∈ post and pβ ∈ X then pγ ∈ X ′;
– for every primitive assertion γ, if pγ ∈ X and there is no

β/¬γ ∈ post with pβ ∈ X , then pγ ∈ X ′;
– for every primitive assertion γ, if pγ
∈ X and there is no

β/γ ∈ post with pβ ∈ X , then pγ
∈ X ′;

• F ′ = F × Σ × Γ.

The intersection of the languages Lω(B′) and Lω(CS
bφ
) thus con-

tains those infinite words X = X(0)X(1) . . . over the alphabet Γ

(i) that represent propositional LTL structures satisfying bφS , and
(ii) for which there is an infinite word w ∈ Lω(B) such that the
difference between X(i) and X(i + 1) is caused by the action w(i),
where the formal meaning of “caused by” is given by the conditions
in Item 3 of the definition of B′. Since the class of languages of infi-
nite words accepted by Büchi automata is closed under intersection,
there is a Büchi automaton D(bφ,S,B) accepting this intersection.
This automaton can be obtained from B′ and CS

bφ
by a product con-

struction that is a bit more complicated, but not more complex, than
the construction for “normal” finite automata [14]. Thus, like CS

bφ
and

B′, the automaton D(bφ,S,B) is of size exponential in the size of the
input.

Given a word X = X(0)X(1) . . . accepted by D(bφ,S,B), we
still cannot be sure that the propositional LTL structure represented
by this word can be lifted to an ALCO-LTL structure generated by a
word w ∈ Lω(B) from the empty ABox w.r.t. T . The first problem
is that we must ensure that X = X(0)X(1) . . . can be lifted to an
ALCO-LTL structure I = (Ii)i=0,1,... satisfying φ. By Lemma 3,
this is the case if the ABox AS is consistent (w.r.t. the empty TBox).
However, we will see below that we need to adapt the definition of
AS in order to align it with the approach used to solve the second
problem.

This second problem is that we need to ensure that Ii ⇒T
w(i) Ii+1

holds for all i ≥ 0.5 Note that Item 3 in the definition of B′ only en-
forces that the changes to the named part of the interpretation (i.e.,
for the domain elements interpreting individual names) are accord-
ing to the action w(i). It does not say anything about the unnamed
part of the interpretation (which, according to the semantics of our
actions, should not be modified) and it does not deal with the TBox.
Fortunately, this is exactly what the TBox Tred already used in the
previous section is designed for. Since we must align this TBox with
the ABox AS , we need to consider it in a bit more detail than it was
necessary in Section 3. The idea is that every concept description C
occurring in the input (directly or as subdescription) is represented by
new concept names T

(i)
C for i = 1, . . . , k, where the index i corre-

sponds to the set Xi ∈ S. In addition, we introduce copies A(i), r(i)

(i = 0, 1, . . . , k) for all concept and role names occurring in the in-
put. Intuitively, for every index i, 1 ≤ i ≤ k, we want to have an
interpretation Ii that is a model of the ABox

Ai = {γ | pγ ∈ Xi} ∪ {¬γ | pγ
∈ Xi}
5 Recall that the definition of Ii ⇒T

w(i)
Ii+1 also includes the requirement

that Ii must be a model of T .

F. Baader et al. / Verifying Properties of Infinite Sequences of Description Logic Actions 57

and of the input TBox T , such that all these interpretations coincide
on their unnamed parts. Now, for every concept name A (role name
r), the copy A(0) (r(0)) corresponds to the extension of A (r) on the
unnamed part of Ii (which is the same for all i), and the copy A(i)

(r(i)) corresponds to the extension of A (r) on the named part of Ii.
For a concept description C, the concept name T

(i)
C corresponds to

the extension of C in Ii (both named and unnamed part). The TBox
Tred is defined such that, from a model of Tred, one can derive models
Ii of T coinciding on their unnamed parts (see [5, 4] for details). To
ensure that Ii is also a model of Ai, we basically use the ABox AS
introduced above. However, as ith copy bγ(i) of a concept assertion
C(a) we now use T

(i)
C (a) rather than the copy γ(i) used in [3] (see

above). Let bAS be defined like AS , but with bγ(i) replacing γ(i) for
concept assertions. We are now ready to formlate the main technical
result of this section (see [4] for the proof).

Lemma 4 The ALCO-LTL formula φ is satisfiable w.r.t. T , ∅, and
B iff there is a set S ⊆ P(L) such that Lω(D(bφ,S,B))
= ∅ andbAS is consistent w.r.t. Tred.

This lemma yields an ExpSpace-decision procedure for the satis-
fiability problem. In fact, the double-exponentially many sets S ⊆
P(L) can be enumerate within ExpSpace, and the exponentially
large automaton D(bφ,S,B) can be tested for emptiness in exponen-
tial time. Finally, the ABox bAS is of exponential size (due to the fact
that S is of exponential size) and the same is true for Tred. Since con-
sistency w.r.t. an acyclic TBox is PSpace-complete in ALCO, the
required consistency test can be performed in ExpSpace.

Theorem 2 Satisfiability and validity of an ALCO-LTL formula
w.r.t. an acyclic ALCO-TBox, an ALCO-ABox, and a Büchi au-
tomaton over an alphabet of (possibly) conditional actions are in
ExpSpace.

