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From bursty patterns to bursty facts:
The effectiveness of temporal text mining for news

ve s

Ilija Subasi¢ an

Abstract. Many document collections are by nature dynamic,
evolving as the topics or events they describe change. The goal of
temporal text mining is to discover bursty patterns and to identify
and highlight these changes to better enable readers to track sto-
ries. Here, we focus on the news domain, where the changes revolve
around novel, previously unpublished, “facts” that have an effect on
the story developments. However, despite intense research activities
on bursty patterns, a lack of common procedures today makes it im-
possible to compare methods in a principled way. To close this gap,
we (a) investigate how different temporal text mining methods dis-
cover novel facts and (b) present an evaluation framework for meth-
ods assessment, consisting of a set of procedures and metrics for
cross-evaluating models. Bursty patterns are transformed into queries
for sentence retrieval, either with or without taking into account inter-
nal pattern structure, and these sentences are compared with a set of
editor-selected ground-truth reference sentences. Our experiments on
different classes of temporal text mining show that different methods
perform at similar levels overall, but provide distinctive advantages
in some settings. The experiments also demonstrate the benefits of
using patterns’ internal structure for query generation.

1 Introduction

One of the frequent use cases of today’s Internet is story tracking:
the use of search engines, archives or other sources for following the
developments of a topic over time. Usually, this is done by executing
a series of searches, often with the same search query such as the
name of a person (“Amy Winehouse”), an event (“Tsunami”, “Win-
ter Olympics”), or a scientific area (“text mining”). The information
need behind story-tracking searches differs from that behind one-off
searches: search results should not only be relevant, but also novel.
Novelty is generally conveyed by documents with bursty content el-
ements: words, n-grams, terms highlighted by LDA distributions, or
similar elements appearing significantly more frequently in a time
window of search than in other times. This calls for new analysis,
search and interaction methods.

In the past decade, a number of methods for story tracking have
been proposed. Text-oriented versions of the story-tracking task have
been described in the Document Understanding Conference (DUC)
Update Summarization task [18] and in the TREC Novelty Detec-
tion task [22], and several text-summarisation or sentence retrieval
methods have been applied to these tasks. These methods re-use sen-
tences from the original documents to produce a description of the
novel developments, either as a summary or as a set of retrieved sen-
tences. The tasks are associated with a well-defined evaluation proce-
dure suited to natural-language texts. In contrast to this, more recent
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methods have focused on mining for lower-level elements or pat-
terns such as keywords or n-grams/term sequences. We refer to these
approaches collectively as temporal text mining (TTM) [11, 16, 8].
These methods bear much promise in terms of the additional flexibil-
ity afforded by the discovery of sub-sentential patterns. However, the
diversity of patterns and the absence of standardised tasks and evalu-
ation procedures such as in DUC or TREC have rendered it basically
impossible to compare their quality for the task.

To close this gap, we (a) investigate how different TTM methods
discover novel or bursty “facts” and (b) present an evaluation frame-
work for methods assessment. We concentrate on the news domain,
in which most novel developments can be expressed in sentential
form (e.g., “The ski slalom ended with ... winning the gold medal”).
Our basic assumptions are that users construct their own description
out of the patterns they are presented with and that this description
is sentential, such that its quality can be assessed by the degree to
which these constructed sentences (the presumed novel “facts”) re-
semble “true” sentences. The challenge is to measure an aggregate
re-construction quality over the possible/plausible fact constructions.
We therefore present procedures and metrics for (i) focusing on pat-
terns or pattern combinations that a TTM method highlights; (ii)
turning these into “fact” sentences; (iii) inspecting and comparing the
degree of resemblance between the “fact” and the ground-truth sen-
tences. We do this by (i) formulating new pattern-specific ordering
and combination operations, drawing on method-specific burstiness
scores for the former; (i) employing sentence retrieval methods in a
new way; (iii) proposing new metrics that capture “recall” and “preci-
sion” characteristics and build on the ROUGE evaluation framework
for summarisation evaluation [15]. We illustrate this cross-method
evaluation method by (iv) comparing three typical TTM methods
[11, 16, 23] on two corpora consisting of online news documents
and an editor-selected set of ground-truth sentences.

To the best of our knowledge, this is the first systematic cross-
methods evaluation framework for TTM methods. Our contributions
are thus the formulation of such a framework and the demonstra-
tion of its use and of the interpretability of its results. After a brief
overview of related work given by Section 2, Sections 3-6 describe
the above steps (i)—(iv), and Section 7 concludes.

