
A Unified Framework for Non-standard Reasoning
Services in Description Logics

Simona Colucci1 and Tommaso Di Noia2 and Eugenio Di Sciascio3 and Francesco M. Donini4

and Azzurra Ragone5

Abstract. Non-standard reasoning in Description Logics (DLs)
comprises computing a Least Common Subsumer (LCS), a Concept
Difference, a Concept Unifier, or an Interpolant Concept, to name
a few. Although some reasoning services have been unified already
(e.g., LCS and Most Specific Concept), the definition of non-standard
problems and the computation that solve them are very different from
each other. We propose to unify the definitions of non-standard ser-
vices as special Second-order sentences in DLs; when the solution
concepts are optimal with respect to some preferences, a fixpoint
replaces the Second-order quantification. Moreover, we propose to
combine the well-known Tableaux calculi for DLs with rules that
compute substitutions of Concept Variables. We prove soundness and
completeness of the combined calculus and we give a sufficient con-
dition for termination, which covers some non-trivial cases.

1 Introduction

During the last years, several highly optimized reasoning engines
have been developed for classical deductive reasoning tasks such
as subsumption/classification, consistency checking and instance re-
trieval. At the same time, non-standard reasoning tasks have been
proposed in the DLs literature as an answer to new issues related
to knowledge-based domains, especially in retrieval scenarios, on-
tology design and maintenance and automated negotiation. Relevant
reasoning tasks we may cite are: explanation [19], interpolation [24],
concept abduction [11], concept contraction [10], concept unification
[3], concept difference [26], concept similarity [7], concept rewriting
[2], negotiation [22], least common subsumer [5], most specific con-
cept [1] and knowledge base completion [4].

For each of the above mentioned tasks a specific algorithmic ap-
proach has been proposed and very often only for a particular (some-
times simple) DL. Although the need for such reasoning tasks has
been widely recognized, there is not yet a unified view—at least
from an algorithmic perspective. Indeed, some of the above men-
tioned tasks share some properties from a computational point of
view and sometimes are very related to each other. Moreover, most
of the problems in the cited reasoning tasks have the form: “Find
one or more concept(s) C such that {sentence involving C }” and
we are really interested in exhibiting such a concept, not just proving
its existence. In other words, many of the above mentioned reason-
ing tasks, known as non-standard reasoning, deal with finding—or

1 Politecnico di Bari, Italy, email: s.colucci@poliba.it
2 Politecnico di Bari, Italy, email: t.dinoia@poliba.it
3 Politecnico di Bari, Italy, email: disciascio@poliba.it
4 Università della Tuscia , Viterbo, Italy, email: donini@unitus.it
5 Politecnico di Bari, Italy, email: a.ragone@poliba.it

constructing—a concept. This is the main reason why we refer to
such reasoning as constructive reasoning. By contrast, “standard”
reasoning is about checking some property (true or false) such as
subsumption or satisfiability; and even query answering can be re-
duced to instance checking.

In this paper we propose a new second-order framework and a re-
lated calculus able to express, in a uniform way, many of the above
mentioned constructive reasoning tasks. In particular we detail as
fixed-point reasoning tasks those constructive reasoning tasks that
rely on specific optimality criteria to build up the objective concept.
In addition to the theoretical result of unifying several reasoning ser-
vices, the practical importance of this unification is that it paves the
way to the construction of one system that can solve, with slight
adaptations, all the above mentioned non-standard reasoning tasks.

The remainder of the paper is structured as follows: in Section 2
we introduce the framework and its formal semantics. Section 3 is
devoted to the reformulation of some relevant constructive reasoning
tasks in terms of second order formulas. In Section 4 we specify such
a reformulation for fixed-point reasoning tasks. The general calculus
is presented in Section 5, before the conclusive section.

2 Semantics

We denote by DL a generic DL. Only in order to exemplify our
framework, consider the presentation of the DL SHIQ.

Let Nr be a set of role names. A general role R can be either a
role name P ∈ Nr , or its inverse, denoted by P−. We admit a set of
role axioms, formed by: (1) a role hierarchy H, which is a set of role
inclusions of the form R1 � R2, and (2) a set of transitivity axioms
for roles, Trans(R). We denote by �∗ the transitive-reflexive clo-
sure of H ∪ {R− � S− | S � R ∈ H}. A role S is simple if it is
not transitive, and for no R such that R �∗ S, R is transitive.

Let Nc be a set of concept names, and let let A ∈ Nc. Generic
concepts C can be described by the following syntax:

C −→ � | ⊥ | A | � n S.C | � n S.C | C1 � C2 | ¬C (1)

We consider the other well-known constructs as abbreviations: C1 	
C2 = ¬(¬(C1) � ¬(C2)), ∃R.C = � 1 R.C, ∀R.C = � 0R.¬C.
For computability reasons [16], only in ∃R.C,∀R.C the role R can
be a general role (i.e., also a transitive role, or a super-role of a tran-
sitive role), while in other restrictions R must be a simple role.

