
Tableau-based Forgetting in ALC Ontologies

Zhe Wang1 and Kewen Wang1 and Rodney Topor1 and Xiaowang Zhang2

Abstract. In this paper, we propose two new approaches to forget-
ting for ALC based on the well-known tableau algorithm. The first
approach computes the result of forgetting by rolling up tableaux,
and also provides a decision algorithm for the existence of forgetting
in ALC . When the result of forgetting does not exist, we provide
an incremental method for computing approximations of forgetting.
This second approach uses variable substitution to refine approxi-
mations of forgetting and eventually obtain the result of forgetting.
This approach is capable of preserving structural information of the
original ontologies enabling readability and comparison. As both ap-
proaches are based on the tableau algorithm, their implementations
can make use of the mechanisms and optimization techniques of ex-
isting description logic reasoners.

1 Introduction

An ontology is a formal definition for a common vocabulary (or sig-
nature) that is used to describe and represent an application domain.
Ontologies can be used by automated tools to provide advanced ser-
vices such as more accurate web search, intelligent software agents
and knowledge management. An example of large biomedical ontol-
ogy is SNOMED CT [15]. Ontology editing and maintaining tools,
such as Protégé [14], are supported by efficient reasoners based on
tableau algorithms [10] for description logics (DLs). However, as
shown in [3], the existing reasoners provide limited reasoning sup-
port for ontology modifications, which largely restricts the wide use
of ontologies in the Semantic Web.

For ontology modifications, an essential task is to reduce the vo-
cabulary of an ontology T , that is, to forget a sub-vocabulary S of the
vocabulary of T and transform T into a new ontology T ′ containing
no symbol in S and sharing with T the same logical consequences
that do not use S.

In AI and mathematical logic, forgetting or uniform interpolation
has been well investigated in classical logics [7, 8], modal logics [11],
and logic programming [4]. More recently, the technique of forget-
ting has been proposed for ontology module extraction and ontology
reuse [12, 6, 5]. Forgetting was also shown to be useful in ontology
composition, decomposition, revision and summarization.

Algorithms for forgetting in simple DLs have been developed
[12, 5]. Forgetting for the more complex DL ALC was investigated
in [13], where an algorithm based on ALC concept normal form was
proposed. However, the problem of forgetting for ALC remained un-
solved, for the following reasons. (1) The result of forgetting in an
ALC TBox may not exist, and the decidability of the existence of
forgetting was open. (2) When the result of forgetting does not exist,
an incremental algorithm for computing approximations of forgetting

1 Griffith University, Australia. {jack.wang, k.wang, r.topor}@griffith.edu.au
2 Peking University, China. zxw@is.pku.edu.cn

was missing. (3) As the algorithm transforms each TBox into a nor-
mal form, the structural information of the original TBox is lost after
forgetting. (4) The computation cannot make use of off-the-shelf DL
reasoners which are based on tableau algorithms.

In this paper, we propose two different approaches for forgetting
in ALC based on the tableau algorithm. We first introduce a calculus
called rolling up of tableaux, and show its applications to computing
forgetting in concept descriptions and TBoxes. We provide an algo-
rithm to decide the existence of forgetting in TBoxes, and to compute
the result of forgetting whenever it exists. The algorithm can also be
used to compute approximations of forgetting in an incremental man-
ner. However, this approach is unable to preserve structural informa-
tion of the original TBox. Inspired by a method used for computing
least common subsumers in [2], we provide a different approach for
computing forgetting, by introducing a general tableau-based calcu-
lus via substitutions on concept terms containing concept variables.
To this end, a set of substitution rules are introduced, and then algo-
rithms are developed for forgetting both in concept descriptions and
in TBoxes. When the result of TBox forgetting exists, the algorithm
is capable of computing the result, in which the original structural
information is preserved.

2 Preliminaries

In this section, we briefly recall some basics of ALC . The reader is
referred to [1] for further details.

A concept description (or concept) in ALC is built up with con-
cept names and role names. NC denotes the set of concept names and
NR the set of role names. The syntax of ALC -concept descriptions
is defined inductively as follows.

B ←− A | � | ⊥
C, D ←− B | ¬C | C � D | C � D | ∃r.C | ∀r.C

where A ∈ NC and r ∈ NR. B is called an atomic concept. A
literal is an atomic concept or its negation. Given a literal L, L+

denotes its concept name.
A concept is in negation normal form (NNF) if negations occur

only in front of concept names. A concept can be transformed into its
NNF in linear time. In the rest of the paper, without loss of generality,
we assume all concept descriptions are in NNF.

A TBox is a set of axioms of the form C
 D (C is subsumed
by D). C ≡ D is the abbreviation of both C
 D and D
 C.

The signature of a concept description C, written sig(C), is the set
of all concept and role names in C. Similarly, we can define sig(T)
for a TBox T .

The tableau based approach for DL reasoning is well established,
and is the basis for most DL reasoners.