2 Related work

In this section, we give a short overview of related evaluation ap-
proaches and frameworks, and we explain why they are not directly
applicable to our questions for comparing TTM methods.

Evaluation frameworks for the DUC update and TREC novelty
tasks. Introduced in 2007 as a part of the DUC workshop series
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[18], the evaluation framework for update summarization combines
human and automatic evaluation. In this paper, we only address the
automatic evaluation part. It has been shown that the automatic eval-
uation using ROUGE framework is highly correlated with the hu-
man evaluation [15]. The ROUGE framework measures the recall
of n-grams between the human and machine summaries. Most com-
monly used ROUGE scores are measured on bigrams (ROUGE.2)
and skip-4 bigrams (ROUGE.SU4). An evaluation framework for
sentence retrieval methods has been standardized through the TREC
Novelty track, which ran from 2002 until 2004 [22]. Among the dif-
ferent tasks of the Novelty track, the one most similar to story track-
ing is novel-sentence retrieval, in which the goal is to retrieve sen-
tences previously judged as “new” by human editors.

The main problem one faces when trying to adopt one of these two
frameworks for the evaluation of TTM methods, is the limited num-
ber of documents they use (10 for DUC and 25 per topic for TREC).
TTM methods rely on data mining techniques which require a larger
document set for pattern extraction. Another problem are the differ-
ences between the patterns that TTM methods extract. Summaries
for DUC and sentences for TREC methods are standardized outputs
which are directly comparable. In contrast, the output of TTM meth-
ods differs, and it is hard to compare it without an intermediate step
that creates comparable representations out of the different patterns.

Temporal text mining evaluation procedures. Most of the eval-

uation procedures in this research field were developed to evaluate
a single TTM method. Roy et al. [19] presented a method for semi-
automatically detecting and naming emerging topics and compared
these topics with an editor-created list. Wang and McCallum [25]
modified LDA using time as one of the latent variables for bursty-
pattern detection. They compared this modified LDA to standard
LDA and showed differences in the distribution of bursty patterns
over time. The idea is that more bursty words should have differ-
ent distributions over topics in different time periods, while the less
or non-bursty patterns should have more similar distributions over
topics in different periods. To test the accuracy of their measures of
burstiness defined on word-topic distribution, Knights et al. [12] cre-
ated an artificial set by drawing words from a set of word-topic distri-
butions. In selected periods, the words were drawn from a subset of
topics, making these topics bursty. The authors measured whether
their method captures this artificial burst. The STORIES method
[23], which produces “story graphs”, was evaluated with a user test in
which participants were asked to connect bursty graph elements with
sentential ground-truth events. This gave rise to precision and recall
scores. In a second study, participants were given the story graphs
and asked to make a true/false decisions on an event. Wang et al. [24]
tested their method by comparing bursts discovered in multilingual
corpora on the same topic.

Most of these evaluation procedures are tailored to evaluating only
one method, assessing how well it discovers bursts in text streams.
We wish to measure not only if a burst is discovered, but also whether
and how this burst’s representation helps users discover the ground
truth sentences that created the burst.

Topic detection and tracking (TDT). In addition to the forego-
ing, TDT tasks such as new event detection, on-line new event de-
tection, and story-link detection also address the same problem [2].
The TDT tasks decide whether a newly arrived document reports on
an already existing story/topic or on a novel (emerging) one. How-
ever, all of the TDT tasks operate at a document level, and they only
decide between “old” and “new”. In contrast, we want to evaluate

novelty detection at a more fine-grained level, both in terms of the
syntactical units and in terms of a content characterisation.

3 Patterns, representations, and TTM groups

TTM methods output bursty patterns that point to the changes in the
story they track, and the subjects arising from these changes. Sub-
Jects constitute the high-level story; they can be for example events
(e.g., a specific ski slalom in the Winter Olympics) or topics (e.g.,
doping). The patterns consist of story elements, syntactical units ex-
tracted from the underlying documents. For example, an element
could be a term, and the pattern this term plus some score assigned
to it. We also define a story representation as a set of bursty story
elements used to represent a subject. Story elements have different
levels of expressiveness, i.e. different amounts of information about
subjects conveyed. TTM methods operate on sub-sentence story ele-
ments, and we distinguish the following elements: tokens, n-grams,
and n-gram groups. Further filters on these types are possible, giv-
ing rise to elements such as terms with above-threshold frequencies
or other weights, or n-grams identified as named entities or similarly
semantic entities.