5 ADDITIONAL RESULTS AND
RELATED AND FUTURE WORK

The results presented in this paper are not restricted to the DL
ALCO. In fact, just like the results in [5], they can be extended
to all DLs between ALC and ALCQIO. The approach basically
stays the same, the main thing that changes is the complexity of
the consistency problem for ABoxes w.r.t. acyclic TBoxes. For the
restricted setting of Section 3, we can thus show that the satisfi-
ability problem has the same complexity as the consistency prob-
lem for ABoxes w.r.t. acyclic TBoxes: it is PSpace-complete for the
DLs ALC, ALCO, ALCQ, and ALCQO, ExpTime-complete for
the DLs ALCI and ALCIO, and NExpTime-complete for the DLs
ALCQI and ALCQIO. For the general setting considered in Sec-
tion 4, we can show that the satisfiability problem is in ExpSpace for
the DLs ALC, ALCO, ALCQ, and ALCQO, in 2-ExpTime for the
DLs ALCI and ALCIO, and in 2-NExpTime for the DLs ALCQI
and ALCQIO. The results for the general case also hold if actions
are allowed to have occlusions. It is still an open problem whether
the complexity upper-bounds for the general case are tight.

In [6], Calvanese et al. consider the problem of verifying action
programs that perform ASK and TELL actions over DL-Lite ontolo-
gies. Though this work shares our general goal of verifying DL action
programs, the technical set-up is quite different from ours: they use
the inexpressive language DL-Lite rather than an expressive one like
ALCO, directly consider Golog programs rather than abstractions

by automata, restrict the attention to finite sequence of actions, and
do not employ a temporal logic for specifying properties.

In [1], ALC-LTL is also used in the context of verification. The
technical set-up and also the intended application context is, how-
ever, quite different. In [1] one observes changes to the world, with-
out knowing how they are caused. Based on what one has observed
so far, one tries to predict whether a property specified in ALC-LTL
can still be satisfied or falsified. In the present paper, we assume that
we know the actions that cause changes, and that we have (an ab-
straction of) the control program that triggers the application of these
actions. Based on this information, we try to verify a priori (before
the program is executed) whether a property specified in ALC-LTL
is guaranteed to be satisfied.

In this paper, we have assumed that a Büchi automaton that ab-
stracts a given action program in the sense that all possible execution
sequences of the program are accepted by this automaton is already
available. An important topic for future research is how to generate
such an abstraction (semi)automatically from a given program.

ACKNOWLEDGEMENTS

We would like to thank Carsten Lutz, Giuseppe de Giacomo, and
Gerhard Lakemeyer for helpful discussions.

REFERENCES

[1] F. Baader, A. Bauer, and M. Lippmann, ‘Runtime verification using
a temporal description logic’, in Proc. of FroCoS 2009, pp. 149–164.
Springer-Verlag.

[2] The Description Logic Handbook: Theory, Implementation, and Appli-
cations, eds., F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. F. Patel-Schneider, Cambridge University Press, 2003.

[3] F. Baader, S. Ghilardi, and C. Lutz, ‘LTL over description logic ax-
ioms’, in Proc. of KR 2008, pp. 684–694. AAAI Press.

[4] F. Baader, H. Liu, and A. ul Mehdi, ‘Integrate Action Formalisms into
Linear Temporal Description Logics’, LTCS-Report 09-03, Institute for
Theoretical Computer Science, TU Dresden, Germany, (2009). See
http://lat.inf.tu-dresden.de/research/reports.html.

[5] F. Baader, C. Lutz, M. Miličić, U. Sattler, and F. Wolter, ‘Integrat-
ing description logics and action formalisms: First results’, in Proc.
of AAAI 2005. AAAI Press. A long version of this paper, contain-
ing all technical details, was published as LTCS-Report 05-02, Insti-
tute for Theoretical Computer Science, TU Dresden, Germany. See
http://lat.inf.tu-dresden.de/research/reports.html.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati, ‘Actions
and programs over description logic ontologies’, in Proc. of DL 2007.

[7] J. Claßen and G. Lakemeyer, ‘A logic for non-terminating Golog pro-
grams’, in Proc. of KR 2008, pp. 589–599. AAAI Press.

[8] G. De Giacomo, E. Ternovskaia, and R. Reiter, ‘Non-terminating pro-
cesses in the situation calculus’, in Proc. of the AAAI’97 Workshop on
Robots, Softbots, Immobots: Theories of Action, Planning and Control,
(1997).

[9] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl,
‘GOLOG: A logic programming language for dynamic domains’, J. of
Logic Programming, 31(1–3), (1997).

[10] C. Lutz, F. Wolter, and M. Zakharyaschev, ‘Temporal description log-
ics: A survey’, in Proc. of TIME 2008, pp. 3–14. IEEE Computer Soci-
ety Press.

[11] N. Pelov and E. Ternovska, ‘Reducing inductive definitions to proposi-
tional satisfiability’, in Proc. of ICLP 2005, pp. 221–234. Springer.

[12] A. Pnueli, ‘The temporal logic of programs’, in Proc. of FOCS 1977,
pp. 46–57. IEEE.

[13] M. Thielscher, ‘FLUX: A logic programming method for reasoning
agents’, Theory and Practice of Logic Programming, 5(4–5), pp. 533–
565, (2005).

[14] W. Thomas, ‘Automata on infinite objects’, in Handbook of Theoretical
Computer Science, volume B, 134–189, Elsevier, (1990).

[15] P. Wolper, M. Y. Vardi, and A. P. Sistla, ‘Reasoning about infinite com-
putation paths’, in Proc. of FOCS 1983, pp. 185–194. IEEE.

F. Baader et al. / Verifying Properties of Infinite Sequences of Description Logic Actions58