Every DL is equipped with a model-theoretic semantics. Again,
exemplifying our discussion for SHIQ, an interpretation I is a pair
〈ΔI , ·I〉 where ΔI is a set of individuals, and ·I is an interpretation
function mapping � into ΔI , ⊥ into ∅, each concept name A ∈ Nc

into a subset of ΔI , and each role name P ∈ Nr into a subset of

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-479

479

ΔI × ΔI , and extended to concept and role expressions as follows
(let �{. . .} denote the cardinality of a set):

¬CI = ΔI − AI (2)

� n R.CI = {a ∈ ΔI | �{b ∈ ΔI | 〈a, b〉 ∈ RI , b ∈ CI} � n}

� n R.CI = {a ∈ ΔI | �{b ∈ ΔI | 〈a, b〉 ∈ RI , b ∈ CI} � n}

(C1 � C2)
I = (C1)

I ∩ (C2)
I

(P−)I = {〈b, a〉 ∈ ΔI × ΔI | 〈a, b〉 ∈ P I} (3)

As usual, we denote by C � D the proposition “for every inter-
pretation I (satisfying role axioms), CI ⊆ DI”. We also denote
non-subsumption by C �� D, meaning the proposition “there exists
an interpretation I satisfying role axioms such that CI �⊆ DI”. Ob-
serve that C � D, C �� D are propositions (true or false), so they
can be combined by ∧,∨ in a propositional formula Γ. For instance,
strict subsumption between C and D (C � D) is expressed by the
formula (C � D) ∧ (D �� C). We say Γ is true iff the composition
of truth values of subsumptions and non-subsumptions yields true.

2.1 Second-order Concept Expressions

In order to write second-order formulas, we need a set Nx =
{X0, X1, X2, . . .} of concept variables, which we can quantify over.

A concept term is a concept formed according to the rules in (1)
plus the rule C −→ X for X ∈ Nx. For example, A � X0 �
∀(P−).(X1 �∃Q.X2) is a concept term. We stress the fact that con-
cept terms could be defined starting from the syntax of every DL DL,
not just SHIQ. We denote by DLX the language of concept terms
obtained from DL by adding concept variables.

We use General Semantics [15]—also known as Henkin structures
[28]—for interpreting concept variables. In such a semantics, vari-
ables denoting unary predicates can be interpreted only by some sub-

sets among all the ones in the powerset of the domain 2ΔI

—instead,
in Standard Semantics a concept variable could be interpreted as any
subset of ΔI . Note that Baader and Narendran [3] use Standard Se-
mantics in their paper on concept unification.

Adapting General Semantics to our problem, the structure we con-
sider is exactly the sets interpreting concepts in DL. That is, the in-
terpretation XI of a concept variable X must coincide with the in-
terpretation EI of some concept E ∈ DL. Moreover, since we are
interested in particular existential second-order formulas, we limit
our definition to such formulas.

Definition 1 (General Semantics) Let C1, . . . , Cm,D1, . . . , Dm ∈
DL be concept terms containing concept variables X0, X1, . . . , Xn,
and let Γ be a conjunction of concept subsumptions and non-
subsumptions, of the form

(C1 � D1)∧· · ·∧(C� � D�)∧(C�+1 �� D�+1)∧· · ·∧(Cm �� Dm)
(4)

for 1 ≤ � ≤ m. We say that Γ is satisfiable in DL iff there exist a set
of n + 1 DL concepts E = 〈E0, . . . , En〉 such that, extending the
semantics (2)–(3) for each interpretation I, with: (Xi)

I = (Ei)
I

for i = 0, . . . , n, it holds that both

1. for j = 1, . . . , �, and every interpretation I, (Cj)
I ⊆ (Dj)

I and
2. for j = �+1, . . . , m, there is an interpretation I s.t. (Cj)

I �⊆
(Dj)

I .

Otherwise, Γ is said to be unsatisfiable in DL . If Γ is satisfiable in
DL then we call E a solution for Γ and we define :

SOL(Γ) = {E = 〈E0, . . . , En〉 | E is a solution for Γ}

as the set of solutions for Γ. Moreover, we say that the formula

∃X0 · · · ∃Xn.Γ (5)

is false in DL if SOL(Γ) = ∅ (i.e., Γ is unsatisfiable), else it is true.

From now on, when Γ contains only one concept variable, so that so-
lution tuples E amount to a single concept, we write E = E0 instead
of E = 〈E0〉 to improve readability.

Note that we consider only a particular form of closed second-
order formulas in DLs. because we are not interested in Second-order
DLs by themselves, but only in their use to express and compute the
“constructive” reasoning services presented in next Section.

3 Constructive Reasoning

Hereafter we show how to model some constructive reasoning tasks
as second-order concept expressions. We introduce the notion of sig-
nature of a concept that is used in the following Constructive Rea-
soning tasks. Given a concept C we define:

sign(C)Nc = {A | A ∈ Nc, A appears syntactically in C}

sign(C)Nr = {P | P ∈ Nr, P appears syntactically in C}

sign(C) = sign(C)Nc ∪ sign(C)Nr

3.1 Interpolation

Interpolation has been proposed in DLs for different purposes. Given
two concepts C and D such that C � D holds, Schlobach [24] uses
an interpolant to explain such a subsumption. Konev et al. [17] use
the notion of interpolation for a TBox T in order to forget part of the
vocabulary adopted in T and reason on a smaller ontology. Seylan et
al. [25] need the computation of an interpolant between two concepts
to rewrite a query in terms of DBox predicates.