Token is used in a computational-linguistics sense: a series of
characters not containing any of a set of pre-defined delimiters.

N-grams are content-bearing tokens. Basic n-grams are unigrams
(1-grams), where every token is a unigram. More advanced n-grams
are sequences of n contiguous (or not) tokens extracted from the
text. Non-consecutive, or skip-m n-grams, contain n tokens appear-
ing in a window of m tokens. For example, in a text [big bad wolf
sleeps], skip2 bigrams are [big-bad], [bad-wolf],[big-wolf], [big-
sleeps], [bad-sleeps], and [wolf-sleeps].

N-gram groups are collections of n-grams pointing to the same
subject. These groups can be n-gram cluster center values, latent vari-
ables’ probability distributions over n-grams, or some other way of
grouping by similarity.

Every element of a story representation has some weight assigned
to it. This weight can be a specific “burstiness score”, a probability
of an element appearing in a bursty subject, the relative importance
in a bursty subject cluster center, or a weight in a latent component.
While the detailed mathematical properties of these weights vary,
they all induce some order of importance on the elements; we there-
fore regard all these weights as burst scores of the respective story
element and use these scores in the same way in the query-generation
processes that are explained in Section 4.

Based on the differences in their story representations, we divide
TTM tracking methods into three groups: (a) keyword representa-
tion, (b) group representation, and (c) combo representation meth-
ods. Group (a), presented in [11, 4, 5, 6, 21], uses a list of bursty
n-grams ranked by their burst scores. Group (b) [4, 25, 16, 20, 9]
joins bursty n-grams into groups which point to subjects. Group (c)
methods use a combination of the previous two approaches [23, 1].2

4 From patterns to sentential facts

For news, the “real-life” changes in a text corpus can be pinpointed
using sentences. Due to differences in the expressiveness levels of
story representations, comparing the patterns directly with sentences
would be biased towards the patterns with sentence-like structure.

2 Examples of representations, methods, model-specific query generation,
and the corpora can be found at https://sites.google.com/
site/subasicilija/ttm-evaluation.
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Therefore, to make direct comparisons possible, we developed a pro-
cess for obtaining the sentences that story elements best resemble to.
This task is very akin to that of sentence retrieval, a task defined as
follows: Given a query, rank sentences based on some measure of
their similarity to that query. Our approach is therefore to transform
the patterns into queries and then use sentence retrieval. Direct com-
parisons are then possible on the retrieved sentences.

The large number of developed sentences retrieval alorithms and
the lack of a benchmark method for sentence retrieval in the TREC
sentence-retrieval task make it difficult to decide which specific
retrieval method to use. However, a detailed analysis of sentence
retrieval [17] used Query-likelihood retrieval method (QL) with
Jelinek-Mercer topic smoothing on a pseudo-document index of sen-
tences as a baseline. Therefore, we consider the ()L method a sensi-
ble choice for our framework. The inputs for this model are an index
of pseudo-documents and a set of queries used for retrieving. An
index is created from sentences of a document set, and queries are
obtained from story representations of evaluated tracking methods.

Generating the pseudo-document index We first parse the com-
plete document set, creating a set of sentences .S. Then we store every
sentence s € S as pseudo-document, creating an index I.?

Query generation for sentence retrieval For generating the
queries used for sentence retrieval, we combine story elements. The
combination greatly depends on the internal structure of the story
representation and the relations between its story elements.

To obtain the same number of queries and to limit their length, we
impose two parameters: maximum query length (max(@)) and maxi-
mum representation size (max R). For every group, we consider two
approaches. The first, generic query generation, is the same for all
groups, and uses the top max R story elements from story represen-
tation, where the order used to determine the top elements is deter-
mined by the burst score. The second approach, specific query gen-
eration, takes into account the semantics of different story represen-
tations. The idea is to combine the basic story elements into more
complex queries.

Specific query generation based on the output of keyword repre-
sentation methods uses the following procedure. First, we extract the
max R highest ranked story elements from the method’s story repre-
sentation. Then we combine them by creating all possible combina-
tions not larger than max@. We rank these newly formed combina-
tion based on the average burst scores of their elements and use the
top max R as queries for retrieving sentences.