A tableau T is a set of trees {T1, . . . , Tn}. Each node x in Ti is
labeled with a set of concepts Li(x), and each edge 〈x, y〉 in Ti is

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-47

47

labeled with a set of roles Li(〈x, y〉). When 〈x, y〉 is labeled with a
set containing role name r, we say x is a r-predecessor of y, and y a
r-successor of x.

The initial state of the tableau algorithm is a labeled root node x,
denoted L0(x) = {C1, . . . , Cn}, which is then expanded by tableau
expansion rules (T-rules, ref. Table 1) [1].

Table 1. Tableau expansion rules for ALC (T-rules)

�-rule: if C1 � C2 ∈ L(x), and {C1, C2} �⊆ L(x)
then set L(x) = L(x) ∪ {C1, C2}

�-rule: if C1 � C2 ∈ L(x), and {C1, C2} ∩ L(x) = ∅
then create a copy of the tree with label functionL′,

and set L′(x) = L(x) ∪ {C1} and
L(x) = L(x) ∪ {C2}

∃-rule: if ∃r.C ∈ L(x), and
x has no r-successor y with C ∈ L(y)

then create a new node y, and set L(〈x, y〉) = {r}
and L(y) = {C}

∀-rule: if ∀r.C ∈ L(x), and
there is an r-successor y of x with C �∈ L(y)

then set L(y) = L(y) ∪ {C}
� -rule: if C1 � C2 ∈ T , and ¬C1 � C2 �∈ L(x)

then set L(x) = L(x) ∪ {¬C1 � C2}

Note that �-rule splits a tree T into two, T and T′. For convenience
of marking corresponding nodes and edges in these two trees, we de-
note corresponding nodes using the same names (e.g., x in the table).
We assume each new node created by other T-rules has a new name.
A subtree whose root is named by x is called a x-rooted subtree.

A tableau is complete if no T-rule applies to it. A label is said
to clash if it contains complementary literals A and ¬A or ⊥. A
complete tableau T is open if at least one tree in T is clash free.
Otherwise, T is closed. T |= C
 D iff the complete tableau of
expanding L0 = {C � ¬D} w.r.t. T is closed. If T = ∅, we simply
write |= C
 D.

Two notions of forgetting for ALC are defined in [13], one for
concept descriptions and one for TBoxes.

Definition 1 (C-Forgetting) Let C be an ALC -concept description
and S a set of concept and role names. A concept description C′ on
the signature sig(C) − S is a result of c-forgetting about S in C if
the following conditions are satisfied:

(CF1) |= C
 C′.
(CF2) |= C
 D implies |= C′
 D for any ALC -concept D with

sig(D) ⊆ sig(C) − S.

Given a signature S, the result of c-forgetting about S in any
ALC -concept C always exists and is unique up to concept equiv-
alence, denoted cforget(C,S).

In [13], only concept descriptions with finite expressions are con-
sidered, but the definition can be extended to infinite cases.

Definition 2 (TBox Forgetting) Let T be an ALC -TBox and S be
a set of concept and role names. A TBox T ′ over the signature
sig(T)−S is a result of TBox forgetting about S in T if the follow-
ing conditions are satisfied:

(TF1) T |= T ′;
(TF2) T |= C
 D implies T ′ |= C
 D for any ALC -concepts

C, D s.t. sig(C � D) ⊆ sig(T) − S.

It is shown in [13] that some TBoxes may not have finite result
of forgetting, even if S contains only concept names. If the result

of forgetting about S in T is expressible as a (finite) ALC TBox,
the result of forgetting is unique up to TBox equivalence, denoted
forget(T ,S). In this case, we say S is forgettable in T .

The existence problem of forgetting is, for given S and T , to de-
cide whether S is forgettable in T .

3 Forgetting by Rolling Up

In this section, we introduce a forgetting algorithm based on tableau
expansion and rolling up techniques. We first introduce rolling up
of tableaux for ALC concept descriptions, and show its application
in computing c-forgetting. After that, we introduce the algorithm for
computing TBox forgetting based on the rolling up techniques for
c-forgetting. With the help of tableau theory and rolling up, we also
show the decidability of the existence of forgetting for ALC .

3.1 Forgetting in Concept Descriptions

The tableau algorithm for ALC expands a (collection of the con-
juncts of) concept C into a complete tableau T, called a tableau
of C. An observation is that T contains the complete information
about C, so that we can restore the concept C from T, up to concept
equivalence. We call such a process the rolling up of a tableau.

Before presenting the formal definition of rolling up, we need to
first introduce an additional expansion rule. It is because ∀-rule is
only applicable when the node has a successor, otherwise the uni-
versal quantified concept C in ∀r.C cannot be expanded. In order
to fully expand a tableau including all universal quantified concepts,
we introduce a new role r∀ for each role r, and a new expansion rule
∀∗-rule as follows.