Definition 2 (Interpolation) Given two concepts C and D in DL,
such that C � D, an interpolant of C and D is a concept I such
that:

• sign(I) ⊆ sign(C) ∩ sign(D);
• both C � I and I � D.

Given two concepts C and D such that C � D, the correspond-
ing interpolant satisfies the formula (C � X) ∧ (X � D) of the
form (4), when X is interpreted, in General Semantics, in the DL
which is the restriction of DL to sign(C) ∪ sign(D).

3.2 Concept Unification

Concept Unification [3] between two concepts C and D arises when
one wants to rewrite some concept names occurring in C and D in
order to make the relation C ≡ D true.

Definition 3 Let C and D be two concepts in DL such that C �≡ D.
We define the two sets XC = {AC

i | i = 1, . . . , l} and XD =
{AD

j | j = 1, . . . , m} such that XC ⊆ sign(C)Nc and XD ⊆
sign(D)Nc . A Unification Problem is finding the set of rewriting
rules M: AC

1 → C1; . . . ; A
C
l → Cl, A

D
1 → D1; . . . ; A

D
m → Dm

such that

sign(Ci) ⊆ sign(C) ∪ sign(D), with i = 1, . . . , l

sign(Dj) ⊆ sign(C) ∪ sign(D), with j = 1, . . . , m

C ≡M D

S. Colucci et al. / A Unified Framework for Non-Standard Reasoning Services in Description Logics480

The Unification problem is solvable iff the following formula (of the
form (5)) is true in DL:

∃AC
1 , . . . , AC

l , AD
1 , . . . , AD

m.(C � D) ∧ (D � C)

treating XC ,XD as concept variables which are interpreted in the
DL which is the restriction of DL to sign(C) ∪ sign(D).

4 Optimality in Constructive Reasoning

In many non-standard reasoning tasks, SOL(Γ) has a preference re-
lation ≺ between solutions. As an example, we know that a concept
D ∈ DL is a Common Subsumer of two concepts C1, C2 ∈ DL if
(C1 � D) and (C2 � D), or, recalling Def.1, if D is a solution of
ΓLCS = (C1 � X) ∧ (C2 � X). The LCS of C1, C2 is the least
element w.r.t. � of SOL(ΓLCS) and is unique up to equivalence [9].
We generalize this idea as follows.

Definition 4 (OSP) An Optimal Solution Problem (OSP) P is a pair
〈Γ,≺〉, where Γ is a formula of the form (4) and ≺ is a preorder
over SOL(Γ). A solution to P is a concept tuple E such that both
E ∈ SOL(Γ) and there is no other E ′ ∈ SOL(Γ) with E ′ ≺ E .

To clarify the above definition, consider the LCS problem where
C1 = A � ∃R.� and C2 = B � ∃R.∀R−.A, for the simple DL
FL−EI. Solutions to Γ = (A�∃R.� � X)∧ (B �∃R.∀R−.A �
X) are SOL(Γ) = {�, A,∃R.�,A � ∃R.�}, up to equivalence.
The preference relation for LCS is obviously � (strict subsumption).

4.1 Non-standard services in DLs as OSPs

We now show how the above framework can capture five non-
standard reasoning tasks, going from the most renowned to the fairly
recent—and less well-known—ones. Aiming at a fixpoint compu-
tation for solving each of the problems below, we also point out a
greatest element (i.e., a least preferred one) w.r.t. ≺ which could be
used to start the iteration of an inflationary operator.

4.1.1 Least Common Subsumer

Common subsumers of C1, C2 satisfy the formula of the form (4)
ΓLCS = (C1 � X) ∧ (C2 � X). Then, the LCS problem can be
expressed by the OSP LCS = 〈(C1 � X) ∧ (C2 � X), �〉. We
note that � is always a solution which is a greatest element w.r.t. �.

Such a formulation of LCS was already proposed by Donini et
al. [12], in a less general way, for a sub-language of SHIQ. That
formalization becomes a special case of the one we propose here,
since other non-standard reasoning tasks are not considered in that
paper.

4.1.2 Concept Difference

Following the algebraic approaches adopted in classical information
retrieval, Concept Difference [26] was introduced as a way to mea-
sure concept similarity.

Definition 5 Let C and D be two concepts such that C �
D. The Concept Difference C − D is defined by max�{B ∈
DL such that D � B ≡ C}.

We can define the following formula of the form (4):

ΓDIF F = (C � D � X) ∧ (D � X � C)

Such a definition causes Concept Difference to be modeled as the
OSP DIFF = 〈ΓDIF F , �〉. We recall that, is spite of its name, a
Concept Difference problem may have several solutions [26]. Note
that a greatest solution for ΓDIF F w.r.t. � is C itself.