Group representation methods output groups of elements describ-
ing subjects. The procedure for query generation based on the story
representation with ¢ groups is as follows. For each group, we extract
mazR/i story elements with the highest in-group burst score and
combine them into all possible combinations not larger than maz Q.
Then we rank the new in-group element combinations based on the
average burst scores of their elements. Then, for each group, we use
the top max R/i combinations as queries for retrieving sentences. We
assume that all groups are equally important and use max R/t story
elements from each group. If an evaluated method gives preference to
some groups, this could, in future work, be incorporated by choosing
more elements from the more important groups.

For combo representations, we utilize the pattern structure of the
specific method to determine max R elements of size max (). For ex-
ample, the STORIES method that relies on graphs is a combo method

3 We used the Lemur Toolkit www. lemurproject .org.

[23]. This pattern structure arises from a skip-bigram network model;
combined patterns are subgraphs with at most maz(@ edges, scored
by the edges’ average burst score.

Sentence retrieval procedure For every given method M, and
its story representation of documents of sentences .S indexed in I,
we generate a query set (Qo based on the generic query generation
procedure, and a query set Q, for the specific query generation pro-
cedure. Then, for every ¢ € Qo and ¢* € Qj, we retrieve the top
ranked sentence using the () L retrieval method. This creates two sets
of retrieved sentences R and R*.

5 Evaluation framework

Evaluation consists of comparing the sentences obtained by the pro-
cedure described in the previous section, with a set of ground-truth
sentences. This requires a corpus (news-article documents and a
ground truth), measures, and a procedure including a statistical test.

Corpus We divide the document set into time periods 7' =
{t1,t2,...,tn} of equal length. For each ¢ € T, we (a) build an
index I as described in the previous section; and (b) obtain a set of
ground-truth sentences G¢ = {g¢1, g2, - - -, gen }» Where N is the
index number of ground truth in ¢. G is the union of all these sets.

Evaluation measures We wish to capture novelty at the sentence
(fact) level, and therefore we define the performance measure on
the same level. We compare a set of retrieved sentences with set
of ground truth sentences in a same time frame. As atomic-level
measure, we adopt ROUGFE metrics [15], and create a set of ag-
gregate measures (X) to show (a) to what extent the retrieved sen-
tences capture the ground truth (“recall-oriented” measures) and (b)
how many sentences are needed to obtain a satisfactory ground-truth
match (“precision-oriented” measures).

Foreach t € T, let Ry = {r41,7:2,...,7k} be the set of re-
trieved sentences, and Gy = {g¢1, gs2, - - ., gen } the set of ground
truth sentences. For every retrieved sentence ry, (1 < k < K),
we calculate the atomic measures ROUGE.2 and ROUGE.SU4
scores against every ground truth sentence in the same time period:
gi; (1 < j < N). This will give us a Cartesian product of R; and
G'+, where each element has attached scores.

Based on this, we define aggregate measures to quantify how
well a retrieved sentence set matches ground truth set, what per-
centage of the best possible ground truth match is obtained from
the retrieved set, and how the number of retrieved sentences influ-
ences these scores. In the following, these three measures will be
explained in their form based on ROUG FE.2; their forms based on
ROUGE.SU4 are directly analogous.

To find the best possible match in the set of retrieved sentences, we
define the max M measure as the maximum score that any retrieved
sentence in a period ¢ has for the ground truth j:

maxrM.2,; = max,,, cr,ROUGE.2(T1k, G¢j). )

Since the ground truth sentences do not come from the same corpus
as the retrieved sentences, it is hard, if not impossible, to obtain the
maximum match of 1. The maximum maxM score that a ground
truth can obtain, varies from one ground truth to the other. So, in
order to normalize the score, we introduce the maxM R measures
to capture how much of the possible maximum match between the
ground truth and all sentences is captured in the retrieved sentences
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set. We derive the maximum ROUGE .2 scores between G and Sy,
where Sy = {511, S¢2, . .., Sen | is the set of all sentences from ¢.

mazMR.2; = (maxy,,er,ROUGE.2(r¢k, gt5))/

(mazxs,, es, ROUGE.2(Sth, Gtj)). 2)

maxM and max M R measures give us “recall oriented” measures,
telling us what is the proportion of the best possible match between
the ground truth and the entire corpus obtained by the retrieved sen-
tences. However, different methods may retrieve different numbers
of sentences, and the ones with larger retrieved sentence set increase
the chance of having a better match. We take this into account and
define a new measures:

maxMP.2¢; = maxMR.2:; x min(|Gt|, |Rt|)/|R:] (3)

max M P rewards the methods that produce a good fit with a small
number of retrieved sentences (matching the usually small number
of ground-truth sentences). In this sense, the measures correspond
to “top heavy precision-oriented” measures like precision@k or dis-
counted cumulative gain.