∀∗-rule If ∀r.C ∈ L(x), and (1) if x has no r∀-successor, then
create a new node y, and set L(〈x, y〉) = {r∀} and L(y) = {C};
or (2) if y is the r∀-successor of x and C �∈ L(y), then set L(y) =
L(y) ∪ {C}.

Now a tableau is complete if no T-rule or ∀∗-rule applies to it. A
complete tableau T is open if there is a tree in T that is either clash
free or with clashes occurring only in subtrees whose roots are r∀-
successors. Otherwise, T is closed. The ∀∗-rule does not affect the
termination and correctness of the tableau algorithm.

Now we introduce the definition of rolling up for a tableau.

Definition 3 (Rolling Up) Given a signature S and a tableau Tx =
{T1, . . . , Tn} where each Ti is x-rooted, we define the rolling up of
Tx over S to be a concept

roll(Tx,S) =
⊔

1≤i≤n

(�
L+∈S,L∈Li(x) L ��
r∈S,r∈Li(〈x,y〉) ∃r.roll(Ty,S) ��
r∈S,r∀∈Li(〈x,z〉) ∀r.roll(Tz,S)

)

where L is a literal with L+ its concept name, and Ty and Tz are
the sets of y-rooted and z-rooted subtrees in Tx, respectively.

Example 1 Let T be the complete tableau of expanding L0(x) =
{ (A�∃r.¬B)�∀r.(B�C) }. Then roll(T, {A, B, C, r}) is

(
A�

∀r.(B�C)
)
�

(
∃r.(¬B�C)�∀r.(B�C)

)
, and roll(T, {A, C, r})

is A � ∃r.C.

The following result states the correctness of rolling up. That is,
the rolling up of an arbitrary tableau of a concept is equivalent to the
concept itself.

Z. Wang et al. / Tableau-Based Forgetting in ALC Ontologies48

Proposition 1 Given an ALC concept C, let T be an arbitrary com-
plete tableau obtained by expanding L0(x) = {C}. Then we have
|= C ≡ roll(T, sig(C)).

We can define an equivalence relation over all complete tableaux:
two complete tableaux T1,T2 are equivalent over signature S if |=
roll(T1,S) ≡ roll(T2,S). Given an ALC -concept C, define T(C)
to be a tableau obtained by expanding L0(x) = {C} and removing
all closed trees. We can show that T(C) is unique up to equivalence.
Note that T(C) = ∅ if |= C ≡ ⊥. The fact that T(C) contains no
closed trees is necessary for the correctness of the following theorem.

Theorem 1 Given an ALC concept C and a set S of concept and
role names, we have cforget(C,S) = roll(T(C), sig(C) − S).

3.2 Forgetting in TBoxes

With non-empty TBoxes, the tableau algorithm requires the
-rule,
which may cause the tableaux to be infinite. An example is T =
{�
 ∃r.B}. As ∃r.B is added into the label of each node, the
∃-rule may apply indefinitely. A blocking condition is used to en-
sure termination of the tableau algorithm. However, for the tableau
of concept C w.r.t. a TBox T to capture the complete information of
C and T , in this subsection we assume blocking is not applied.

Since the rolling up of an infinite tableau is an infinite expres-
sion, we generalize the classical definition of concept description to
allow infinite concepts, which are concept descriptions with infinite
expressions. The subsumption between infinite concepts is a natural
extension of that between finite concepts. We extend Definition 1 to
infinite concepts by allowing both C and C′ to be possibly infinite.
The results for c-forgetting in the previous subsection, e.g., Theo-
rem 1, apply to infinite concepts.

In what follows, we show that TBox forgetting can be character-
ized by c-forgetting in infinite cases, by introducing a concept encod-
ing for the
-rule.

Given a TBox T , define concept con(T) =
�

C�D∈T (¬C �D).
Note that each TBox T can be transformed into an equivalent TBox
of the form {�
 con(T)}, and thus can be uniquely characterized
by the concept con(T). From the finiteness of TBoxes, con(T) is
always finite.

Given a finite concept C and a number n ≥ 0, define

C(n) =
n�

k=0

�

r1,...,rk∈R
∀r1 · · · ∀rk.C,

where R is the set of role names in C (and other concepts consid-
ered). Note that C0 = C, and |= C(n+1)
 C(n) for any n ≥ 0.
C(∞) is the limit of C(n) when n goes to ∞, which is an infinite
concept description.

Intuitively, applying ∀-rule to con(T)(n) in the label of a root
node adds con(T) to the labels of all the node within depth n of
the tableau, as exactly
-rule does. Thus, for any concept C, the
expansion of L0(x) = {C � con(T)(n)} without
-rule imitates
the expansion of L′

0(x) = {C} with
-rule applied to all the
nodes within depth n. In what follows, we use T(C � con(T)(∞))
to denote the tableau of concept C w.r.t. T (with
-rule), and
in this way, each label is finite in the tableau. From Theorem 1,
cforget(C � con(T)(∞),S) is the rolling up of T(C � con(T)(∞))
over sig(C) ∪ sig(T) − S.