4.1.3 Concept Abduction

Originally introduced in [11], Abduction in DLs has been recog-
nized as an interesting reasoning service for a set of varied tasks
[6, 10, 18, 20, 25]. Here we focus on Concept Abduction [11] but
the formalization can be easily extended to other abductive proce-
dures [13]. Concept Abduction is a straight adaptation of Proposi-
tional Abduction.

Definition 6 (Concept Abduction) Let C, D, be two concepts in
DL, both C and D satisfiable. A Concept Abduction Problem (CAP)
is finding a concept H ∈ DL such that C�H �� ⊥, and C�H � D.

Every solution H of a CAP satisfies the formula

ΓABD = (C � X �� ⊥) ∧ (C � X � D)

The preference relation for evaluating solutions is subsumption-
maximality, since less specific solutions should be preferred be-
cause they hypothesize the least. According to the proposed frame-
work, we can model Subsumption-maximal Concept Abduction as
ABD = 〈(C � X �� ⊥) ∧ (C � X � D), �〉. Note that a greatest
solution of ABD w.r.t. � is D, if C � D is a satisfiable concept (if
it is not, then ABD has no solution at all [11, Prop.1]).

4.1.4 Concept Contraction

Gärdenfors [14] distinguishes three main kinds of belief changes:
(i) expansion, (ii) revision, (iii) contraction. Given two concepts C
and D such that C � D � ⊥, Concept Contraction is the DL-based
version of contraction.

Definition 7 (Concept Contraction) Let C, D be two satisfiable
concepts in DL. A Concept Contraction Problem (CCP) is finding
a pair of concepts 〈G, K〉 (Give up, Keep) such that C ≡ G � K,
and K � D �� ⊥. We call K a contraction of C according to D.

Every solution 〈G, K〉 of a CCP satisfies the formula of the form (4)

ΓCONTR = (C � X0 � X1) ∧ (X0 � X1 � C) ∧ (X1 � D �� ⊥)

Following an information minimal criterion [14], such solutions can
be compared by �, preferring the ones whose Ks are subsumption-
minimal, since they are the solutions keeping the most. As a con-
sequence, we can define Subsumption-minimal Concept Contraction
as CONTR = 〈ΓCONTR, �2〉, where �2 compares by � only the
second element of each pair of solution concepts. Note that a great-
est solution of ΓCONTR w.r.t. � is 〈C,�〉, that is the solution which
gives up the most (the whole C is contracted to �).

4.1.5 DL-based Negotiation

The main aim of a negotiation process is to find an agreement be-
tween two competing parties. Both agreement and requirements from
the two parties can be represented as (a conjunction of) concepts [22].
In general, when the negotiation starts, the parties requirements are
in conflict with each other. Hence, in order to reach an agreement
they have to relax their original requirements, until they reach an
agreement. However, in every negotiation scenario each party has
also some strict requirements, which cannot be negotiated and must
be enforced in the final agreement. Consider two competing agents
c and d, whose strict requirements are, respectively, Sc and Sd, with
Sc�Sd �� ⊥ (otherwise no agreement can be reached). Every agree-
ment A should enforce strict requirements, while being always fea-
sible, i.e., it must be a solution of

ΓNEG = (X � Sc) ∧ (X � Sd) ∧ (X �� ⊥)

S. Colucci et al. / A Unified Framework for Non-Standard Reasoning Services in Description Logics 481

Moreover, we are usually interested in those agreements satisfying
some economical properties, such as Pareto optimality6. Then, we
may define a preference relation between concepts in SOL(ΓNEG)
≺NEG using the notion of utility function. Given two computable
utility functions uc, ud : DL −→ [0, 1] let

A ≺NEG A′ iff uc(A) · ud(A) > uc(A
′) · ud(A′)

It can be shown that a least concept w.r.t. ≺NEG is a Pareto optimal
agreement, so we can define NEG = 〈ΓNEG,≺NEG〉. Usually
[22, 23] the utility functions are non-increasing over subsumption,
i.e., if A1 � A2—meaning that agreement A1 decides strictly more
features than A2—then u(A1) ≥ u(A2), where equality means that
the features additionally decided by A1 are irrelevant for the agent.
Note that a greatest solution of ΓNEG w.r.t. ≺NEG is Sc �Sd, since
it barely enforces strict requirements of both parties without deciding
any of the features that would increase uc · ud.

4.2 Optimality by fixpoint

Optimal solutions w.r.t. a preorder might be reached by iterating an
inflationary operator. We now specialize the definition of inflationary
operators and fixpoints to our setting.

Definition 8 (Inflationary operators and fixpoints) Given an OSP
P = 〈Γ,≺〉, we say that the operator bP : SOL(Γ) → SOL(Γ)
(for better) is inflationary if for every E ∈ SOL(Γ), it holds that
bP(E) ≺ E if E is not a least element of ≺, bP(E) = E otherwise.
In the latter case, we say that E is a fixpoint of bP.

Intuitively, bP(E) is a solution better than E w.r.t. ≺, if such a solu-
tion exists, otherwise a fixpoint has been reached, and such a fixpoint
is a solution to P. Being bP inflationary, a fixpoint is always reached
by the following induction: starting from a solution E , let

E0 = E

Ei+1 = bP(Ei) for i = 0, 1, 2, . . .