Procedure and test In a cross-evaluation testing procedure, we
compare the performance of different methods.* Given time periods
T, methods M, ground truths GG, metrics X, and a set of indices I:
For every t € T and for every M, € M, we calculate all three
measures from the previous paragraph. This gives rise to, for every
metric z € X, |M| sets Fra = {fmi1,..., fmt;} where j is a
number of ground truths in a period t. For every x, we then test the
results of different methods using Friedman’s and Tukey’s multiple
comparison test [10].

6 Case study

To investigate our measures and how they behave in the different
scenarios, we undertook a case study. We compared 3 TTM methods,
one from each group discussed in Section 3, using 2 well-known
news stories.

Data. We refer to the corpora consisting of news article documents
and ground-truth sentences as A and B, and to the methods as M,
Mo, and M3. We re-used the corpora from [23], see the reference for
a detailed description of sources, features and construction.

Methods. The question is how to choose the methods which both

represent the groups described in Section 4 and are of high quality.
We decided to use the methods that received the most attention by
the community over the last few years.” Namely, for keyword repre-
sentation we chose Kleinberg’s burst detection algorithm (M) [11],
for group representation, we used a probability mixture method de-
veloped by Mei and Zhai (M>) [16], and for the combo group we
used the STORIES method (M3) [23].

Method M; [11] discovers bursty words by minimizing their state-
transition cost between bursty and non-bursty states. The cost is de-
fined as a lift in proportion of relevant document to an observed word
in a data set. The method takes a scaling factor value as a parame-
ter, which determines the lift intensity needed for word to reach the

4 An alternative would be to compare all of them to a baseline, but such a
baseline would yet need to be defined.

5 By no means we are arguing that the chosen methods are the best among all
possible methods, nor trying to diminish the quality of other work.

bursty state. We use the parameter value 2, as set in [11]. In the orig-
inal paper, the algorithm was applied to scientific publications. The
same method was later used to find bursts in blogs [13] and to track
news [14]. We coded the algorithm following the description in the
original paper.

An extension of probabilistic mixture method for topic discovery
presented described in [26] was used in [16]. This method, M>, out-
puts set of bursty topics represented by word distributions. Each of
the different distributions points to a subject. The original papers re-
ports on a number of parameters set on document-topic, topic-time,
and word-topic distributions. We used the same values as reported by
the authors. However, the authors report on a threshold value set by
empirical testing which is not described in detail. We were therefore
not able to replicate this, and manually set the threshold to 5 subjects
(“topics”). We coded the algorithm employing a modification of the
implementation of [26] in DRAGON.®

M35 [23] defines burstiness via a skip bigram’s co-occurrence fre-
quency normalized by the count of documents. A skip bigram is
bursty if this frequency in a period exceeds a lift threshold relative
to the overall frequency. Skip bigrams are created by combining un-
igrams as “story basics”. A story representation is built by joining
skip bigrams into a graph (“story graph”). In the original paper, the
150 most frequent terms (not in the stopword list) were used to ex-
tract skip bigrams. We keep this settings and add another 3 choices
of story basics: (1) the 150 top-tf.idf terms; (2) 100 most frequent
terms plus 50 most frequent named entities (with no overlap); and
(3) all terms from the document collection. We refer to the different
versions of the method as M1/, ML prpe and M$Y, depending
on the story basics used in graph creation. We modified the original
code accordingly.

Procedure We re-used the period partitioning first used with these
corpora. Corpus A was split into 18 periods, and corpus B into 10
periods. Corpus A contained 24 and corpus B 12 ground-truth sen-
tences.

As discussed in Section 4, for each method we generated two sets
of retrieved sentences, with generic and with specific query gener-
ation. This yields 12 sets (2 for both M; and M>, and 2 for every
version of M3). We set the query-generation parameter maz(@ to 5,
and we varied max R from 5 to 30 in increments of 5. The value
of max(@ was chosen based on query length in major search en-
gines [7]. Variations of the second parameter simulate the situation
in which different number of top story elements are used. The query
generation process for M, and M> follows the procedure described
in Section 4, while for M3 we first extract all the paths up to size
maz(@ from the story graph, and then sort them based on the av-
erage edge weight, following the evaluation procedure described in
[23].