The following lemma is an extension of Lemma 9 in [9] to the
infinite case.

Lemma 1 Let T be an ALC -TBox, and C1 and C2 be two finite
ALC -concepts. Then T |= C1
 C2 iff |= con(T)(∞) �C1
 C2.

The following result connects TBox forgetting with c-forgetting,
and also shows the decidability of the existence of TBox forgetting.

Theorem 2 Let T be an ALC -TBox and S be a set of concept and
role names. Then

(1) S is forgettable in T iff there exists a number n ≥ 0 such that
forget(T ,S) = { �
 cforget(con(T)(n),S) }.

(2) The existence problem of TBox forgetting is decidable.

To see the correctness of Theorem 2, we first show an equivalent
definition of TBox forgetting using concept relations in infinite case.
From Lemma 1, (TF1) is T |= �
 con(T ′) and is equivalent
to |= con(T)(∞)
 con(T ′). Since each concept inclusion can be
transformed into the form of �
 D, (TF2) is equivalent to say that
|= con(T)(∞)
 D implies |= con(T ′)(∞)
 D for any finite
ALC -concept D with sig(D) ⊆ sig(T) − S.

Note that C = con(T ′) must be finite and over sig(T)−S. From
(CF1) and (CF2) of c-forgetting, we have the following result.

Proposition 2 Given an ALC -TBox T and a set S of concept and
role names, S is forgettable in T iff there exists a finite concept de-
scription C over sig(T) − S satisfying

(E1) |= cforget(con(T)(∞),S)
 C, and
(E2) |= C(∞)
 cforget(con(T)(∞),S).

In this case, forget(T ,S) = {�
 C}.

(E1) and (E2) correspond to (TF1) and (TF2), respectively.
To see (E2), note that (TF2) requires |= con(T ′)(∞)

cforget(con(T)(n),S) for all n ≥ 0.

From Proposition 2, the existence of TBox forgetting is reduced
to the existence of a finite concept C satisfying (E1) and (E2). The
following result shows that the form of such a concept can be further
restricted.

Lemma 2 Let T and S be as in Proposition 2. If there exists a finite
concept satisfying (E1) and (E2), then there is a number n ≥ 0 such
that C = cforget(con(T)(n),S) satisfies (E1) and (E2).

Note that C = cforget(con(T)(n),S) is finite for any n and
always satisfies (E1). The existence of TBox forgetting is further
reduced to the existence of a number n ≥ 0 such that C =
cforget(con(T)(n),S) satisfies (E2).

We use sub(C) to denote the negation closure of the set of all sub-
concepts occurring in C. And sub(T) is sub(con(T)). It is clear that
each label L(x) in tableau T(C(∞) �D) satisfies L(x) ⊆ sub(C �
D). There are at most 2|sub(C
D)| different labels in T(C(∞) �D).

We say a tableau T is closed at depth n for n ≥ 0 if each tree in
T is closed with a clash within depth n.

Lemma 3 Let C, D be two finite ALC -concepts, S a set of con-
cept and role names, and N = 2|sub(C
D)|. Then |= C(∞)

cforget(D(∞),S) iff the tableau of C(N) � ¬cforget(D(N),S) is
closed at depth N .

The above lemma shows that it is decidable for each n whether C =
cforget(con(T)(n),S) satisfies (E2). And it also suggests that we
only need to check up to some large enough n.

Lemma 4 Let C, D be two finite ALC -concepts, S a set of concept
and role names, and N = 2|sub(C
D)|. Then for any k > 1, the
tableau of (cforget(C(N+k),S))(N) � ¬D is closed at depth N iff
the tableau of (cforget(C(N),S))(N) � ¬D is closed at depth N .

Z. Wang et al. / Tableau-Based Forgetting in ALC Ontologies 49

The correctness Theorem 2 of is clear from Proposition 2 and
Lemmas 2 to 4. These results also provide a fixed number n =
2|sub(T)| to Theorem 2 for deciding the existence and computing
TBox forgetting.

Now we introduce an algorithm that decides the existence of for-
getting and computes forget(T ,S) if it exists (ref. Figure 1).

Algorithm 1

Input: An ALC -TBox T , a set S of concept and role names.
Output: forget(T ,S) if S is forgettable in T ; otherwise “S is not
forgettable in T ”.
Method: Initially, let n = 0, T = {L0(x) = ∅}, and T0 = ∅.
Let N = 2|sub(T)| and T′ = T.

Step 1. Complete T′ with T-rules and ∀∗-rule, applying
-rule only
to the nodes within depth N . Compute D = roll(T′, sig(T) − S).

Step 2. Repeat the following steps until n > N :
1. Complete T with T-rules and ∀∗-rule, applying
-rule only to the
nodes on depth n.

2. Compute C = roll(T, sig(T) − S) and let Tn+1 = {�
 C}.

3. If Tn |= Tn+1 and the tableau of C(N)�¬D is closed at depth N ,
then return Tn as forget(T ,S).

4. Assign n = n + 1.

Step 3. Return “S is not forgettable in T ”.