Then, there exists a limit ordinal λ such that Eλ is a fixpoint of bP.
For each of the previous five non-standard reasoning services, we
highlighted a greatest solution E ∈ SOL(Γ) which this iteration
can start from. Obviously, when ≺ is well-founded (in particular,
when SOL(Γ) is finite) the fixpoint is reached in a finite number of
steps. However, also when after n iterations En is not a fixpoint, En

can be considered as an approximation of an optimal solution, since
Ei+1 ≺ Ei for every i = 0, . . . , n.

5 Defining b through a Calculus

In this section we first set up a calculus that computes a solution of
formulas Γ of the form (4), and prove its soundness and complete-
ness. We do not attempt to prove termination, since some of the above
problems are known to be undecidable, e.g., unification in SHI [29].
Then we show for each of the previous OSPs how the preference re-
lation can be embedded inside a formula Γ′ extending Γ. Hence, an
implementation of such a calculus would provide a uniform method
for solving all the above non-standard reasoning problems.

We stress the fact that well-known decidability results of Büchi [8]
and Rabin [21] about Monadic Second-order Logic do not apply in
our case, since they refer to Standard Semantics.

6 An agreement is Pareto-optimal if no agent can improve its utility without
worsening the other agent’s utility.

Definition 9 (Substitutions) Let {i1, . . . , ik} ⊆ {0, 1, . . . , n} be
a set of distinct indexes, Xi1 , . . . , Xik

be concept variables, and
Di1 , . . . , Dik

∈ (SHIQ)X be concept terms.

1. A substitution σ is a set of pairs {[Xi1/Di1], . . . , [Xik
/Dik

]}.
A substitution is ground if every Dij

contains no variables, i.e.,
Dij

∈ SHIQ.
2. Let C ∈ (SHIQ)X be a concept term, we define σ(C) as

σ(Xi) = Di, σ(¬Xi) = ¬(σ(Di)), σ(A) = A, σ(C1 � C2) =
σ(C1) � σ(C2), σ(�� nR.C) =�� nR.σ(C) for ��∈ {�, �}.

3. For concept terms C, D, we define also σ(C � D) = σ(C) �
σ(D), σ(C �� D) = σ(C) �� σ(D), and for a boolean conjunc-
tion Γ of the form (4), σ(Γ) is the result of applying σ to every
subsumption and non-subsumption statement.

By using substitutions, a formula of the form (5) is true according to
Def.1 if and only if there exists a ground substitution making Γ true,
as formalized by the theorem below.

Theorem 1 A formula ∃X0 · · · ∃Xn.Γ is true in SHIQ iff there
exists a ground substitution σ = {[X0/E0], . . . , [Xn/En]} with
E0, . . . , En ∈ SHIQ, such that σ(Γ) is true.

Observe that since σ is ground, and substitutes every variable in
Γ, σ(Γ) is just a boolean combination of [non-]subsumptions in
SHIQ. Observe also that if Standard Semantics is adopted for con-
cept variables [3] instead of Def.1—that is, if XI can be any sub-
set of ΔI—then the “only if” part of the above theorem no longer
holds, since there can be statements for which XI is not express-
ible in the target DL, yielding no substitution. For example, formula
∃X.(A � X) ∧ (B � X) ∧ (� �� X) is false in a DL without 	
(disjunction), but it would be true in Standard Semantics: just let for
every I, XI = AI ∪ BI .

We present now a simple calculus, obtained by combining Ana-
lytic Tableaux for ordinary concept constructors, and substitutions
for concept variables. Then we prove its soundness and complete-
ness. Again, we present the calculus for the DL SHIQ, but only for
sake of clarity; the same framework could be adopted for other DLs.
We borrow Tableaux rules (T-rules; see below) from well-known
results of Tobies [27]. Since inverse roles are present in SHIQ, we
use pairwise blocking for individuals [27, p.125].

TABLEAUX RULES (T-rules)

All rules are applicable only if x is not blocked. For each i =
1, ..., n, Li is a branch in τi. Rules above the separating line have
precedence over rules below it.

�-rule : if C � D ∈ Li(x),

then add both C and D to Li(x)

	-rule : if C 	 D ∈ Li(x),

then add either C or D to Li(x)

∀-rule : if ∀R.C ∈ Li(x), and there exists an individual y such that
y is an R-successor of x,

then add C to Li(y)

�-rule : if � n S.C ∈ Li(x) with n � 1, and
there are m > n S-neighbors (say) y1, . . . , ym of x with
C ∈ Li(yj) for j = 1, . . . , m,
y, z ∈ {y1, . . . , ym} with y being an S-successor of x
and not y �= z

S. Colucci et al. / A Unified Framework for Non-Standard Reasoning Services in Description Logics482

then (1) add Li(y) to Li(z),
(2) for every R ∈ Li(x, y) if z is a predecessor of x then
add R− to Li(z, x) else add R to Li(x, z),
(3) let Li(x, y) = ∅, and
(4) for all u with u �= y, set u �= z