We calculated max M, max M R, and max M P for all 12 settings
and for both ROUGE.2 and ROUGE.SU4, and tested them as
described in Section 5, resulting in a total of 72 tests.

Results: Overview The large number of test settings and meth-
ods made it difficult to aggregate the results of the tests, so we cre-
ated multiple aggregations. With these aggregations we aimed at cap-
turing the following information: (a) which methods are robust to
different max R settings, (b) whether there is a difference between
“precision-like” and “recall-like” performance, and (c) whether spe-
cific query generation process improves retrieval.

S http://dragon.ischool.drexel.edu/features.asp
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Figure 1. Top group method comparison matrix of maxz M R (a), and
maxM P (b) measures based on ROUGE .2.

Results: Test settings First, we investigated how different test set-

tings influence the results of the methods. Figure 1 shows the results
for ROUGE.2. The results for ROUGE.SU4, not shown for rea-
sons of space, were very similar; in particular, the order of method
quality was the same. We restrict ourselves to maxM R (Fig. 1 (a))
and max M P (b). The reason is that the max M results were similar
to max M R, with the difference that max M was, as expected, due
to the different numbers of ground-truth sentences less robust over
different number of max R. Each row shows a combination of one
method and one corpus; grouped by methods to highlight similari-
ties over corpora. The first row is for corpus A and the second for
corpus B. Rows without an asterisk show the results of the method
with generic query generation, rows with an asterisk show the results
for specific query generation. Columns show test settings: the use of
only the top max R story elements or story-elements combinations
for sentence retrieval.

A cell is black if, according to the Friedman/Tukey test, this
method-setting combination was in the group with the best results
of the measure, i.e. there was no statistically significant difference in
results between all the methods with a black cell in one column, but
all of these significantly outperformed all of the others (the ones with
a white cell in this column). Further significant differences between
these lower-quality methods existed, but are not shown.

The “heatmap” under the table shows how much this setting differ-
entiates between methods, ranging from low (= all methods are the
same, light grey) to high (= only a small fraction of methods were in
the best group, black). Differentiation is measured by the total num-
ber of white cells. The heatmap to the right of the table shows the
robustness of the method quality over settings, ranging from low (=
only in good group for few settings, light grey) to high (= always in
good group, black). Differentiation is measured by number of blocks
- (number of white cells + number of block holes). Values for both
heatmaps were binned into four categories of grey shades.

Figure 1 (a) and (b) show that the setting M3'® performs the best
for both A and B, having only 3 settings in which they are not in
the top group. Slightly less compact blocks are created by M:,ff and
M;f “4f This can be explained by the nature of A and B, which
are both stories revolving around persons, such that tracking named
entities makes more sense. Story basics in the ¢ f.idf (¢f) based set
overlap 72% (69%) with the named-entity set. M$'! performs worse
than the top group in most cases; for corpus A even in all cases.
Thus, choosing story basics for M3 has an influence on the results.
For M, performance improves as max R rises, suggesting that cap-
turing bursts with keyword lists needs lists of certain size. The M2
results vary the most of all 3 methods, and they are much better for
A than for B. We believe that the cause for this is the “group” story
representation that Ms uses. Each group should point to one of the

events, but the number of ground-truth sentences for B is small and
averages at 1.56 (A has on average 2.72 events) for a time period.
This means that there more groups than subjects.

Results: “Precision” and “recall” The “precision-oriented” mea-
sure max M P shows that the settings Mgff and Méf 9 have the
same results as M3'°. This suggests that the difference in overall re-
sults comes from the “recall” oriented measures. The results of M1
show that the method performs well for the recall oriented measure
max M R, being in the best category in over 80% of the settings, and
poorly for precision oriented measures, being in the best category in
only 22% of the settings. This clearly shows that M outputs patterns
that are related to the ground truth, but also some that are the results
of the changes in language use, vocabulary, etc. over time. For Mo,
specific query generation clearly improves the results.

Results: Internal pattern structure for query generation We
also investigated whether specific query generation improves the re-
sults. Observing patterns from Fig. 1 reveals that settings that use
specific query generation have, on average, a larger number of black
blocks for M; and M3, while for M> specific query generation di-
minishes “recall” results by 20% (in block counts), while it slightly
improves precision by 6.1%. However, that figure only differentiates
between a method being in the top group or not. We wish to directly
compare settings with and without the use of specific query genera-
tion procedure.