Figure 1. Compute and approximate TBox forgetting via rolling up.

Step 2 of Algorithm 1 computes incrementally for 0 ≤ n ≤ N ,
C = cforget(con(T)(n),S). We do not assign n = N directly be-
cause in most of the cases, the existence of forgetting can be decided
(with the result also computed) with very small n. In 3 of Step 2,
the algorithm checks whether C satisfies (E2) only when Tn+1 is not
strictly stronger (w.r.t. logical consequences) than Tn. And if it is the
case, Tn is the result of forgetting and does not change (logically)
for increasing n. If n exceeds N and no concept C satisfying (E2) is
found, then the result of forgetting does not exist.

The correctness of Algorithm 1 is easily seen from the previous
discussion.

Theorem 3 Given an ALC -TBox T and a set S of concept and role
names, then Algorithm 1 returns forget(T ,S) if it exists, and returns
“S is not forgettable in T ” otherwise.

Algorithm 1 is also an anytime approximation algorithm for TBox
forgetting, as each Tn obtained is an approximation of the result of
forgetting. We have the following results for Tn.

Proposition 3 Given an ALC -TBox T and a set S of concept and
role names, for any n ≥ 0, we have

1. T |= Tn+1 |= Tn.
2. T |= C
 D implies Tn |= C
 D for any ALC -concepts C, D

s.t. sig(C � D) ⊆ sig(T) − S and 2|sub(C
D)∪sub(T)| < n.

Each Tn+1 is a better approximation of the result of forgetting than
Tn, and Tn+1 can be computed by further expanding the tableau for
computing Tn. Thus, Algorithm 1 is also an incremental approxima-
tion algorithm for TBox forgetting.

4 Forgetting by Variable Substitution

As easily seen, the forgetting algorithm in the previous section does
not preserve the structure of the initial TBox. However, in many ap-
plications, it is desirable to preserve the structure for readability and

comparison. By introducing concept variables into the TBox, the fol-
lowing approach is capable of preserving structural information in
the initial TBox during forgetting.

Let NX be the set of concept variables (or variables), which can
be quantified over and can be replaced with concepts in ALC . A
concept term is is a concept description that allows concept variables
to be used as atomic concepts. E, F denote concept terms. We as-
sume all concept terms are also in NNF, i.e., negations only occur
in front of concept names and variables. We generalize the syntax of
TBoxes to allow variables and axioms of the form E
 F .

A substitution σ is a set of pairs of the form X �→ E with
X ∈ NX and E a concept term. A substitution is ground if every
E contains no variable. We say σ is over a signature S, if E contains
only concept and role name in S. Given a concept term F , a TBox
T or a tableau T containing variables, σ(F), σ(T) and σ(T) can be
defined in a natural way.

4.1 Forgetting in Concept Descriptions

In this approach, we start with a general concept D over sig(C) −
S such that |= C
 D, and replace D with stronger and stronger
concepts (w.r.t. subsumption) to approximate forget(C,S).

A natural way of strengthening concepts is by introducing new
conjuncts. In [2], a notion of concept decoration is defined. Given
an ALC -concept description C in NNF, dec(C) is a concept term
defined inductively as follows:

• if C is a literal, dec(C) = C;
• if C is C1 �C2, dec(C) = dec(C1)� dec(C2); if C is C1 �C2,

dec(C) = dec(C1) � dec(C2);
• if C is ∃r.E, dec(C) = ∃r.(X � E) with X a new variable; if C

is ∀r.E, dec(C) = ∀r.(X � E) with X a new variable.

Define Cdec = X0 � dec(C) with X0 a new variable.
The decoration process simply adds one variable conjunct un-

der each quantifier in the concept description. For example, the
decoration of concept description (A � ∃r.¬B) � ∀r.(B � C) is
X0 �

(
A � ∃r.(X1 � ¬B)

)
� ∀r.

(
X2 � (B � C)

)
.

Since variables are added as conjuncts, it is easy to see that
|= σ(Cdec)
 C for any concept C and ground substitution σ.
Moreover, for any concept D with |= D
 C, there exists a ground
substitution σ such that |= σ(Cdec) ≡ D. Such a σ can be simply
constructed as {X0 �→ D} ∪ {X �→ � | X �= X0, X in Cdec}.

With the notion of decoration and substitution, we can present an
equivalent characterization of c-forgetting as follows.