∀+-rule : if ∀S.C ∈ Li(x), with Trans(R) and R �∗ S, there
exists an individual y such that y is an R-successor of x,
and ∀R.C �∈ Li(y),

then add ∀R.C to Li(y)

choose-rule : if �� nS.D ∈ Li(x), with ��∈ {�, �} and there is
an S-neighbor y of x

then add either D or ¬D to Li(y)

∃-rule : if ∃R.C ∈ Li(x), and x has no R-successor y with C ∈
Li(y),

then pick up a new individual y, add R to L(x, y), and let
Li(y) := {C}

�-rule : if � n S.C ∈ Li(x), and x has not n S-neighbors
y1, . . . , yn with y� �= yj for 1 � � < j � n,

then create n new successors y1, . . . , yn of x with
Li(x, y�) = {S}, Li(y) := {C}, and y� �= yj , for
1 � � < j � n

A branch L is closed if, for some individual x, either ⊥ ∈ L(x),
or {A,¬A} ⊆ L(x) for some concept name A, or � n S.C ∈ L(x)
and x has in L m S-neighbors y1, . . . , ym with m > n, with C ∈
L(yj) and yi �= yj for 1 � i < j � m. We call such a situation a
clash. A tableau is closed if all its branches are closed. A branch is
open if it is not closed, and no T-rule can be applied to it. A tableau
is open if it has at least one open branch.

In order to prove a formula of the form (5), each [non-] subsump-
tion in Γ is associated with a tableau. For a sentence Ci � Di,
the calculus aims at closing the tableau τi that starts with the sin-
gle branch

Li(ai) = {Ci,¬Di} (6)

with ai being an individual. For a sentence Ci �� Di, the calculus,
starting with τi as before, aims at obtaining an open tableau. We
call system the n + 1-tuple 〈τ1, . . . , τm, σ〉, made of the n tableaux
and the substitution on the variables. The system always starts
with σ = ∅. Substitution rules (S-rules) are presented below. We
denote the application of the substitution θ to 〈τ1, . . . , τm, σ〉 by
θ〈τ1, . . . , τm, σ〉 and its result is 〈θ(τ1), . . . , θ(τn), θ ∪ σ〉.

SUBSTITUTION RULES (S-rules)

All rules are applicable only if L is open, and the substitution is
not σ-blocked. Rules above the separating line have precedence over
rules below it.

σ�-rule : apply [X/�] to 〈τ1, . . . , τm, σ〉
σN-rule : apply [X/A] to 〈τ1, . . . , τm, σ〉

σ¬-rule : apply [X/¬Y] to 〈τ1, . . . , τm, σ〉, where Y denotes a
concept variable not appearing in 〈τ1, . . . , τm, σ〉

σ�-rule : apply [X/� m R.Y] to 〈τ1, . . . , τm, σ〉, where Y de-
notes a concept variable not appearing in 〈τ1, . . . , τm, σ〉, and if
m > 1 then R is a simple role

σ�-rule : apply [X/� n R.Y] to 〈τ1, . . . , τm, σ〉, where Y denotes
a concept variable not appearing in 〈τ1, . . . , τm, σ〉, and if n > 0
then R is a simple role

σ�-rule : apply [X/Y1 � Y2] to 〈τ1, . . . , τm, σ〉, where Y1, Y2 de-
note concept variables not appearing in 〈τ1, . . . , τm, σ〉

Note that T-rules are applied separately to each branch of each
tableau, while S-rules are applied to all branches of all tableaux at
the same time.

An S-rule r is σ-blocked for X ∈ Li(x) in 〈τ1, . . . , τm, σ〉 if
〈τ1, . . . , τm, σ〉 derives from some 〈τ ′

1, . . . , τ
′
m, σ′〉, in which there

is some individual x′ such that: (i) X ′ ∈ L′
i(x

′), (ii) Li(x) =
L′

i(x
′), (iii) for every R-successor y of x in Li, there exists an R-

successor y′ of x′ in L′
i such that Li(y) = L′

i(y
′), (iv) for every S,

the number of different S-neighbors of x in Li is the same as the
number of different S-neighbors of x′ in L′

i, and (v) Rule r has been
applied to L′

i in 〈τ ′
1, . . . , τ

′
m, σ′〉.

It is well-known [27] that T-rules are sound and complete, i.e.,
C � D is true if and only if the tableau of the form (6) closes. We
now extend this property to our combined calculus.

Theorem 2 (Soundness) Let Γ be as in (4). If the calculus of T- and
S-rules, starting with each τi as in (6) and σ = ∅, yields a system
〈τ1, . . . , τm, σ〉 in which each τi is closed for i = 1, . . . , �, and each
τj is open for j = � + 1, . . . , m, then there exists a substitution σ′

such that σ′(Γ) is true.

Proof. Let σ′ be σ in which every remaining unsubstituted concept
variable is substituted with a different concept name A never
appearing in Γ. Since T-rules are sound, each closed tableau τi

for i = 1, . . . , � is a proof that σ(Ci) � σ(Di), and the same
is also a proof for σ′(Ci) � σ′(Di). Moreover, since T-rules
are complete, each open tableau τj for j = � + 1, . . . , m is a
proof that σ(Cj) �� σ(Dj), and the same remains a proof for
σ′(Cj) �� σ′(Dj), since remaining variables are substituted by
unconstrained concept names. �

Theorem 3 (Completeness) Let Γ be as in (4). If there exists a sub-
stitution σ such that σ(Γ) is true, then there is a way of applying T-
and S-rules that yields a system 〈τ1, . . . , τm, σ〉 in which each τi is
closed for i = 1, . . . , �, and each τj is open for j = � + 1, . . . , m.