Figure 2 investigates the effect of query generation procedures.
Each row describes the same basic method (e.g., M. §f with 150 top
keywords in row 3) with or without combination, for a given corpus.
Columns are the same as in Fig. 1. A cell is black if the method
with combination significantly outperformed its counterpart without
combination (regardless of whether any of them was in the top group
or not), white if it significantly underperformed the latter, and grey if
there was no significant difference.

Figure 2 shows that for the “recall” oriented measure, specific
query generation does not much improve the results. It improves
them in 11.1% of the settings for maxz M R, while it diminishes them
in 8.3% settings. This suggests that methods output sentences with
the best match to the ground-truth sentences without specific query
generation. This is not the case for the “precision-oriented” measure:
for M, and M3, specific query generation always improves the re-
sults. This is to be expected due to the nature of the story represen-
tation these methods use. Both the keyword representation and the
group representation have little structure built into them, and the spe-
cific query generation combines the story elements so that the queries
become more similar to the top weighted story elements in the story
representation. More similar queries limit the number of retrieved
sentences and preserve the “good” ones. As for M3, the specific
query generation never diminishes the results, and for B it improves
the results in almost all settings, except for M 3,,.. The difference in
the performance over different corpora most likely comes from the
different number of ground truth sentences. If the story graph pro-
duced by M3 is highly connected, the generated queries are more
alike resulting in retrieving same sentences. The correlation of graph
topology and number of events for M3 was presented in [3].

These results indicate that specific query generation in most cases
does not affect the results. In some cases, notably for M; and M,
precision metrics, the specific query generation always performs bet-
ter. This indicates that the retrieval process benefits from the use of
specific query generation. One possible way of improving this pro-
cess for M3 would be to take into account the similarity of already
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Figure 2. Query generation comparison for different test settings.

extracted queries, and in that way include more diverse queries rather
than the ones with the highest weight.

Results summary. The main results of our case-study experiments
are: (1) method M3® is the most robust method to test settings
changes; (2) keyword representation methods need larger max R;(3)
M3 variations outperform M; and My in “precision-oriented”
measures; and (4) specific query generation improves “‘precision-
oriented” results, especially, for methods M; and Mo.

7 Conclusions and outlook

This research started with the aim of creating an evaluation procedure
for evaluating different temporal text mining approaches. We con-
centrated on news stories, where changes over time can be discov-
ered through “sentential” facts. An inspection of existing evaluation
frameworks showed that most slightly differ from our aim of inves-
tigating how different patterns match to the ground-truth sentences.
Therefore, the paper first proposed a process which connects patterns
and sentences, and then evaluates the results against an editor-created
ground truth. Following the experience in the similar fields we de-
fined measures that capture both the “recall” and “precision” oriented
performance of the methods. We presented a case study evaluating 3
methods over 2 corpora. The results suggest that the method pre-
sented in [23] is the most robust of all tested methods. The research
also shows that using bursty patterns’ internal structure for connect-
ing them with ground truth sentences improves the results.

The evaluation framework and the query generation procedure
presented here have some limitations, and overcoming them will
be a challenging task for future research. First, a creation of larger,
cleaner, and editor-annotated data sets comprising different stories
would help avoid generalization errors. Second, we devised our per-
formance measures based on text summarization frameworks, which
are geared towards comparing longer text sequences. We miss a clear
notion of how the scores generated by our measures transfer into
“real-life” similarity between retrieved sentences and ground truth
sentences. Therefore, we did a cross-method evaluation that, while
suggesting which methods perform better than which others, cannot
tell how “good” these matches really are. Thus, creating a baseline
for evaluation would be an useful addition to the framework. Com-
paring against a baseline would simplify the testing procedure, and it
would give clues as to whether extracting temporal patterns outper-
forms non-temporal patterns for creating story representation.

Different settings in which different TTM methods build and eval-
uate their results are not always compatible. Even with taking this
into account, parts of our framework favour some methods in certain
settings. However, we believe that any bias is distributed over the
methods, not systematically favouring any of the evaluated methods.
We consider this paper to be just a first step into defining a widely ac-
cepted test settings for testing TTM methods, and by no means con-
sider our framework as the only solution for TTM evaluation. One of

the messages we hope to have conveyed is that a larger effort by the
community is needed to create a set of unified settings for evaluating
different methods.
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