Proposition 4 Given ALC -concepts C, D and a set S of concept
and role names, we have cforget(C,S) = D iff (1) sig(D) ⊆
sig(C) − S, (2) |= C
 D, and (3) the following formula is false:

∃σ. { σ is ground and is over sig(C) − S,
s.t. |= C
 σ(Ddec) and �|= D
 σ(Ddec) }. (∗)

To check whether cforget(C,S) = D, we want to decide whether
such a substitution σ satisfying (*) exists or not, and to construct
σ if it exists. Using the tableau algorithm, we need to expand
two tableaux, Tcl and Top, which are defined to be L0(x) =
{C,¬Ddec} and L′

0(x) = {D,¬Ddec}, respectively.
In order to construct σ, we introduce a set of Substitution rules (S-

rules, ref. Table 2). All the rules are applicable only if L is the label
of an open tree in Tcl. As disjunctions need to be handled, the S-
rules proposed here are more complex than those in [2]. X, Y (with

Z. Wang et al. / Tableau-Based Forgetting in ALC Ontologies50

Table 2. Substitution rules (S-rules)

U -rule: if {¬X,¬Y } ⊆ L(x)
then apply σ = {X �→ Y } to cl and op

�-rule: if ¬X ∈ L(x)
then apply σ = {X �→ �} to cl and op

L-rule: if {¬X, Li} ⊆ Li(x) with i ∈ I and each L+
i �∈ S

then apply σ = {X �→
⊔

i∈I Li} to cl and op

Q-rule: if {¬X, Li} ⊆ Li(x) with i ∈ I and each L+
i �∈ S,

{¬X,∃rj .Cj} ⊆ Lj(x) with j ∈ J and rj �∈ S,
{¬X,∀rk.Ck} ⊆ Lk(x) with k ∈ K and rk �∈ S

then apply to cl and op substitution σ =
{X �→

⊔
i∈I Li �

⊔
j∈J ∃rj .Yj �

⊔
k∈K ∀rk.Yk}

where each Yj , Yk are new variables

subscripts) are concept variables, and I, J, K are mutual disjoint sets
of numbers.

Each variable X only occurs negated in 〈Tcl,Top〉, and thus we
only consider ¬X in each label. When both T-rules and S-rules are
applicable, T-rules always have precedence over S-rules. U -rule uni-
fies any two variables in a label, and have precedence over all other
S-rules, to ensure that other S-rules apply at most once in each label
L(x). Also, the �-rule and L-rule have precedence over the Q-rule,
as we want to introduce as few new variables as possible. We call a
tableau S-complete if no T-rule or S-rule is applicable, and we talk
about openness and closeness only for S-complete tableaux.

The following theorem states the soundness and completeness of
the S-rules.

Proposition 5 Given ALC -concepts C, D with |= C
 D, and a
set S of concept and role names s.t. sig(D) ⊆ sig(C) − S, then

(1) The application of T-rules and S-rules to Tcl and Top always
terminates; and

(2) Formula (*) holds iff there is a way of applying S-rules to ob-
tain a ground substitution σ, such that σ(Tcl) is closed and σ(Top)
is open.

Now with T-rules and S-rules, we are able to show an approxi-
mating algorithm for computing c-forgetting (ref. Figure 2). We call
a concept description an S-literal if it is of the form A or ¬A with
A ∈ S, or ∃r.C or ∀r.C with r ∈ S.

Algorithm 2

Input: An ALC -concept C and a set S of concept and role names.
Output: cforget(C,S).
Method:
Step 1. Let D be the concept obtained from C by replacing all S-
literals in C with �.

Step 2. Repeat the following steps until D does not change:
1. Assign Tcl to be L0(x) = {C,¬Ddec} and Top to be L′

0(x) =
{D,¬Ddec}.

2. Complete Tcl and Top with T-rules and S-rules.

3. If a ground substitution σ is found s.t. σ(Tcl) is closed and
σ(Top) is open, then assign D = σ(Ddec).

Step 3. Return D as cforget(C,S).

Figure 2. Compute c-forgetting via variable substitution

In Step 1 of Algorithm 2, D is taken as the first approximation
of cforget(C,S), as it is not hard to verify that |= C
 D and
sig(D) ⊆ sig(C) − S. In Step 2, D is refined by σ(Ddec) repeat-
edly until D is the strongest w.r.t. subsumption, which is the result
of c-forgetting. Since c-forget always exists for any ALC -concept

description C, Algorithm 2 always terminates. The correctness of
Algorithm 2 is stated as follows.

Theorem 4 Given an ALC -concept description C and a set S of
concept and role names, then Algorithm 2 always terminates and
returns cforget(C,S).

4.2 Forgetting in TBoxes

To generalize the approach in the previous subsection to TBox for-
getting, we start with a weak TBox T ′ over sig(T) − S such that
T |= T ′, and approximate the result of forgetting by replacing T ′

with stronger and stronger TBoxes (w.r.t. logical consequence).
Intuitively, a TBox axiom is strengthened via introducing new dis-

juncts into the left-hand side of each axiom, and/or new conjuncts
into the right-hand side. We define TBox decoration with the help of
concept decoration.

Definition 4 (TBox Decoration) Given an ALC -TBox T , dec(T)
is obtained from T by replacing each axiom C
 D in T with
¬dec(¬C)
 X � dec(D), where each X is a new variable.

Tdec = dec(T) ∪ {�
 X0} with X0 being a new variable.