Proof. Since S-rules mimic SHIQ syntax (1), every ground
substitution σ can be reconstructed by repeated applications of
S-rules. If one decides to apply all these S-rules at once, one
gets a system 〈τ ′

1, . . . , τ
′
m, σ′〉 in which each τi has one branch

Li(ai) = {σ(Ci), σ(¬Di)}, and σ′ = σ. Now since T-rules are
sound and complete, their application yields closed tableaux τi for
i = 1, . . . , �, and open tableaux τj for j = � + 1, . . . , m. �

Soundness and completeness of the above calculus, together with
undecidability results for specific problems such as unification in
SHI [29], imply that (i) there are infinitely many instances in which
the calculus does not terminate, (ii) there is no algorithm completely
identifying [non-]terminating cases. However, for specific classes of
formulas of the form (5), a termination proof can be devised on the
basis of σ-blocking [12], which prevents the application of S-rules.

We now show how to define bP when P =
LCS, DIFF, ABD, CONTR, NEG. The idea is to add to
ΓP the conditions enforcing a better solution, yielding a new
formula Γ′

P. In all cases, bP has the following form:

bP(E) =

j
E ′ ∈ SOL(ΓΓ′

P
) if such an E ′ exists

E otherwise

S. Colucci et al. / A Unified Framework for Non-Standard Reasoning Services in Description Logics 483

and the conditions added to ΓP enforce that E ′ ≺P E . To shorten
formulas, we use the abbreviation C ≡ D for (C � D)∧ (D � C),
and C � D to mean (C � D) ∧ (D �� C). In all the problems
below, but for Concept Contraction, E is just the singleton E.

Γ′
LCS = (C1 � X) ∧ (C2 � X) ∧ (X � E)

Γ′
DIF F = (D � X ≡ C) ∧ (E � X)

Γ′
ABD = (C � X �� ⊥) ∧ (C � X � D) ∧ (E � X)

Γ′
CONTR = C ≡ (X0 � X1)) ∧ (X1 � D �� ⊥) ∧ (X1 � E1)

(given E = 〈E0, E1〉)

For DL-based Negotiation, we exploit the property that utilities are
non-increasing over strict subsumption, i.e., E′

� E implies that
ux(E′) ≥ ux(E), for x = c, d.

Γ′
NEG = (X � Sc) ∧ (X � Sd) ∧ (X � E)

In order to avoid adding insignificant details to E′ (that would imply
u(E′) = u(E), with no real improvement towards an optimum), we
should delve into the details of u. For instance, if each agent assigns a
worth w1, . . . , wn to some concepts P1, . . . , Pn, and u is defined by
u(E) =

P
E�Pi

w(Pi) [22], then it is sufficient to add to the above
formula the conjunct X � (E ��Pi

Pi), expressing that X should
subsume at least one preferred concept Pi not yet subsumed by E.

Observe that the number of occurrences of variables in each of the
above formulas Γ is a small constant (6 in the worst case, Γ′

CONTR,
considering equivalence as two axioms), while the proof of undecid-
ability of unification in SHI [29] requires a large number of variable
occurrences in (the analogous of) Γ. Hence deciding the satisfiability
of the above formulas is an open problem.

6 Conclusion and Future Directions

This paper proposed an innovative approach exploiting the common-
alities shared by several non-standard reasoning services in DLs to
model them according to a unified framework. It is noteworthy that
such a uniform view involves both the definition and the computation
of the investigated tasks: on the one hand we propose a unique model
to express the services as special Second-order sentences in DLs; on
the other hand we provide a calculus for solving them according to
a unified algorithmic approach. The unification potential of the pro-
posed framework is shown in the paper w.r.t. several non-standard
reasoning tasks apparently far from each other like Interpolation,
Concept Unification, LCS, Concept Difference, Concept Abduction,
Concept Contraction and Negotiation. We note that the framework is
easily extensible for the computation of further reasoning tasks, like
the Most Specific Concept and Knowledge Base Completion, by sim-
ply allowing formulas involving an ABox or a TBox in the definition
model. The framework underlines how most non-standard services
share the property of being devoted to the exhibition of one or more
concepts and therefore names them “constructive reasoning tasks”.
Furthermore, constructive reasoning problems whose solution obeys
to some optimality criteria, are more specifically modelled as “Op-
timal Solution Problem”. The proposed unification effort will be fi-
nally capitalized by the construction of a unique system able to solve
any non-standard reasoning task; the design and the implementation
of such a system will be object of our future research work.

ACKNOWLEDGEMENTS

Work partially supported by Apulia projects PS 092 and PS 025

REFERENCES
[1] F. Baader, ‘Least common subsumers and most specific concepts in

a description logic with existential restrictions and terminological cy-
cles’, in IJCAI 2003, pp. 319–324, (2003).

[2] F. Baader, R. Küsters, and R. Molitor, ‘Rewriting concepts using termi-
nologies’, in KR 2000, pp. 297–308, (2000).

[3] F. Baader and P. Narendran, ‘Unification of concept terms in description
logics’, J. of Symbolic Computation, 31, 277–305, (2001).

[4] F. Baader and B. Sertkaya, ‘Usability issues in description logic knowl-
edge base completion’, in ICFCA-2009, pp. 1–21, (2009).

[5] F. Baader, B. Sertkaya, and A.-Y. Turhan, ‘Computing the least com-
mon subsumer w.r.t. a background terminology’, J. of Applied Logic,
5(3), 392–420, (2007).

[6] M. Bienvenu, ‘Complexity of abduction in the EL family of lightweight
description logics’, in KR 2008, pp. 220–230, (2008).

[7] A. Borgida, T. Walsh, and H. Hirsh, ‘Towards measuring similarity in
description logics’, in DL 2005, (2005).

[8] J. R. Büchi, ‘On a decision method in restricted second order arith-
metic’, in Proc. Internat. Congr. on Logic, Methodology and Philos-
ophy of Science, eds., E. Nagel et al., pp. 1–11. Stanford University
Press, (1960).

[9] W. Cohen, A. Borgida, and H. Hirsh, ‘Computing least common sub-
sumers in description logics’, in AAAI’92, eds., P. Rosenbloom and
P. Szolovits, pp. 754–761, (1992). AAAI Press.

[10] T. Di Noia, E. Di Sciascio, and F. M. Donini, ‘Semantic matchmaking
as non-monotonic reasoning: A description logic approach’, J. of Artif.
Intell. Res., 29, 269–307, (2007).

[11] T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello, ‘Abductive
matchmaking using description logics’, in IJCAI 2003, pp. 337–342,
(2003).

[12] F. M. Donini, S. Colucci, T. Di Noia, and E. Di Sciascio, ‘A tableaux-
based method for computing least common subsumers for expressive
description logics’, in IJCAI 2009, pp. 739–745, (2009).

[13] C. Elsenbroich, O. Kutz, and U. Sattler, ‘A case for abductive reasoning
over ontologies’, in OWLED Workshop, (2006).

[14] P. Gardenfors, Knowledge in Flux, Mit Press, Bradford Book, 1988.
[15] L. Henkin, ‘Completeness in the theory of types’, J. of Symbolic Logic,

15(2), 81–91, (1950).
[16] I. Horrocks, U. Sattler, and S. Tobies, ‘Practical reasoning for very ex-

pressive description logics’, Logic J. of the IGPL, 8(3), (2000).
[17] B. Konev, D. Walther, and F. Wolter, ‘Forgetting and uniform interpola-

tion in large-scale description logic terminologies’, in IJCAI 2009, pp.
830–835, (2009).

[18] F. Lécué, A. Delteil, and A. Léger, ‘Applying abduction in semantic
web service composition’, in ICWS 2007, pp. 94–101, (2007).

[19] D. L. McGuinness and A. Borgida, ‘Explaining subsumption in descrip-
tion logics’, in IJCAI’95, pp. 816–821, (1995).

[20] I. S. E. Peraldi, A. Kaya, and R. Möller, ‘Formalizing multimedia in-
terpretation based on abduction over description logic aboxes’, in DL
2009, (2009).

[21] M. O. Rabin, ‘Decidability of second-order theories and automata on
infinite trees’, Trans. of the Am. Math. Society, 141, 1–35, (1969).

[22] A. Ragone, ‘OWL-DL as a power tool to model negotiation mecha-
nisms with incomplete information’, in ISWC/ASWC 2007, pp. 941–
945, (2007).

[23] A. Ragone, T. Di Noia, F. M. Donini, E. Di Sciascio, and M. Wellman,
‘Weighted description logics preference formulas for multiattribute ne-
gotiation’, in SUM’09, LNAI, Springer-Verlag, (2009).

[24] S. Schlobach, ‘Explaining subsumption by optimal interpolation’, in
JELIA 2004, pp. 413–425, (2004).

[25] I. Seylan, E. Franconi, and J. de Bruijn, ‘Effective query rewriting with
ontologies over dboxes’, in IJCAI 2009, pp. 923–925, (2009).

[26] G. Teege, ‘Making the difference: A subtraction operation for descrip-
tion logics’, in KR’94, pp. 540–550, (1994).

[27] S. Tobies, Complexity Results and Practical Algorithms for Logics in
Knowledge Representation, Ph.D. dissertation, RWTH Aachen, 2001.

[28] J. Väänänen, ‘Second-order logic and foundations of mathematics’, The
Bulletin of Symbolic Logic, 7(4), 504–520, (2001).

[29] F. Wolter and M. Zakharyaschev, ‘Undecidability of the unification and
admissibility problems for modal and description logics’, ACM Trans.
on Computational Logic, 9, (2008).

S. Colucci et al. / A Unified Framework for Non-Standard Reasoning Services in Description Logics484