For example, the decoration of TBox { A � ∃r.B
 ∀r.C, C

D } is { �
 X0, A� ∃r.(¬X1 �B)
 X2 � ∀r.(X3 �C), C

X4 � D }.

Lemma 5 Given an ALC -TBox T , we have (1) σ(Tdec) |= T for
any ground substitution σ; and (2) for any ALC -TBox T ′ with T ′ |=
T , there exists a ground substitution σ such that σ(Tdec) ≡ T ′.

Similar to Proposition 4, we have the following characterization
for TBox forgetting.

Proposition 6 Given ALC -TBoxes T , T ′ and a set S of concept
and role names, then forget(T ,S) = T ′ iff (1) sig(T ′) ⊆ sig(T) −
S, (2) T |= T ′, and (3) the following formula is false:

∃σ. { σ is ground and is over sig(T) − S,
s.t. T |= σ(T ′

dec), and T ′ �|= σ(T ′
dec) }. (∗∗)

To check whether forget(T ,S) = T ′, in contrast to c-forgetting,
TBox tableaux expansion requires the additional
-rule, and the
classical tableau blocking condition, called T-blocking. Tcl and Top

both are initialized to be L0(x) = {
⊔

E�F∈T ′
dec

E � ¬F}. The
difference is that they are expanded w.r.t. different TBoxes. In partic-
ular, Tcl and Top are expanded w.r.t. T and T ′, respectively. By ap-
plying T-rules (including the
-rule) and S-rules to Tcl and Top, the
algorithm tries to construct a ground substitution σ such that σ(Tcl)
is closed and σ(Top) is open.

However, because of the inter-operation of
-rule and S-rules, the
algorithm may not terminate. In particular, when T ′ is already the
result of forgetting,
-rule may keep adding concepts of the form
∃r.C into the labels and introducing new nodes which trigger the
application of Q-rule. As labels are changed after applying Q-rule,
T-blocking may fail.

A blocking condition is needed here, which is similar to that used
in [2]. Application of Q-rule with substitution X �→ E is S-blocked
in L(x) if in a previous state, Q-rule has been applied with X ′ �→ E′

in L′(x′) such that: (1) E = E′, (2) L(x) = L′(x′), and (3) for each
r occurring in E and each r-successor y of x, there is a r-successor
y′ of x′ with L(y) = L(y′). The equations in (1) – (3) are regardless
of variable name variations.

The following result states the termination, soundness and com-
pleteness of S-rules regarding TBoxes.

Z. Wang et al. / Tableau-Based Forgetting in ALC Ontologies 51

Proposition 7 Given ALC -TBoxes T , T ′ and a set S of concept
and role names s.t.T |= T ′ and sig(T ′) ⊆ sig(T) − S, then

(1) The application of T-rules and S-rules to Tcl and Top always
terminates (with T-blocking and S-blocking); and

(2) Formula (**) holds iff there is a way of applying S-rules to
obtain a ground substitution σ, s.t. σ(Tcl) is closed and σ(Top) is
open.

Now we present the algorithm for computing TBox forgetting
based on T-rules, S-rules, and blocking conditions (ref. Figure 3).
We assume all concepts in the TBox are in NNF.

Algorithm 3

Input: An ALC -TBox T and a set S of concept and role names.
Output: forget(T ,S).
Method:
Step 1. T ′ is obtained from T by replacing all S-literals on the left-
hand sides of the axioms with ⊥, and those on the right-hand sides
with �.

Step 2. Repeat the following steps until T ′ does not change:
1. Assign both Tcl and Top to be L0(x) = {

⊔
E�F∈T ′

dec
E �¬F}.

2. Complete Tcl and Top by T-rules and S-rules w.r.t. T and T ′,
respectively.

3. If a ground substitution σ is found s.t. σ(Tcl) is closed and
σ(Top) is open, then assign T ′ = σ(T ′

dec).

Step 3. Return T ′ as forget(T ,S).

Figure 3. Compute TBox forgetting via variable substitution.

Note that Algorithm 3 may not terminate, even with the blocking
conditions. In particular, when the result of forgetting does not exist,
there is an infinite sequence of stronger and stronger TBoxes derived
as better approximations of the result of forgetting. That is, although
blocking condition guarantees each execution of Step 2 to terminate,
Step 2 can be repetitively executed infinite times.

The following example shows the effect of executing Algorithm 3
in a case where TBox forgetting does not exist.

Example 2 Let T = { A
 B, B
 ∃r.B � C } and S = {B}.
Then Algorithm 3 starts with T ′ = { A
 �, ⊥
 ∃r.�� C } and
T ′

dec = { �
 X0, A
 X1, ⊥
 X2 � ∃r.(X3 � �) � C }.
Denote σi and T ′

i to be the substitution and resulting TBox, re-
spectively, in the i-th iteration of Step 2. We omit the pairs in each σi

of the form X �→ � and trivial axioms in each T ′
i . Then we have

σ1 = {X1 �→ C} and T ′
1 = {A
 C}, and thus T ′

dec = { �

X0, A
 X1 � C };

σ2 = {X1 �→ ∃r.Y, Y �→ C} and T ′
2 = {A
 C � ∃r.C}, and

thus T ′
dec = { �
 X0, A
 X1 � C � ∃r.(X2 � C) };

σ3 = {X1 �→ �, X2 �→ ∃r.Y, Y �→ C} and T ′
3 = {A

C � ∃r.(C � ∃r.C)};
· · ·
T ′

n = {A
 C � ∃r.
(
C � ∃r.(C · · · ∃r.C

︸ ︷︷ ︸
n C′s

)
)
} for n ≥ 1.

However, whenever the result of forgetting exists, the termination
and correctness of Algorithm 3 are guaranteed.

Theorem 5 Given ALC -TBox T and a set S of concept and role
names, if S is forgettable in T , then Algorithm 3 always terminates
and returns forget(T ,S).

5 Conclusion

We have presented two approaches for computing the result of for-
getting in both ALC concept descriptions and TBoxes, based on the
tableau algorithm for ALC . The first approach is based on the tech-
nique of rolling up tableaux. Compared to the algorithm introduced
in [13], this new method allows successive approximations of forget-
ting to be computed incrementally, which is desirable when the result
of forgetting does not exist. An important application of this method
is to show that the existence problem of forgetting in ALC TBoxes
is decidable, However, the first method cannot guarantee that the
structural information of the original ontology (TBox) is preserved
after forgetting. As a result, we have developed a second, different
method for forgetting in ALC . This method consists of running two
tableau-based procedures in parallel. The second new method pos-
sesses several advantages: (1) it is an incremental computation algo-
rithm; (2) it can be implemented using an off-the-shelf reasoner for
ALC ; and (3) it preserves the structural information of the original
ontologies (TBoxes). For future research, it would be useful to find
lower bounds on the complexity of forgetting. It would be also use-
ful to generalize the forgetting algorithms for more expressive DLs
than ALC . It would be interesting to implement our algorithms and
incorporate them into ontology editors.

Acknowledgements: The authors would like to thank the referees
for their helpful and constructive comments. This work was par-
tially supported by the Australia Research Council (ARC) under
DP0666107 and DP1093652.

REFERENCES

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, eds. The Description Logic Handbook. (2003).

[2] F. M. Donini, S. Colucci, T. Di Noia, and E. Di Sciascio, ‘A tableaux-
based method for computing least common subsumers for expressive
description logics’, in Proc. 21st IJCAI, pp. 739–745, (2009).

[3] M. Dzbor, E. Motta, C. Buil, J. M. Gomez, O. Görlitz, and H. Lewen,
‘Developing ontologies in OWL: an observational study’, in Proc.
Workshop on OWL: Experiences and Directions, (2006).

[4] T. Eiter and K. Wang, ‘Semantic forgetting in answer set programming’,
Artificial Intelligence, 14, 1644–1672, (2008).

[5] B. Konev, F. Wolter, and M. Zakharyaschev, ‘Forgetting and uniform
interpolation in large-scale description logic terminologies’, in Proc.
20th IJCAI, pp. 830–835, (2009).

[6] R. Kontchakov, F. Wolter, and M. Zakharyaschev, ‘Can you tell the dif-
ference between DL-Lite ontologies?’, in Proc. 11th KR, pp. 285–295,
(2008).

[7] J. Lang, P. Liberatore, and P. Marquis, ‘Propositional independence:
Formula-variable independence and forgetting.’, J. Artif. Intell. Res.,
18, 391–443, (2003).

[8] F. Lin and R. Reiter, ‘Forget it’, in Proc. AAAI Fall Symposium on Rel-
evance, pp. 154–159. New Orleans (LA), (1994).

[9] B. ten Cate, W. Conradie, M. Marx, and Y. Venema, ‘Definitorially
complete description logics’, in Proc. 10th KR, pp. 79–89, (2006).

[10] D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider, ‘Optimizing termi-
nological reasoning for expressive description logics’, J. Autom. Rea-
soning, 39(3), 277–316, (2007).

[11] Albert Visser, ‘Uniform interpolation and layered bisimulation’, in
Proc. Gödel’96, pp. 139–164, (1996).

[12] Z. Wang, K. Wang, R. Topor, and J. Z. Pan, ‘Forgetting concepts in
DL-Lite’, in Proc. 5th ESWC, pp. 245–257, (2008).

[13] K. Wang, Z. Wang, R. Topor, J. Z. Pan, and G. Antoniou, ‘Concept and
role forgetting in ALC-ontologies’, in Proc. 8th ISWC, pp. 666–681,
(2009).

[14] ‘Protégé’, http://protege.stanford.edu, (2010).
[15] ‘SNOMED CT’, http://www.fmrc.org.au/snomed/, (2007).

Z. Wang et al. / Tableau-Based Forgetting in ALC Ontologies52

